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ABSTRACT
Inbreeding depression is expected to play an important but complicated role in evolution. If we are to

understand the evolution of inbreeding depression (i.e., purging), we need quantitative genetic interpreta-
tions of its variation. We introduce an experimental design in which sires are mated to multiple dams,
some of which are unrelated to the sire but others are genetically related owing to an arbitrary number
of prior generations of selfing or sib-mating. In this way we introduce the concept of “inbreeding depression
effect variance,” a parameter more relevant to selection and the purging of inbreeding depression than
previous measures. We develop an approach for interpreting the genetic basis of the variation in inbreeding
depression by: (1) predicting the variation in inbreeding depression given arbitrary initial genetic variance
and (2) estimating genetic variance components given half-sib covariances estimated by our experimental
design. As quantitative predictions of selection depend upon understanding genetic variation, our approach
reveals the important difference between how inbreeding depression is measured experimentally and how
it is viewed by selection.

WHEN populations experience inbreeding, mean Variation in ID (� 2
ID) has been measured as part of

studies investigating the relationship between ID andfitness tends to decline and the among-line vari-
ance in mean fitness increases (Darwin 1877, p. 442; mating system (e.g., Kalisz 1989; Agren and Schemske
Morton et al. 1956; Charlesworth and Charles- 1993; Mutikainen and Delph 1998; Takebayashi and
worth 1987; Byers and Waller 1999). Inbreeding Delph 2000; reviewed in Byers and Waller 1999) and
increases homozygosity, causing a decline in mean fit- between ID and the short-term dynamics of purging
ness owing to the manifestation of recessive deleterious (Pray and Goodnight 1995; Fowler and Whitlock
alleles, the reduction in frequency of heterozygotes at 1999). In these latter studies, ID is considered a herita-
overdominant loci, or changes in gene interactions, ble trait and � 2

ID is assumed to represent an opportunity
such as additive-by-dominance and dominance-by-domi- for selection to act upon and reduce inbreeding load.
nance epistasis (Crow and Kimura 1970, pp. 78–80). The problem with this perspective is that inbreeding
The among-line variance also increases owing to the seg- complicates the concept of heritability by changing the
regation among lines of these genetic factors as well as nature of the regression of parents on offspring. Indeed,
the additive and additive-by-additive epistatic genetic vari- Falconer (1985, p. 337) states that the concept of
ances (Cockerham and Weir 1968; Goodnight 1988). breeding value, from which narrow sense heritability

Inbreeding depression (ID) is believed to play an is measured, has “no useful meaning when mating is
important but complicated role in the evolution of mat- nonrandom.” Although the change in the parent-off-
ing systems (e.g., Holsinger 1988; Uyenoyama et al. spring regression can be predicted for particular cases
1993). For example, in the evolution of selfing and (e.g., for selfing, see Wright and Cockerham 1986),
outcrossing in plants, inbreeding initially selects against the variance components affecting selective response in
selfing lineages by lowering mean fitness. However, if inbred populations are different from those contribut-
the genes responsible for ID are purged by selection ing to � 2

ID.
from within or among some lineages, then the selective The response to selection with inbreeding has been
advantages of selfing may come to outweigh its initial addressed by a large body of theory describing trait
disadvantages. The purging process is complicated be- variation among lines with inbreeding or the within-line
cause inbreeding has effects not only on mean fitness covariance among traits with inbreeding (e.g., Cocker-
but also on the within-deme genetic variances and co- ham 1971, 1983; Cornelius and Dudley 1976; Cocker-
variances of fitness traits. Thus, purging of ID depends ham and Weir 1983, 1984; Cockerham and Matzinger
upon the within- and among-line genetic variances. 1985; Wright and Cockerham 1986; Cornelius 1988).

Kelly (2004) noted that � 2
ID includes several within-

family covariances, e.g., the covariances between out-
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E-mail: jmoorad@indiana.edu and between inbred relatives. However, only the covari-
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Figure 1.—Lineage-spe-
cific inbreeding depression
with selfing and sib-mating.
(A) Each selfing line begins
with an outbred hermaphro-
dite at generation 0. Follow-
ing g � 1 consecutive gen-
erations of selfing in which
a single hermaphrodite is se-
lected for crossing, a sire is
simultaneously crossed to
Mo outbred and unrelated fe-
males and to itself (the sire
is the dam used to generate
inbred progeny in genera-
tion g). With this design, re-
lated dam replication is not

possible with selfing (the sire must be the dam for selfing to occur). (B) Each sib-mating line begins with two outbred and
unrelated individuals at generation 0. Following g � 1 consecutive generations of sib-mating in which a single pair of siblings
is selected for crossing, a sire is simultaneously crossed to M o outbred and unrelated females and M f sisters. The most recent
ancestors through which inbred individuals may be made identical by descent are indicated by an asterisk. With selfing, this
designation is given to only the sire. With sib-mating, it is given to both paternal grandparents (generation g � 2).

ance between inbred relatives contributes to the among- tively understand the evolution of ID we need genetic
variance estimates. In this way, the translation of theline variance in the inbred phenotype. This distinction

arises because ID is a group-level phenotype, defined variation in inbreeding depression into genetic variance
components serves two purposes. The first is interpreta-as a difference between inbred and outbred mean pheno-

types. The ID of an individual’s progeny depends upon tive: we may use the variation in inbreeding depression
as a quantitative tool with which to estimate varianceits own genotype as well as that of its mates. As a result,

selection among individuals in an inbreeding popula- components. The second is predictive: by understand-
ing how genetic variation generates variation in inbreed-tion may not have a commensurate effect on ID. Differ-

ently put, trait evolution with inbreeding is different ing depression, we may predict future � 2
ID after selection

and/or inbreeding.from the evolution of inbreeding depression.
This is not to say that inbreeding depression cannot In this article, we develop a general quantitative ge-

netic framework for evaluating the genetic causes ofevolve. However, a quantitative genetic model for the
evolution of ID requires refinements to our current � 2

ID . Because the evolution of mating systems depends
upon the trade-off between kinship and ID, the develop-understanding of the genetic basis of ID. First, estimates

of ID appropriate for predicting a response to selection ment of this theory is a necessary step in the quantitative
study of the evolution of mating systems. Specifically,must be made. For example, within-line replication of

mates is critical for quantifying the genetic variation we introduce an experimental design (Figure 1) for
analyzing the genetic components of � 2

ID , when inbreed-available for mitigating inbreeding depression. Never-
theless, within-line mate replication is seldom (if ever) ing is caused by either selfing or sib-mating. Our ap-

proach is a half-sib design, with sires mated to groupsemployed in practice. Lynch and Walsh (1998, p. 268)
recommend that experimenters consider a replicated of related and unrelated dams. It permits ID to be de-

fined for each sire as the difference between outbrednonrandom mating system (i.e., inbreeding) in the con-
text of similarly replicated panmixia: “A central problem and inbred dam means and addresses the need identi-

fied by Lynch and Walsh (1998, pp. 268–269) for anis that inbreeding depression is not just a property of the indi-
vidual, but of the prospective mates as well . . . the fitness of ANOVA-based procedure for estimating the expected

variation in ID: “. . . [genetic] variance in inbreeding de-progeny from full-sib matings will depend upon which sibs are
employed as mates . . .” and “. . . one would like an estimate of pression can [presumably] be estimated using ANOVA ap-

proaches, treating differences between replicate pairs of inbredthe fitness of outcrossed progeny averaged over all potential
mates. . . .” We argue that replication of mates is essen- and outcrossed matings within lineages as the units of observa-

tions, but the procedures remain to be worked out.” We showtial for assessing evolutionarily relevant variation in
inbreeding depression, just as it is in experiments for that � 2

ID consists of predictable components of genetic
variance and is sensitive to type and duration of inbreed-estimating variation in breeding values. To assess the

variation in inbreeding depression, we propose a modi- ing. The variation in inbreeding depression can be
caused by varying F, the probability of identity by de-fication to the classic paternal half-sib design.

Parent-offspring regressions require estimates of com- scent, across lines. As we consider a design with invariant
F, we do not consider this source of variation here.ponents of genetic variance. Thus, if we are to quantita-
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differences, we find the total variation in inbreeding depres-TABLE 1
sion across sires. This will overestimate the variation in inbreed-

Genetic effects on phenotypes ing depression effects because there will be contributions from
dam and individual (error) effects. Replication at the level of

Symbol Parameter dam (related and unrelated) and the offspring (inbred and
outbred) within each line provides a statistical means for ac-

� Mean of outbred and inbred populations counting for the extraneous variance components and allow-
b Mean inbreeding depression ing for unbiased estimates of � 2

IDE. If there are N sires, M o un-
s i o Effect of sire i when crossed to unrelated dams related dams, M f related dams, n o outbred offspring, and n f
s i f Effect of sire i when crossed to related dams inbred offspring, then
d i o k Effect of dam k when crossed to unrelated sire i
d i f k Effect of dam k when crossed to related sire i � 2(zi o.. � zi f..) � � 2

IDE �
1

M o

� 2
do

�
1

M f

� 2
df

�
1

n oM o

� 2
e o

�
1

n fM f

� 2
e f

.
e i okl Deviation of individual l from the mean of cross

(4)sire i by unrelated dam k
e i f kl Deviation of individual l from the mean of cross The variance in inbreeding depression effects with dam effect

sire i by related dam k variance has been measured in some experiments that do not
replicate at the level of the dam (e.g., Pray and Goodnight
1995). This parameter contains variance components not rele-
vant to a response to selection. We remove these componentsMATERIALS AND METHODS
by running two separate analyses of variances (ANOVAs) on
the outbred and inbred individuals. Each is a two-factor ANOVAThe linear model: Consider N independent lines, each con-
with random dam effects nested within random sire effects.taining one sire crossed to M f related females and M o unre-
This is different from previous approaches ( Johnston andlated and random-mated females. Each cross generates n o out-
Schoen 1994; Pray and Goodnight 1995) in which inbreed-bred offspring or n f inbred offspring (Figure 1). Let zi o kl

ing level has been treated as a fixed effect. This alteration isrepresent the value of the phenotype of the l th outbred indi-
desirable as Kelly (2004) points out that change in geneticvidual from the cross between the i th sire and the k th unrelated
variation with inbreeding will violate the assumptions of homo-dam and, similarly, zi f kl represent the value of the phenotype
scedasticity upon which these early ANOVAs depend. Our dual-for an inbred offspring from the same sire but the k th related
ANOVA approach makes no such assumption. Note that theredam. We can decompose the phenotype of each outbred (o)
are no shared aspects between the outbred and inbred individ-and inbred (f) individual into fixed and random effects,
uals except for common alleles transmitted through the shared

zi o k l � � � 1⁄2 b � si o � d o i k � ei o k l and zi f k l � � � 1⁄2 b � si f � d fi k � ei f k l , sires. Because the resulting covariance between outbred and
(1) inbred sire effects is a desired component of � 2

IDE (Equation 3),
no sort of joint ANOVA is more appropriate than the dual-where the terms in Equation 1 are defined in Table 1. We
ANOVA approach.define inbreeding depression for some sire i to be the expecta-

tion of the phenotypic difference between outbred progeny
io .. and inbred progeny i f .., or in terms of genetic effects,

RESULTSIDi � E((zi o.. � zi f..)|si) � b � si o � s i f . (2)

Interpretation of variance: Interpretations of the pa-Since we are interested in the variation in the differential
effects of inbreeding across breeding individuals, we define the rameters in Equation 4 are given in terms of genetic
variation in inbreeding depression effects (IDE), i.e., those trans- components described in Table 2. The variance terms
mitted by sires, to be in the ANOVAs can be expressed in terms of covariances

between relatives; these are affected by the type and du-� 2
IDE � � 2(so) � 2�(so , s f) � � 2(s f). (3a)

ration of inbreeding. Each of these covariances can beSire effects are defined in part by the hypothetical distribu-
solved independently by Cockerham (1971) for selfingtion of paternal gametes across the entire population relevant

to that of the inbreeding treatment. For so this population is or by Cockerham (1983) for sib-mating. Alternatively,
the entire pool of unrelated individuals but for s f this is only we may synthesize expressions that describe the appro-
those individuals who share a specific type of relationship with priately weighted sums of these covariances and directly
the sire. In the case of sib-mating, the sire’s gametes are imag-

yield the variance components used to estimate � 2
IDE . Inined to be combined with an infinite number of full sisters.

the appendix, we derive formulas for variation in in-With selfing, however, the pool of appropriate mates is re-
stricted to the hermaphroditic sire itself. In this case, no mean- breeding depression effects as well as accessory variances
ingful distinction can be made between inbred sire effects (i.e., dam and error variances) in terms of genetic vari-
and related dam effects (see Equation 4). This is reflected in ance components. These formulas are summarized in
our definition for variation in inbreeding depression effects

Table 3. Variance components � 2
A , D 1 , and D *2 all havewith selfing,

nonzero coefficients and contribute to � 2
IDE . We show

� 2
IDE(selfing) � � 2(so) � 2�(so , s f) � � 2(s f) � � 2(d f). (3b) below that D 1 and D *2 are often the predominant con-

tributors to the variance in inbreeding depression. InThe terms � 2(s f) and � 2(d f) must be distinguished because the
latter contains genetic components and special environmental Table 4, we summarize the results for the first three
components (maternal effects) not included in the former. generations of inbreeding and for inbreeding to com-

Adjusted estimator for the variance of inbreeding depres-
plete homozygosity. This illustrates the rate with whichsion effects: The variation of inbreeding depression may be
the various components of variance change their con-estimated by taking, for each sire, the mean outbred pheno-

type and subtracting the mean inbred phenotype. From these tributions to � 2
IDE with selfing relative to sib-mating.
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TABLE 2

Definitions of genetic variance components

Genetic parameter General definition k � 2

� 2
A : additive genetic variance 2� k

i�1pi �
2
i 2p 1p 2(a � d(p 1 � p 2)*)2

D 1 : covariance between additive and � k
i�1pi �i �i i 2p 1p 2(p 1 � p 2)*(a � d(p 1 � p 2)*)d

homozygous dominance deviations
D *2 : variance of homozygous dominance � k

i�1pi �
2
i i � (� k

i�1pi �ii )2 4p 1p 2(p 3
1 � p 3

2 � p 1p 2)d 2

deviations
� 2

D : dominance variance � k
i�1� k

j�1pi pj �
2
i j 4p 2

1 p 2
2d 2

H *: squared sum of homozygous (� k
i�1 pi �i i )2 4p 2

1p
2
2d 2

dominance deviations

Parameters are defined in terms of allelic frequencies (pi ), additive effects (�i), and dominance effects (�i j )
assigned to k arbitrary alleles segregating at a locus. Quantitative definitions follow Harris (1964) and Cocker-
ham (1983). Notation for the two-allele case follows Falconer and Mackay (1996, p. 118) and describes ad-
ditive effects (a) and dominance deviations in the heterozygote (d). We use p 1 to represent the frequency of
the high-valued allele. We assume that this allele is dominant; otherwise the difference marked with * is reversed.

Expected magnitude of the variation in inbreeding ance, then the vector describing the components of
� 2

IDE can be approximated by three elements: � 2
A , D 1 ,depression effects at mutation-selection balance: If ge-

netic variation is maintained by mutation-selection bal- and D *2 . This follows from Table 2, last column, where

TABLE 3

Genetic composition of variation in inbreeding depression for g generations of inbreeding

Source of
Variance Selfing Sib-mating

Inbreeding depression effects

� 2
A

D 1

D *2
� 2

D

H *

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄2 1⁄4
2 1⁄2
1 1⁄8
0 1⁄4
0 1⁄8

⎞
⎟
⎟
⎟
⎟
⎟
⎠

· r �

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

F 2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄2 1⁄4 5⁄16
3⁄16

5⁄16
3⁄16

1⁄4 3⁄16
1⁄8

2 1⁄2 7⁄8 5⁄16
7⁄8 5⁄16

1⁄2 5⁄16
1⁄8

1 1⁄8 23⁄64
5⁄64

23⁄64
5⁄64

3⁄16
7⁄64

1⁄32

0 1⁄4 5⁄32
11⁄64

5⁄32
11⁄64

1⁄4 21⁄128
1⁄8

0 1⁄8 3⁄64
1⁄16

3⁄64
1⁄16

1⁄16
5⁄128

1⁄32

⎞
⎟
⎟
⎟
⎟
⎟
⎠

· r �

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

F 2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Source of
Variance Outbred Inbred Outbred Inbred

Dam

NA

� 2
A

D 1

D *2
� 2

D

H *

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄4 1⁄4
0 0
0 0
1⁄2 1⁄4
0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

· r

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄4 1⁄4 1⁄4 1⁄4 1⁄4 1⁄4 1⁄4 1⁄4 1⁄4
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1⁄2 1⁄4 3⁄8 1⁄4 3⁄8 1⁄4 3⁄8 5⁄16

1⁄4
0 0 0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

· r

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1⁄16
1⁄16

1⁄16
1⁄16

1⁄8 1⁄8 1⁄8
0 0 1⁄8 1⁄16

1⁄8 1⁄16
1⁄4 3⁄16

1⁄8
0 0 3⁄64

1⁄64
3⁄64

1⁄64
3⁄32

1⁄16
1⁄32

0 0 1⁄32
3⁄64

1⁄32
3⁄64

1⁄16
5⁄64

3⁄32

0 0 �1⁄64 0 �1⁄64 0 �1⁄32
�1⁄64 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

· r

Error

� 2
A

D 1

D *2
� 2

D

H *

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄4 1⁄2
0 0
0 0
1⁄2 3⁄4
0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

· r

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1⁄2
0 1
0 3⁄8
0 1⁄4
0 �1⁄8

⎞
⎟
⎟
⎟
⎟
⎟
⎠

· r

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄4 1⁄2 3⁄8 1⁄2 3⁄8 1⁄2 3⁄8 7⁄16
1⁄2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1⁄2 3⁄4 5⁄8 3⁄4 5⁄8 3⁄4 5⁄8 11⁄16

3⁄4
0 0 0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

· r

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1⁄2 1⁄4 1⁄2 1⁄4 1⁄2 1⁄4 3⁄8 1⁄2
0 1 1⁄2 3⁄4 1⁄2 3⁄4 1⁄2 1⁄2 1⁄2
0 3⁄8 7⁄32

9⁄32
7⁄32

9⁄32
7⁄32

13⁄64
3⁄16

0 1⁄4 3⁄16
13⁄32

3⁄16
13⁄32

3⁄16
49⁄128

17⁄32

0 �1⁄8 �1⁄32
�1⁄16

�1⁄32
�1⁄16

�1⁄32
�3⁄128

�1⁄32

⎞
⎟
⎟
⎟
⎟
⎟
⎠

· r

Variances matrices are simplified forms of Equations A3 and A5. The vector r describes the relationship in Jacquard identity coefficients
(Table A1) between the most recent ancestors through which inbred individuals may be made identical by descent (Figure 1). The
vector is r given by Equations A1 for sib-mating and A4 for selfing. F is the probability of identity by descent of inbred individuals and
can be obtained by Equation A2. Sire effects variances and covariance are not given separately in this table (although they may be
derived using Equation A2). Instead, they are pooled into a single matrix to give � 2

IDE (following Equation 3).
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TABLE 4

Contributions to variation in ID for g generations of consecutive inbreeding

Source of Selfing: Sib-mating:
variance g � (1 2 3 ∞) g � (1 2 3 ∞)

Inbreeding depression effects

� 2
A

D 1

D *2
� 2

D

H *

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄4 3⁄8 7⁄16
1⁄2

1⁄2 5⁄4 13⁄8 2
1⁄8 9⁄16

25⁄32 1
1⁄4 1⁄8 1⁄16 0

�1⁄8 �1⁄2 �47⁄64 �1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄8 3⁄16
1⁄4 1⁄2

1⁄8 5⁄16
19⁄32 2

1⁄32
7⁄64

61⁄256 1
1⁄8 45⁄256

351⁄2048 0
�1⁄32

�25⁄256
�415⁄2048 �1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Source of
variance Outbred Inbred Outbred Inbred

Dam

NA

� 2
A

D 1

D *2
� 2

D

H *

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄4 1⁄4 1⁄4 1⁄4
0 0 0 0
0 0 0 0
1⁄4 3⁄8 7⁄16

1⁄2
0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄4 1⁄4 1⁄4 1⁄4
0 0 0 0
0 0 0 0
1⁄4 5⁄16

11⁄32
1⁄2

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄8 1⁄8 3⁄32 0
1⁄8 3⁄16

5⁄32 0
1⁄32

1⁄16
7⁄128 0

3⁄32
5⁄64

7⁄128 0
0 �1⁄64

�1⁄64 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Error

� 2
A

D 1

D *2
� 2

D

H *

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄2 3⁄8 5⁄16
1⁄4

0 0 0 0
0 0 0 0
3⁄4 5⁄8 9⁄16

1⁄2
0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄2 1⁄4 1⁄8 0
1 1⁄2 1⁄4 0
3⁄8 3⁄16

3⁄32 0
1⁄4 1⁄8 1⁄16 0

�1⁄8 �1⁄16
�1⁄32 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄2 7⁄16
13⁄32

1⁄4
0 0 0 0
0 0 0 0
3⁄4 11⁄16

21⁄32
1⁄2

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄2 3⁄8 5⁄16 0
1⁄2 1⁄2 1⁄2 0
3⁄16

13⁄64
53⁄256 0

17⁄32
95⁄256

561⁄2048 0
�1⁄32

�7⁄256
�65⁄2048 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

With selfing, inbred dam effects are included in � 2
IDE . Otherwise, dam effect variance coefficients are obtained by subtracting

half-sib covariances from full-sibs covariances. Error variance coefficients are obtained by subtracting full-sib covariances from
individuals’ covariance with themselves.

we see that these components are roughly proportional p 2 , with expectation in terms of mutational parameters
to the frequency of the rare allele. In contrast, the re- � and s , then we may approximate the variation in
maining two components, � 2

D and H*, are proportional inbreeding depression effects by finding the con-
to the square of that frequency and can be ignored. tribution of D *2 . With one generation of inbreeding,
When genetic variation is maintained by the balance from Equation 5 and Table 4, we find the variation in
between mutation and purifying selection, we expect inbreeding depression effects to be
that p 2 � p 1 when the effects of allele 1 are dominant
to the effects of allele 2 (Charlesworth and Charles- � 2

IDE(selfing) � s
4�

� 2
A and � 2

IDE(sibbing) � s
16�

� 2
A .

worth 1987). To predict � 2
IDE , we assume a per-locus

(6)mutation rate (�), selective effect (s), and average de-
gree of dominance (h). Below, we express results for

Thus, with complete dominance we expect enormousthe various variance components in terms of additive
variation in inbreeding depression effects relative to �2

A ,genetic equivalents, i.e., in multiples of � 2
A that segregates

nearly all generated by nonadditive genetic variation.in a random-mated population.
Partial dominance: Following the arguments above, weComplete dominance (h � 0): Following Falconer and

can approximate the value of variance components forMackay (1996, p. 126) and Table 2 with complete domi-
partial dominance with rare alleles:nance (i.e., d � a), we have proportional values,

D 1 � d
(a � d)

� 2
A �

1 � 2h
2h

� 2
A and D *2 � (1 � 2h)2

2h 2
� 2

A
.D 1 � 1

p 2

� 2
A and D *2 � 2

p 2
2

� 2
A . (5)

(7)
Although both D 1 and D *2 	 � 2

A , D *2 
 D 1 when p 2 is
small. If we replace the frequency of the rare allele, With one generation of inbreeding, following Equa-
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Figure 2.—Important genetic components that contribute to the variation in inbreeding depression effects (assuming rare
alleles). Increasing the number of consecutive generations of selfing or sib-mating (indicated by the x-axis) increases the total
variation in inbreeding depression effects (given in units of additive genetic variance equivalents). This incremental change in
� 2

IDE diminishes with more generations of inbreeding and more quickly with more intense inbreeding (selfing). Low values of h
(corresponding to increased dominance deviations in heterozygotes and increased mean inbreeding depression) give more inbreed-
ing depression effect variance than do high values of h . Changes in � 2

IDE with h are positively associated with the relative con-
tribution of D *2 toward that variance. With low h , D *2 will tend to dominate � 2

IDE , although D 1 will still have some effect. In this
case, additive genetic variation does not meaningfully contribute to the variation in inbreeding depression effects. At high values
of h , all three variance components become relatively important.

tion 7 and Table 4, the variance in inbreeding depres- high dominance (h � 0.1), additive genetic variation is
never an important source of variation in inbreedingsion effects is
depression effects. The relative contributions of � 2

A , D 1 ,
� 2

IDE(selfing) � 1
16h 2

� 2
A and � 2

IDE(sibbing) � 1 � 4h 2

64h 2
� 2

A
. and D *2 stabilize after a few generations of inbreeding.

Using variation in inbreeding depression to estimate(8)
genetic variance components: By contrasting the covari-

Using h � 0.1 (suggested by Lynch and Walsh 1998, ances between different sorts of relatives with selfing and
p. 286, as representative of viability in Drosophila), we sib-mating, it is possible to estimate the genetic parame-
expect � 2

IDE to equal �6� 2
A (six additive genetic variance ters that contribute to variation in inbreeding popu-

equivalents) after one generation of selfing and a little lations (Cornelius and Dudley 1976; Wright and
	3⁄2�

2
A after one generation of sib-mating. If we reduce Cockerham 1986). The inbreeding depression design

dominance (h � 0.3), then � 2
IDE decreases relative to illustrated in Figure 1 provides us with a convenient col-

additive genetic variance (0.694� 2
A and 0.236� 2

A , respec- lection of half-sib covariances with which to perform
tively) as the sources of nonadditive genetic variation such an analysis. For sib-mating, we can describe the co-
contributing to variation in inbreeding depression ef- variances between four kinds of half-sib relatives [out-
fects are lessened. Using Equation 7, we see how the bred-outbred, �HS(O); outbred-inbred, �(OF ); and in-
proportional contribution of each type of genetic vari- bred-inbred half-sibs, �HS(F )] by using Equations A1–A3a
ance changes with dominance and inbreeding. These and Table A2 (see appendix). These covariances consist
proportions are illustrated for the first 10 generations of different weightings of genetic variances, so that lin-
of inbreeding (and complete inbreeding following an ear combinations of these covariances can be used to

isolate individual variance components. For example,infinite number of inbred generations) in Figure 2. With
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TABLE 5

Dissection of genetic variance using elements of the variation in inbreeding
depression effects for one generation of sib-mating

Half-sib covariances Linear combinations
Variance
components A B C 4A 4(2B � 3A) 16(A � 4B � 2C)

� 2
A

D 1

D *2
� 2

D

H*

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1⁄4
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

3⁄8
1⁄8
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

5⁄8
3⁄8
1⁄32

1⁄8
�1⁄32

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
4

�1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Combinations of half-sib covariances (columns A , B , and C) after one generation of sib-mating can be used
to estimate genetic parameters. Covariance A is the resemblance between outbred half-sibs, B is that between
outbred and inbred half-sibs, and C is that between inbred half-sibs. The three dominance parameters are not
separable by this design (last column).

with one generation of sib-mating, half-sib covariances type. For example, Lande and Schemske (1985) mea-
and useful linear combinations thereof are given in Ta- sure the mean family-level inbreeding phenotype after
ble 5. These can resolve additive genetic variance (by a a period of inbreeding to degree f , as � � (zo � z f)/zo ;
conventional outbred paternal half-sib comparison), this is the mean of the individual values of relative in-
the covariance between additive and dominance devi- breeding depression for each family. In contrast, like
ations in homozygotes, and the dominance contribu- Pray and Goodnight (1995), we consider inbreeding
tion toward among-line variance. As this design con- depression on an absolute scale, ID � z o � z f , and find
siders only one degree of inbreeding (at a constant F ), that variation in inbreeding depression is caused by the
it cannot decouple dominance parameters D*2 , � 2

D , and stochastic segregation among sire lines of several ge-
H * (Wright and Cockerham 1986) but in most cases netic effects, including additive genetic variation. Thus,
(i.e., rare alleles) this composite estimate is dominated even in the absence of dominance, we can expect ID
by D *2 . Maximum-likelihood approaches are typically to vary among inbred lineages. Our analytical finding
used to estimate variance components in inbred popu- agrees with that demonstrated in population genetic
lations (e.g., Shaw et al. 1998; Edwards and Lamkey simulations by Schultz and Willis (1995). However,
2002; Kelly and Arathi 2003) but these analyses are Schultz and Willis (1995), like many other theoreti-
probably not necessary when the inbreeding designs are cal studies of mating-system evolution, use the rela-
balanced and not too complex. tive measure of inbreeding depression that has been

shown by Johnston and Schoen (1994) and Lynch
and Walsh (1998, p. 268) to generate biased estimatesDISCUSSION
of mean inbreeding depression when estimated with

By solving for probabilities specific to a given system limited numbers of offspring. We demonstrate below
of inbreeding, variation in inbreeding depression can that even with an infinite number of offspring, the mean
be described in terms of genetic variance components. and variance of such relative measures of inbreeding
These variance components have been dealt with exten- depression are likely to be biased.
sively by several authors with varying forms of notation Consider the outbred and inbred family means, z o
(see Walsh and Lynch 2000, p. 298; Kelly 2004), often and z f , and population means, z o and z f . Following the
in the context of the joint effects of inbreeding and methods of Lynch and Walsh (1998, p. 818) for find-
selection. These variance components may be estimated ing the expectation of a ratio,
by using linear combinations of the variance and covari-
ance of inbred and outbred paternal half-sib, i.e., sire �z o � z f

z o
� � �z o � z f

z o
� �

z f

(z o)3
V(z o) �

1
(z o)2

Cov(z o , z f ) .effects. Because our model is general to the number of
inbred generations, the theory is predictive and testable. (9)
For example, if genetic variance components were esti-

Given our results above, we can quantify the bias of thismated after a single generation of sib-mating, the magni-
estimate for any case of regular inbreeding for the typi-tude of variation in inbreeding depression could be
cal experimental study of inbreeding depression inpredicted for any subsequent generation.
plants conducted without replication of unrelated damsUsually lineage-specific inbreeding depression is mea-

sured on a scale relative to the outbred mean pheno- and with a single generation of selfing. In this case, ad-
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ditive genetic variance, dominance variance, and the co- nance. Finally, provided that phenotypes are normally
distributed within an inbreeding class (or in the outbredvariance between additive and homozygous dominance

deviations contribute toward the bias in ratio estimates population), we expect that the distribution of inbreed-
ing depression across sires is normally distributed withof mean inbreeding depression,
mean equal to the average of all IDi (Equation 2) and
variance given in Equation 4. In contrast, Johnston�z o � z f

z o
� � �z o � z f

z o
� � z o � z f

2(z o)3
� 2

A �
z f

4(z o)3
� 2

D �
1

4(z o)2
D 1 .

and Schoen (1994) report skew for simulated distribu-
(10) tions of inbreeding depression, a result they attribute

to “nonlinear functions of self- and outcrossed values.”The estimate of variance in relative inbreeding depres-
Our Equations 10 and 13 model this nonlinearity for asion is also biased. Following Lynch and Walsh (1998,
single generation of selfing. For these reasons, we arguep. 818), mean inbreeding depression changes the way
that relative measures of inbreeding depression are ofthe variance is calculated:
dubious relevance to evolutionary genetics.

Intuitively, we expect that lineage-level selection would
� 2�z o � z f

z o
� � � 2(z fz o � z oz f )

(z o)4
. (11a)

operate on an absolute scale without regard for a relative
measure of inbreeding depression. For example, lines

By expanding the numerator, we see that changes in pop- that enjoy a fitness advantage when outbred (relative
ulation means with inbreeding affect the relative weight- to other outbred lines) and an advantage when inbred
ings of genetic variance components: (relative to other inbred lines) will have high fitness

regardless of the lines’ proportional inbreeding depres-
�2�zo � z f

zo
� � (z f)2�2(z o) � 2(z f)(zo)�(zo , z f) � (zo)2�2(z f )

(zo)4
.

sion. Alternatively, a line that performs poorly regardless
of mating system is unlikely to thrive despite little pro-(11b)
portional inbreeding depression. Lineage-specific fitness

Because of the weights of variance and covariance com- depends upon the outbred phenotype, the inbred pheno-
ponents on the right-hand side of Equation 11b, it is type, and the covariation between the two (weighted by
not likely that the variation in proportional inbreeding the frequencies of the classes). Although not all absolute
depression will closely resemble the variance of absolute measures of lineage-specific inbreeding depression (e.g.,
inbreeding depression. Again, we reconsider the case of Pray and Goodnight 1995) are indicative of lineage-
unreplicated dams and a single generation of selfing. specific fitness, they do have the advantage of providing
From Table 4, we know that variation in inbreeding de- information from which to draw quantitative genetic in-
pression taken on the absolute scale is independent of ferences as we have shown above. These inferences are
population means: important because they allow us to make quantitative

predictions regarding the response to selection with in-
� 2

ID(selfing, M o � 1) � � 2
IDE(selfing) � � 2(d o) breeding (Cornelius and Dudley 1976; Cockerham

� 1⁄2�
2
A � 1⁄2D 1 � 1⁄8D *2 � 1⁄2�

2
D � 1⁄8H *. and Matzinger 1985).

(12) Because of the genetic covariance between the out-
bred and inbred phenotypes, inbreeding depression will

On the relative scale, however, variation in inbreeding evolve as a by-product of natural selection in an out-
depression is confounded by population mean pheno- breeding population, in the same way that hybrid invi-
types (Equation 11b), specifically ability between populations evolves as a by-product of

local adaptation within populations. When the genetic
� 2�z o � z f

z o
� � (z o)

�4 � �1⁄2(z f)2 � (z f)(z o) � (z o)2�� 2
A
.

covariance is positive, selection within an outbreeding
population will mitigate future inbreeding depression.

� (z o)[(z o) � 1⁄2(z f )]D 1 Conversely, the outbred phenotype evolves as a corre-
lated response to selection within inbreeding popula-� 1⁄8(z o)2D *2 � 1⁄4[(z f)2 � (z o)2]� 2

D

tions. When the genetic covariance is negative, selection
� 1⁄8(z o)2H *� (13) within an inbreeding population could impede a later

transition to outbreeding as a correlated response. Be-
cause both � 2

A and D 1 components exclusively contributeThese relative genetic variance component weightings
are unbiased only when z o � z f , i.e., when there is no to the covariance between outbred and inbred pheno-

types and D 1 is positive with respect to fitness under thepopulation inbreeding depression! Thus, the most com-
monly used experimental design yields biased estimates deleterious, recessive model of inbreeding depression,

we expect the former: lineages that are good outcrossersof both the mean and the variance of inbreeding depres-
sion. Furthermore, the estimates contain components are good inbreeders.

Although inbreeding depression is often thought ofof genetic variance irrelevant to the genetic causes of
inbreeding depression and will result in nonzero esti- as a trait, it is useful to consider it to be a genetic effect,

such as a sire effect. Genetic variation will generate a nor-mates of ID even in the absence of net direction domi-
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APPENDIX

Sib-mating: The vector r describes the relationship between the most recent common ancestral pair of all related
inbred individuals of generation g (Figure 1, asterisks) in terms of Jacquard coefficients (Table A1). Note that all
related outbred progeny are related to these grandparents through their common sire.

r �

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1⁄4 0 1⁄4 0 1⁄8 1⁄16 0
0 0 0 0 0 0 1⁄8 0 0
0 0 1⁄4 0 1⁄4 0 1⁄4 1⁄8 0
0 0 0 0 0 0 0 1⁄16 0
0 0 1⁄4 0 1⁄4 0 1⁄4 1⁄8 0
0 0 0 0 0 0 0 1⁄16 0
0 1 1⁄4 1⁄2 1⁄4 1⁄2 1⁄4 3⁄16

1⁄4
0 0 0 1⁄2 0 1⁄2 0 3⁄8 1⁄2
0 0 0 0 0 0 0 0 1⁄4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

g�2

·

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A1)

This vector summarizes all inbreeding prior to generation g � 2. This identity vector serves as a benchmark with
which we generate a series of new identity vectors that describe all relationships within and between individuals of
generation g . Five vectors correspond to siblings pairs: outbred full-sibs, v(O FS); outbred half-sibs, v(OHS); half-sibs
in which one individual is outbred and the other is inbred, v(OF ); the alternative, v(FO); inbred full-sibs, v(F FS); and
inbred half-sibs, v(FHS). In addition, there are two vectors describing the resemblance within individuals: outbred
individuals, v(O), and inbred individuals, v(F ). All identity vectors for generation g can be derived by taking the
product of r and the probability transition matrix A specific to the type of relationship (given in Table A2).

Once we have the identity vectors for all siblings and individuals in generation g (the various v vectors), we may
translate them into variance components. For any v describing relatives i and j , the genetic covariance between
them is �(i , j ) � T · v(i , j ) � FiFjH * (Harris 1964; Cockerham 1971; Jacquard 1974), where

T �

� 2
A

D 1

D *2
� 2

D

H *

⎛
⎜
⎜
⎜
⎜
⎜
⎝

2 0 1 0 1 0 1 1⁄2 0
4 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and

Fi � (1 1 1 1 0 0 0 0 0) · v, Fj � (1 1 0 0 1 1 0 0 0) · v . (A2)

Note that FiFj � 0 if and only if both individuals are inbred. Because all inbred individuals are equally inbred in
this design, we may define F such that F 2 � FiFj .

We find sire, dam, and error effects variances for outbred and inbred cases by using combinations of these sibling
and individual covariances. The sire effect variances are simply the half-sib covariances within outbred and inbred
treatments. The covariance between outbred and inbred sire effects is the covariance between outbred and inbred
half-sibs. The variation in inbreeding depression effects is a sum of these. Following from Equations 3a and A2,

� 2
IDE � T · [A(OHS) � A(OF ) � A(FO) � A(FHS)] · r � F 2H *. (A3a)

Dam effect variances are the differences between full-sib and half-sib covariances. Outbred and inbred dam effect
variances are

� 2(d o) � T · [A(O FS) � A(OHS)] · r and � 2(d f) � T · [A(F FS) � A(FHS)] · r . (A3b)

Error variance (the within-full-sib family variation) is found by subtracting the full-sib covariance from the covariance
of individuals with themselves. For outbred and inbred cases, these are

� 2(ε o) � T · [A(O P) � A(O FS)] · r and � 2(ε f) � T · [A(F P) � A(F FS)] · r . (A3c)

All effect variances and covariances are simplified and summarized in Table 3.
Selfing: Finding inbreeding depression, sire, dam, and error effect variances is simpler with selfing than with sib-

mating. In this case, the vector r describes the identity shared within the hermaphrodite at generation g � 1 that
sires both selfed and outcrossed individuals (Figure 1A, individual with two asterisks). This vector has zero probabilities
for all identity states except �1 and �7 .
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TABLE A1

Jacquard’s condensed identity coefficients

Jacquard coefficient Probability that for individuals i and j

�1 i 1 � i 2 � j 1 � j 2

�2 i 1 � i 2 � j 1 � j 2

�3 i 1 � i 2 � j 1 � j 2 or i 1 � i 2 � j 2 � j 1

�4 j 2 � i 1 � i 2 � j 1 and j 1 � j 2

�5 i 1 � i 2 � j 1 � j 2 or i 2 � i 1 � j 1 � j 2

�6 i 2 � j 1 � j 2 � i 1 and i 1 � i 2

�7 i 1 � j 1 � i 2 � j 2 or i 1 � j 2 � j 1 � i 2

�8 Identity is shared between i and j through only one pair of alleles
�9 No identity is shared between any alleles of i and j

r �
1
7

⎛
⎜
⎝

1 1⁄2
0 1⁄2

⎞
⎟
⎠

g�1

·
⎛
⎜
⎝

0
1

⎞
⎟
⎠

. (A4)

As with sib-mating, we use this vector to generate identity vectors for all relationships within and between individuals
of generation g . Because there is only one inbred family per sire, there are no inbred half-sibs. Consequently, we

TABLE A2

Probability transition matrices (A) used to derive identity of relatives of generation g
after an arbitrary number of sib-mated generations

Half-sibs (HS) Full-sibs (FS) Individuals (P)

O 7 (1 1 1 1 1 1 1 1 1)
8
9

⎛
⎜
⎝

1 1⁄2 3⁄4 1⁄2 3⁄4 1⁄2 3⁄4 5⁄8 1⁄2
0 1⁄2 1⁄4 1⁄2 1⁄4 1⁄2 1⁄4 3⁄8 1⁄2

⎞
⎟
⎠

7
8
9

⎛
⎜
⎜
⎝

1⁄2 1⁄4 3⁄8 1⁄4 3⁄8 1⁄4 3⁄8 5⁄16
1⁄4

1⁄2 1⁄2 1⁄2 1⁄2 1⁄2 1⁄2 1⁄2 1⁄2 1⁄2
0 1⁄4 1⁄8 1⁄4 1⁄8 1⁄4 1⁄8 3⁄16

1⁄4

⎞
⎟
⎟
⎠

OF NA NA

5
6
8
9

⎛
⎜
⎜
⎜
⎜
⎝

1 1⁄4 1⁄2 3⁄16
1⁄2 3⁄16

3⁄8 1⁄4 1⁄8
0 1⁄4 1⁄8 3⁄16

1⁄8 3⁄16
1⁄8 1⁄8 1⁄8

0 1⁄2 3⁄8 1⁄2 3⁄8 1⁄2 1⁄2 1⁄2 1⁄2
0 0 0 1⁄8 0 1⁄8 0 1⁄8 1⁄4

⎞
⎟
⎟
⎟
⎟
⎠

FO NA NA

3
4
8
9

⎛
⎜
⎜
⎜
⎜
⎝

1 1⁄4 1⁄2 3⁄16
1⁄2 3⁄16

3⁄8 1⁄4 1⁄8
0 1⁄4 1⁄8 3⁄16

1⁄8 3⁄16
1⁄8 1⁄8 1⁄8

0 1⁄2 3⁄8 1⁄2 3⁄8 1⁄2 1⁄2 1⁄2 1⁄2
0 0 0 1⁄8 0 1⁄8 0 1⁄8 1⁄4

⎞
⎟
⎟
⎟
⎟
⎠

1
7

⎛
⎜
⎝

1 1⁄2 5⁄8 3⁄8 5⁄8 3⁄8 1⁄2 3⁄8 1⁄4
0 1⁄2 3⁄8 5⁄8 3⁄8 5⁄8 1⁄2 5⁄8 3⁄4

⎞
⎟
⎠

F

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1⁄8 23⁄64
5⁄64

23⁄64
5⁄64

3⁄16
7⁄64

1⁄32

0 1⁄8 3⁄64
1⁄16

3⁄64
1⁄16

1⁄16
5⁄128

1⁄32

0 1⁄4 7⁄32
3⁄16

7⁄32
3⁄16

1⁄4 3⁄16
1⁄8

0 0 0 3⁄64 0 3⁄64 0 5⁄128
1⁄16

0 1⁄4 7⁄32
3⁄16

7⁄32
3⁄16

1⁄4 3⁄16
1⁄8

0 0 0 3⁄64 0 3⁄64 0 5⁄128
1⁄16

0 1⁄4 5⁄32
11⁄64

5⁄32
11⁄64

1⁄4 21⁄128
1⁄8

0 0 0 7⁄32 0 7⁄32 0 15⁄64
3⁄8

0 0 0 0 0 0 0 0 1⁄16

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1⁄8 13⁄32
3⁄32

13⁄32
3⁄32

9⁄32
11⁄64

1⁄16

0 1⁄8 1⁄32
1⁄16

1⁄32
1⁄16

1⁄32
3⁄128

1⁄32

0 1⁄4 3⁄16
3⁄16

3⁄16
3⁄16

3⁄16
5⁄32

1⁄8
0 0 0 1⁄32 0 1⁄32 0 3⁄128

1⁄32

0 1⁄4 3⁄16
3⁄16

3⁄16
3⁄16

3⁄16
5⁄32

1⁄8
0 0 0 1⁄32 0 1⁄32 0 3⁄128

1⁄32

0 1⁄4 3⁄16
7⁄32

3⁄16
7⁄32

5⁄16
31⁄128

7⁄32

0 0 0 3⁄16 0 3⁄16 0 13⁄64
5⁄16

0 0 0 0 0 0 0 0 1⁄16

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Each 9 � 9 matrix corresponds to the probability transition matrix (in terms of the nine identity coefficients, Table A1) from which
the vector r (Equation A1) is converted into an identity vector describing a particular relationship in generation g . This relationship is
given by the intersection of the table’s rows and columns. For example, the identity vector for inbred full-sibs is v(F FS) � A(F FS) · r,
where matrix A(F FS) is given by row F and column FS. Row labels are omitted if all identity states are possible; otherwise submatrices
are used to indicate possible identity states. For example, because the identity vector that describes the relationship between an inbred
individual and itself, v(PF) � A(PF) · r, contains probabilities associated with only two elements, A(PF) is given as a 2 � 9 submatrix.
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TABLE A3

Probability transition matrices (A) used to derive identity of relatives of generation g
after an arbitrary number of selfed generations

Half-sibs (HS) Full-sibs (FS) Individuals

8
9

⎛
⎜
⎝

1 1⁄2
0 1⁄2

⎞
⎟
⎠

O 7 (1 1)
7
8
9

⎛
⎜
⎜
⎝

1⁄2 1⁄4
1⁄2 1⁄2
0 1⁄4

⎞
⎟
⎟
⎠

OF NA NA
5
6
8

⎛
⎜
⎜
⎝

1 1⁄4
0 1⁄4
0 1⁄2

⎞
⎟
⎟
⎠

FO NA NA
3
4
8

⎛
⎜
⎜
⎝

1 1⁄4
0 1⁄4
0 1⁄2

⎞
⎟
⎟
⎠

F NA 1
7

⎛
⎜
⎝

1 1⁄2
0 1⁄2

⎞
⎟
⎠

1
2
3
5
7

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 1⁄8
0 1⁄8
0 1⁄4
0 1⁄4
0 1⁄4

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Each submatrix represents a 9 � 9 matrix with rows removed that correspond to impossible identity states.
Because only two identity states are possible in the vector r (Equation A4), only two columns are shown in
each submatrix. For further explanation of this table, see the Table A2 legend.

cannot decouple inbred sire and inbred dam effect variance. As indicated in Equation 3b, both terms are included
in our definition of the variation in inbreeding depression effects. All identity vectors for generation g can be derived
by taking the product of the vector r and the probability transition matrix A specific to the type of relationship and
given in Table A3. We find resemblances between relatives (and within individuals) by using Equation A2 and find
effect variances by taking sums and differences of these resemblances (as for sib-mating). Effect variances for selfing
are simplified and summarized in Table 3. One important difference noted above is that the inbreeding depression
effect variance now includes the inbred dam effect variance. For this reason, we use the covariance between inbred
full-sibs rather than that between inbred half-sibs:

� 2
IDE � T · [A(OHS) � A(OF ) � A(FO) � A(F FS)] · r � F 2H *. (A5)


