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HSV-1 AND BHV-1 PATHOGENESIS

A high percentage of the world’s population are infected
with herpes simplex virus type 1 (HSV-1), and infection can
cause a variety of disorders (35, 187). Recurrent ocular HSV-1
is the leading cause of infectious corneal blindness in industri-
alized nations (190). In a murine model, ocular infection in-
duces autoimmune disorders, leading to corneal antigen de-
struction and stromal keratitis (275). HSV-1 infections also
cause gastrointestinal disorders, esophageal disorders, and ap-
proximately 25% of the genital herpes infections (67, 158).

HSV-1 infections can cause sporadic encephalitis, but this is
relatively rare compared to other diseases resulting from in-
fection. Further evidence for its involvement in central nervous
disorders comes from epidemiological studies that suggest a
link between Alzheimer’s disease and HSV-1 infection (108,
151). The apolipoprotein E type 4 allele is hypothesized to be
a cofactor because it makes an individual susceptible to HSV-1
spread in the brain. The same regions of the brain affected by
acute HSV-1 encephalitis are those most severely affected in
Alzheimer’s disorder. Finally, infection of neonate mice with
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an attenuated virus strain leads to hyperactivity and learning
deficits, suggesting that this could be a concern when infants
become infected (34). In summary, HSV-1 continues to be a
significant public health problem.

Bovine herpesvirus 1 (BHV-1) also belongs to the Alphaher-
pesvirinae subfamily and shares a number of biological prop-
erties with HSV-1 and HSV-2. BHV-1 infection can cause
conjunctivitis, pneumonia, genital disorders, abortions, and an
upper respiratory infection referred to as shipping fever (258).
BHV-1 is not the sole infectious agent associated with shipping
fever, but it initiates the disorder by immunosuppressing in-
fected cattle. BHV-1-induced immunosuppression frequently
leads to secondary bacterial infections (with Pasteurella hae-
molytica, Pasteurella multocida, and Haemophilus somnus for
example) that can cause pneumonia. Increased susceptibility to
secondary infection correlates with depressed cell-mediated
immunity after BHV-1 infection (23, 74-76). CD8* T-cell rec-
ognition of infected cells is impaired by repressing the expres-
sion of major histocompatibility complex class I and the trans-
porter associated with antigen presentation (89, 99, 189).
CD4" T-cell function is impaired during acute infection of
calves because BHV-1 infects CD4" T cells and induces apo-
ptosis (267). BHV-1 infection costs the cattle industry at least
$500 million per year in the United States (18). Although
vaccines are available, they can cause disease in young calves
and abortions in cows.
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TABLE 1. Major steps during the latency-reactivation cycle

Establishment of latency
Entry of viral genome into ganglionic neurons
Abundant viral gene expression and DNA replication (acute
infection)
Extinction of viral gene expression
Abundant LAT expression

Maintenance of latency
Expression of LAT
No detection of abundant lytic viral gene expression
No detection of abundant viral DNA replication

Reactivation from latency
External stimulus (stress and immunosuppression for example)
Productive infection (extensive viral gene expression, DNA
replication, and infectious virus)
Survival of latently infected cell?
LAT expression

OVERVIEW OF THE STEPS OF THE
LATENCY-REACTIVATION CYCLE

Despite a vigorous immune response during acute infection,
HSV-1 establishes latency in ganglionic sensory neurons, typ-
ically trigeminal ganglia (TG) or sacral dorsal root ganglia
(116, 263). Although TG are primary sites of latency following
ocular, oral, or intranasal infection (7, 8), latent HSV-1 can
also be detected in human adult nodose ganglia and the vagus
nerve (67, 158). As many as 40 to 60% of sensory neurons can
be latently infected (166, 172, 208, 209, 223). HSV-1 genomic
DNA has also been detected in the central nervous system of
a significant percentage of humans (6, 108, 145).

The steps of the latency-reactivation cycle have been oper-
ationally divided into three major steps: establishment, main-
tenance, and reactivation (Table 1). Establishment of latency
includes entry of the viral genome into a sensory neuron and
acute infection. Viral gene expression is then extinguished,
with the exception of the latency-associated transcript (LAT).
For further details regarding viral gene expression during
acute infection and establishment of latency, see the following
section.

Maintenance of latency is a phase that lasts for the life of the
host and can be operationally defined as a period when infec-
tious virus is not detected by standard virus isolation proce-
dures. In general, abundant expression of viral genes that are
required for productive infection does not occur. LAT is the
only known viral transcript that is abundantly expressed during
this stage of latency.

Reactivation from latency is initiated by external stimuli
(stress and immunosuppression, for example) that stimulate
viral gene expression. Abundant viral gene expression is de-
tected in sensory neurons, and infectious virus can be isolated
from TG, eye swabs, and/or nasal swabs. It is not clear whether
the neuron that undergoes reactivation survives and resumes
latency or is killed by the virus as a result of productive infec-
tion. For further discussions of factors that regulate reactiva-
tion from latency, see below. The ability of HSV-1 to reactivate
from latency results in recurrent disease and virus transmis-
sion.
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VIRAL GENE EXPRESSION DURING PRODUCTIVE
INFECTION AND LATENCY

Expression during Productive Infection

Binding and entry of HSV-1 to cells are mediated by viral
glycoproteins and cellular factors (247). A cellular mediator of
viral entry (HveA or HVEM) is expressed primarily in acti-
vated T cells and belongs to the tumor necrosis factor (TNF)
receptor family (180). Entry of HSV-1 into epithelial and other
nonlymphoid cells is mediated by an unrelated membrane gly-
coprotein that resembles the poliovirus receptor (HveB and
HveC) (66). HveC is active as an entry mediator for all her-
pesviruses tested so far (HSV- 1, BHV-1, and pseudorabies
virus, PRV). HveC is abundantly expressed in neurons and can
block viral entry in several neuronlike cell lines (66). After
uncoating, the viral genome is present in the nucleus and viral
gene expression ensues. HSV-1 gene expression is temporally
regulated in three distinct phases: immediate-early (IE), early
(E), and late (L) (101). IE RNA expression does not require
protein synthesis and is stimulated by the tegument protein
VP16 (193) and by active cyclin-dependent kinases (227, 228).
E RNA expression is dependent on at least one IE protein, and
generally E genes encode nonstructural proteins that play a
role in viral DNA synthesis. L RNA expression is maximal
after viral DNA replication and requires IE protein expression,
and most L proteins are structural proteins that comprise the
virion particle.

Five IE genes encode ICP0, ICP4, ICP22, ICP27, or ICP47.
ICP4 (22, 39, 40, 49) and ICP27 (168, 171, 218) are required
for virus growth in tissue culture. In general, ICP4 represses IE
gene expression (40, 78, 79, 175, 194, 212) and activates E or L
RNA expression by interacting with RNA polymerase II tran-
scription factors (78, 245). ICP22 is important for viral growth
in some cultured cells (232) and modifies RNA polymerase 11
(211). ICP27 redistributes small nuclear ribonucleoprotein
complexes, interferes with splicing of IE transcripts, and pro-
motes E and L poly(A) site selection (87, 88, 221, 222). Thus,
ICP27 is required for transition from IE gene expression to E
and L RNA expression. ICP47 prevents transport of antigenic
peptides into the endoplasmic reticulum (97) and is crucial for
neurovirulence because it inhibits CD8" T-cell responses (72).

The amino terminus of ICPO is required for IE promoter
activation, but a separate domain activates E or L promoters
(155, 156). Thus, ICPO can activate the expression of all classes
of viral genes, in large part because it increases steady-state
levels of mRNA (117). ICPO also binds several cellular pro-
teins: (i) elongation factor la (119), (ii) cyclin D3 (120), and
(iii) ubiquitin-specific protease (173, 174). These activities pro-
mote virus replication in differentiated cells (20).

Infection of permissive cells (46) or calves (267) with BHV-1
leads to rapid cell death, in part due to apoptosis. Viral gene
expression is temporally regulated in three distinct phases: IE,
E, and L. IE gene expression is stimulated by a virion compo-
nent, bTIF. bTIF interacts with a cellular transcription factor
(Oct-1) and transactivates IE gene expression (49). Two IE
transcription units exist: IE transcription unit 1 (IEtul) and
IEtu2. IEtul encodes functional homologues of two HSV-1 IE
proteins, ICP0O and ICP4. IEtu2 encodes a protein that is sim-
ilar to an essential HSV IE protein, ICP22 (69). IE proteins
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activate E gene expression, and viral DNA replication ensues.
L gene expression is also activated by bICPO, culminating in
virion assembly and release. Thus, IE genes are essential for
virus growth because they regulate viral gene expression. In
particular, bICPO is very important for productive infection
because it activates all classes of viral promoters and is ex-
pressed at high levels throughout infection (62, 270, 272). Al-
though there are differences in the organization of IE gene
expression during HSV-1 and BHV-1 productive infection, the
same general cascade of viral gene expression occurs.

Repression of Viral Gene Expression after Infection of
Sensory Neurons

Following infection of rodents, rabbits, or humans with
HSV-1, productive infection is initiated in the mucosal epithe-
lium. Virus particles or subparticles then enter sensory neu-
rons and are transported intra-axonally to the sensory ganglia.
Since HSV-1 infection typically occurs via the oral, ocular, or
nasal route, the trigeminal ganglia (TG) are a primary site for
latency (7). In general, viral transcription from the HSV-1
genome is silent in sensory neurons following acute infection
(establishment of latency). During latency, two changes occur
in the organization of the viral genome that may influence viral
gene expression. First, the viral genome is present as a circular
episome (215, 216). Second, the viral genome is associated with
cellular histones and thus exists as chromatin in latently in-
fected neurons (42).

Extensive viral gene expression and replication occur within
TG for approximately 1 week following infection of animal
models that support HSV infection (124, 125). Productive viral
gene expression that occurs in TG appears to be different from
what is seen in cultured cells (248). Infectious virus can readily
be detected in homogenates prepared from TG during acute
infection. However, it is difficult to conclude whether this in-
fectious virus is the result of productive infection in sensory
neurons or the result of transport from peripheral sites of
infection. Events during this time are likely to play a critical
role in establishment of latency. Replication is not required for
establishment of latency, because mutants that cannot repli-
cate will establish latency but at a reduced level (32, 54, 118,
138, 167, 234, 249, 262).

Regulation of IE Promoters in Sensory Neurons versus
Nonneuronal Cell Types

Several studies using transgenic mice that contain IE pro-
moters linked to a reporter gene have concluded that IE pro-
moters are differentially regulated by neuron-specific factors.
For example, the HSV-1 ICP4 promoter is active in Schwann
cells but not sensory neurons in TG (251). As expected, the
ICP4 promoter in transgenic mice is activated in TG neurons
following infection with HSV-1. In contrast to the ICP4 pro-
moter, transgenic mice containing the ICPO or ICP27 promot-
ers are active in certain neurons within the brain and TG (159).
The ICPO promoter is also differentially regulated in TG neu-
rons depending on the age of the mouse. The ICPO promoter
contains a cis-acting element that can bind a neuron-specific
transcription factor, Olf-1, which is differentially and develop-
mentally expressed in specific subsets of sensory neurons (47),
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suggesting that the OIf-1 site plays a role in activating ICP0
promoter activity in certain neurons.

All IE promoters contain a common cis-acting sequence
(TAATGARAT) that is required for VP16-mediated trans ac-
tivation (193). VP16 must interact with two cellular proteins,
Oct-1 and HCEF, to efficiently induce IE promoter activity. A
cellular transcription factor, Zhangfei, binds to HCF and pre-
vents activation of the ICPO promoter (163). Another cellular
transcription factor, Luman, also binds to HCF and sequesters
HCF in the cytoplasm of sensory neurons, suggesting that
Luman plays a role in latency (162). Zhangfei and Luman have
basic domain-leucine zippers (bZIP) regions, acidic activation
domains, and consensus HCF-binding motifs, yet have little
amino acid similarity. In nonneuronal cells, HCF has a nuclear
localization (129), but in sensory neurons it appears to be
localized predominantly to the cytoplasm (131). If the relative
levels of Luman and Zhangfei are high, the availability of
“free” HCF that could interact with VP16 would be reduced
and consequently IE gene expression would be repressed. It
has also been hypothesized that VP16 is not present in suffi-
cient quantities in the nuclei of infected sensory neurons to
stimulate efficient productive infection (130). However, induc-
ible expression of VP16 in the context of the viral genome or
in transgenic mice does not lead to enhanced viral replication
(233). In summary, several factors exist that may inhibit the
formation of a functional VP16 transcriptional complex in sen-
sory neurons.

TAATGARAT elements from HSV-1 IE genes have also
been reported to be directly repressed by specific isoforms of
Oct-2 (41, 58, 121, 137, 147-150). At least five Oct-2 isoforms
are generated by differential splicing of a single transcript
(146). The proteins translated from these transcripts all bind to
a consensus Oct site but can either repress or activate simple
promoters containing Oct binding sites or multimers of the
TAATGARAT motif. Oct-2.1 and Oct-2.5 are not able to
repress the transcriptional activity of an intact IE promoter in
transient-transfection assays (81). Two studies have concluded
that Oct-2 isoforms are not expressed in sensory neurons (82,
260), suggesting that Oct-2 isoforms do not ordinarily regulate
IE gene expression in the peripheral nervous system.

Sensory neurons express other proteins, such as Brn-3.0
(261) and N-Oct3, that have the potential to regulate IE gene
expression (82). Brn-3.0 binds to noncoding sequences in the
HSV-1 genome (261), but the binding sites for Brn-3.0 are not
identical to those for Oct-1 or other related transcription fac-
tors that also include Brn-3.1 and Brn-3.2 (77). Brn-3.0 is
important in the peripheral nervous system of mice because
null mutations in the brn-3.0 locus result in neonatal death with
defects in sensory ganglia and specific central nervous system
nuclei (169, 231), brn-3.2 is required for differentiation of cer-
tain retinal ganglion cells (57). One study has concluded that
Brn-3.1 and Brn-3.2 have opposite effects on a target promoter
(181). Considering that the Brn-3 family of transcription fac-
tors is expressed in the peripheral nervous system, these pro-
teins may regulate HSV gene expression during the latency-
reactivation cycle.

Following infection of primary neurons, ICPO does not ac-
cumulate in the nuclei of infected cells (25). An independent
study also concluded that the function of ICPO is impaired in
human neuron-like cells because a nuclear structure (ND10)
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FIG. 1. Schematic of the HSV-1 LAT promoter. The LAT promoter contains numerous cis-acting sites that can be bound by cellular
transcription factors. Binding of ICP4 to the ICP4-binding site in the LAT promoter inhibits promoter activity (11). In transient-transfection assays,
the LAT promoter can be divided into a strong promoter (LAP1) and a weaker promoter (LAP2) (26, 70). For details of transcripts encoded by

LAT, see Fig. 2.

that ICPO interacts with is different from that in nonneuronal
cells (103). The same neuron-like cells do not support efficient
viral replication, in part because ICP0-expressing plasmids do
not activate viral transcription efficiently. These studies argue
that ICPO does not function efficiently in neuronal cells and
thus productive infection is inhibited. In summary, several key
steps in the productive infection cycle are impaired in sensory
neurons, thus promoting the establishment of latency.

The Promoter That Regulates LAT Expression Is a Neuron-
Specific Transcriptional Element

In sharp contrast to other HSV-1 promoters, the promoter
that directs the expression of LAT is activated in sensory neu-
rons (Fig. 1 gives a schematic of the HSV-1 LAT promoter).
Two separate promoter fragments that are upstream of the
start site of LAT, latency-associated promoters 1 and 2 (LAP1
and LAP2), can cis activate a reporter gene in transiently
transfected cells (26, 70). Several studies have demonstrated
that sequences spanning the TATA box, LAP1, are critical for
directing LAT expression in sensory neurons (26, 43, 50, 51,
179). LAP2 promotes the expression of the stable 2-kb LAT
during productive infection of cultured cells (26, 192). Al-
though the LAT promoter elements have neuronal specificity
in transient-transfection assays, they can also direct the expres-
sion of a reporter gene in nonneural cells (9-11, 276, 277). This
may reflect the abundance of cellular transcription factor-bind-
ing sites within the LAT promoter (Fig. 1). Many of these
transcription factors are present in nonneural cells and thus
have the potential to activate expression in transiently trans-
fected cells. For example, the two cyclic AMP (cAMP)-respon-
sive element (CRE)-binding sites in the LAT promoter are
functional because cAMP activates the promoter (122, 141).
The CRE motif that is proximal to the TATA box is important
for expression in neurons, and its presence has a positive effect
on reactivation from latency (15, 141, 207). Furthermore, Sp1,
YY1, USF, and CAAT are frequently found in RNA polymer-

ase II promoters that are not neuron specific. Neuron-specific
factors have been identified that bind to the LAT promoter
(9-11, 276, 277). The finding that the IE protein ICP4 binds to
DNA sequences downstream of the TATA box and represses
the LAT promoter is one important reason why LAT is not an
abundant transcript during productive infection (11).

Long-term expression of LAT has also been examined in the
context of the viral genome (12, 160, 161). These studies have
demonstrated that LAP2 sequences function as a long-term
enhancer (Fig. 1) in latently infected mice. LAP2 is also re-
quired for maintaining LAP1 promoter activity. Although
DNA sequences within the LAT promoter activate RNA ex-
pression in sensory neurons, it is clear that neuronal specificity
is not located in a single cis-acting motif.

ANALYSIS OF THE GENE ENCODING LAT

LAT Is Abundantly Expressed in Sensory Neurons during
Latency

In situ hybridization has revealed that LAT is abundantly
transcribed in latently infected neurons (35, 37, 38, 127, 178,
217, 250, 264, 265) (Fig 2). Mice, rabbits, and humans latently
infected with HSV-1 express LAT, and LAT is detected pre-
dominantly in the nucleus. Sensitive reverse transcription-PCR
(RT-PCR) assays have also detected thymidine kinase and
ICP4 transcripts, in addition to LAT, in TG of mice latently
infected with HSV-1 (126). These transcripts may result from
low levels of spontaneous reactivation or unsuccessful reacti-
vation events (73, 236). Viral genome-positive neurons that are
LAT RNA negative have been detected in latently infected
mice (209). Since in situ PCR was used to detect the viral
genome but in situ hybridization was used for LAT RNA
detection, neurons expressing low levels of LAT may have
been missed. Thus, it is likely that all viral genome-positive
neurons express LAT during latency. LAT is complementary
to ICPO and overlaps the ICPO transcript, suggesting that LAT



VoL. 16, 2003 HSV-1 AND BHV-1 LATENCY 83
Up Ug
\ \ [
A NN — NN
B. ~ ICPO 34,5 ICP4
—— ~— < <
ORFP & O
&~ | .
~ >
& >
~ —_—
i( -3 X --->
BX --->
8.3 Kb >
6.3Kb —~_ . Unstable LAT
Abundant &
Stable LAT
C. ORF2 (30 Kd)
ORF1 (15 Kd)

HSV-2 {

FIG. 2. Location of genes within the HSV-1 repeats. (A) U, and Ug denote the unique sequences of the long (L) and short (S) components

T ORF2 (10

of the genome. The boxes depict repeat sequences. (B) Transcription map
ICPO, y134.5 (29, 30), ORFP (136), and L/STs (274) are indicated by solid
arrows (16, 17). (C) Positions of potential ORFs within the abundant and s
approximate size of the respective ORF is given in parentheses.

inhibits ICP0 expression by an antisense mechanism. Although
the ability of LAT to repress ICP0O expression is probably
important, LAT sequences that promote spontaneous reacti-
vation in a rabbit ocular model do not overlap ICP0 (201). The
simplest interpretations of these data are that LAT has more
than one function or the ability of LAT to repress ICPO ex-
pression is not that important in the small-animal models used
to study latency.

In productively infected cells or latently infected rabbits, an
8.5-kb transcript is expressed that has the same sense as LAT
(38,217, 277) (Fig. 2 gives a schematic of the LAT region). The
majority of LAT is not capped, lacks a consensus poly(A)
addition site, and appears to be circular. The most abundant
LAT is a 2-kb intron, which is a spliced product of the 8.5-kb
LAT (59, 133). The 2-kb LAT has a half-life of approximately
24 h in human neuroblastoma or monkey kidney cells (253).
Mutatgenesis of a potential stem-loop structure adjacent to the
nonconsensus intron branch is crucial for 2-kb LAT stability.
The 2-kb LAT can also be spliced in neurons to yield 1.4- and
1.5-kb transcripts (165). Mutation of the splice acceptor site or
the splice donor site that generates the 2-kb LAT drastically
reduces expression of the 2-kb LAT during productive infec-
tion but has little effect on expression during latency (3). The
relationship of LAT to the other transcripts in the inverted

EEEEEEE ORF1 (16 Kd)

Kd)

ORF3 (10 Kd)

of the repeat region. The location and orientation of LAT (217, 250),
lines. Partially mapped transcripts aX and BX are denoted by dashed
table LAT of HSV-1 strain 17 syn+, and HSV-2 strain 333 (128). The

repeats that have the same polarity as LAT (L/STs, aX, or BX
transcripts [Fig. 2]) is not clear. In summary, it is thought that
splicing of the unstable 8.5-kb transcript yields the abundant
stable 2-kb LAT that can be further processed by splicing.

Although LAT has a nuclear localization, it can also be
detected in the cytoplasm and other compartments (2, 192,
253). LAT is associated with polyribosomes, suggesting that it
can be translated or can regulate translation (2, 71). The as-
sociation between LAT and polyribosomes is more like rRNA
than mRNA, supporting the concept that LAT can regulate
protein expression. LAT is also associated with splicing factors
(2), suggesting that it can regulate the splicing of certain tran-
scripts. It is currently thought that the 2-kb LAT is processed
in nuclei like mRNA but plays a structural role in ribosomes
like rRNA (2).

LAT contains small open reading frames (ORFs) (Fig. 2C),
and there is a report of a latency-associated antigen (52). An
independent study concluded that ORFs within the 2- kb LAT
can be expressed in transient-transfection assays, but LAT
protein expression was not detected in infected cells (157).
ORF?2 apparently stimulates productive infection in neuronal
cells when overexpressed, suggesting that it has functional sig-
nificance during reactivation from latency because it can sub-
stitute for ICPO functions (254). A plasmid containing ORF2
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FIG. 3. Schematic of the major apoptotic pathways in mammals. Two major apoptotic pathways, the receptor-mediated apoptotic pathway and
the mitochondrial apoptotic pathway, exist in mammals (132, 230, 266). The receptor-mediated apoptotic pathway activates caspase-8, which
induces a caspase cascade, including caspase-3. Activation of the mitochondrial apoptotic pathway results in caspase-9 activation, which culminates
in activation of the effector caspases (including caspase-3). Activation of the effector caspases, in particular caspase- 3, leads to the morphological
hallmarks of apoptosis. These pathways are not linear or exclusive of each other. For example, caspase-3 can activate caspase-9 and the receptor-
mediated apoptotic pathway can lead to the activation of the mitochondrial apoptotic pathway (135, 144).

fused to an epitope tag expresses a protein that localizes to
punctate structures in the nucleus, and overexpression of
ORF2 stimulates viral gene expression (255). Although ORF2
may play a role in the latency-reactivation cycle, there is no
evidence that it is expressed during this cycle. Furthermore,
ORF?2 is not present within the 1.5-kb LAT fragment that is
required for spontaneous reactivation in the rabbit eye model
(200, 201). Similarity exists between the C terminus of HSV-1
ORF2 and HSV-2 ORF3 (128) because this region overlaps
ICPO. In contrast, small ORFs within the 1.5-kb LAT that
promote spontaneous reactivation do not have a high degree of
amino acid similarity between strains of HSV-1 (53), suggest-
ing that expression of a protein does not play an important role
in the latency- reactivation cycle. Additional studies are obvi-
ously required to determine whether the LAT ORFs express
proteins during the latency-reactivation cycle and whether
these proteins play a role in regulating latency.

If LAT does not encode a protein, then how does a non-
protein-coding RNA regulate latency? There are numerous
examples of transcripts that do not apparently encode a pro-
tein but have important functions. For example, a cellular
RNA molecule that does not encode a protein prevents the
proliferation of cancer cells (85). Furthermore, a small
poly(A)~ transcript (166 and 172 nucleotides) expressed by
Epstein-Barr/Virus in latently infected B cells supports Bur-
kitt’s lymphoma growth by inducing interleukin-10 expression
(123). Additional support for the notion that LAT is a regu-
latory RNA (250) comes from the finding that LAT inhibits the
ability of ICPO to transactivate a promoter in transiently trans-

fected cells (59). Thus, LAT RNA sequences could have sev-
eral important functions while not encoding a protein.

LAT Regulates the Latency-Reactivation Cycle

As discussed above, the latency-reactivation cycle of HSV-1
can be operationally defined in three steps: establishment of
latency, maintenance of latency, and reactivation from latency
(summarized in Table 1). In a human, latency is maintained for
the life of the host, indicating that a well-conceived strategy
exists that allows for periodic reactivation while maintaining
the viral genome in sensory neurons.

Numerous HSV-1 mutants that do not express detectable
levels of LAT have been constructed and tested in animal
models (116, 263). Although a couple of studies have suggested
that LAT plays no role in a latent infection (14, 100), most
have concluded that LAT is important but not required. LAT
enhances the establishment of latency in mice (224, 257), be-
cause certain LAT™ mutants contain lower levels of viral DNA
in murine TG than does wild-type virus (44, 166). Further-
more, LAT enhances the establishment of latency in the rabbit
eye model and consequently reduces reactivation from latency
(204). The finding that LAT represses productive viral gene
expression in TG of mice during acute infection (24, 65) sup-
ports the studies concluding that LAT facilitates the establish-
ment of latency. When considering the role that LAT plays in
reactivation from latency, its role in establishing latency has to
be taken into consideration.

LAT is also important for in vivo reactivation by using two
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different rabbit eye infection models. The McKrae strain of
HSV-1 is frequently shed in the tears of infected rabbits as a
result of spontaneous reactivation (199-203). In contrast,
spontaneous reactivation is severely impaired if the LAT gene
is deleted. However, these same LAT ™ mutants grow with the
same efficiency as wild-type virus in cultured cells and in ocular
tissue of infected rabbits. The first 1.5 kb of the gene encoding
LAT is sufficient for spontaneous reactivation from latency
(201). Since this region does not overlap ICP0, antisense re-
pression of ICP0 expression by LAT is not required for spon-
taneous reactivation in the rabbit model. HSV-1 17syn™ strains
that have deletions in the LAT promoter and 5’ region of the
gene encoding LAT (approximately 1,200 bp) also do not re-
activate efficiently in a rabbit eye model (98, 259). Mutagenesis
of LAT ORF-2 does not reduce reactivation kinetics (sponta-
neous or induced) in the rabbit eye model (60). Although the
gene encoding LAT is not required for latency in small animal
models, it greatly enhances reactivation in the rabbit. It would
not be surprising to find that the importance of LAT is under-
estimated using small animal models and measuring latency in
terms of weeks or months, not decades.

REGULATION OF APOPTOSIS BY HSV-1 AND LAT
HSV-1 Contains Several Genes That Regulate Apoptosis

Many viruses induce apoptosis in cultured cells (86, 210, 235,
252). Killing of infected cells by apoptosis in vivo can reduce
inflammation, alter immune recognition, reduce burst size, and
thus prevent virus spread. Members of the Alphaherpesvirinae
subfamily induce apoptosis after infection of cultured cells (46,
63, 64, 219). HSV-1 can induce or inhibit apoptosis in a cell-
type-dependent manner after infection of cultured cells (4, 5,
63, 64, 143). Several antiapoptotic genes within the HSV-1
genome have been identified (1, 4, 5, 13, 63, 107, 110, 111, 113,
185, 186, 197, 198). These viral genes include ICP27, Ug3, U5,
gJ, gD, and LAT. Ug3 is a protein kinase that, in the absence
of other HSV-1 proteins, inhibits the cleavage of BAD and the
formation of the proapoptotic form of BAD (186). Ug3 is the
only viral protein required for preventing caspase-3 activation,
which is considered to be the “point of no return” in the
apoptotic pathway (Fig. 3). The presence of several HSV-1
antiapoptotic genes suggests that they play specific roles fol-
lowing infection of humans.

HSV infection has the potential to induce apoptosis by sev-
eral distinct mechanisms. For example, HSV induces DNA
damage even in the absence of productive infection (27, 56, 93,
206, 229). DNA damage is a potent stimulus for apoptosis
(246). When expressed from baculovirus expression vectors,
Ugl.5 and Uy 13 have the potential to induce caspase-3 (80). It
is not clear how these viral proteins activate caspase-3. As
expected, Ug3 can inhibit the proapoptotic activity of Ugl.5
and U 13 by virtue of its ability to interfere with caspase-3
activation.

LAT Protects Cells from Apoptosis

Three studies have demonstrated that LAT interferes with
apoptosis in transiently transfected cells (1, 107, 198). The
ability of LAT to interfere with apoptosis correlates with its
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ability to promote spontaneous reactivation (107), suggesting
that the antiapoptotic activity of LAT is important during the
latency-reactivation cycle. This hypothesis is supported by the
finding that LAT promotes neuronal survival in TG of infected
rabbits (198). In acutely infected mice, a LAT™ mutant also
induces extensive apoptosis compared to the LAT™" virus (1).
Another independent study concluded that LAT protects neu-
rons from cell death (256) but was unable to demonstrate
changes in apoptotic frequencies in mice. In summary, there is
evidence that LAT enhances neuronal survival because it has
antiapoptotic activity.

How does LAT inhibit apoptosis? There are two major ap-
optotic pathways: the death receptor-mediated pathway (Fas
or TNF receptor, for example) and the mitochondrial pathway
(132, 230, 266) (Fig. 3 gives a summary of these pathways). The
death receptor-mediated death pathway activates caspase-8,
which induces a caspase cascade including caspase-3. Activa-
tion of the mitochondrial pathway results in the release of
several important proapoptotic molecules, including cyto-
chrome ¢ and Smac/Diablo (266). Released cytochrome ¢ as-
sociates with Apaf-1, leading to caspase-9 activation, which
culminates in activation of the effector caspases (including
caspase-3). Regardless of the pathway, activation of the effec-
tor caspases, in particular caspase-3, leads to the morphologi-
cal hallmarks of apoptosis. These pathways are not linear or
exclusive of each other. For example, caspase-3 can activate
caspase-9 and the death receptor- mediated apoptosis, leading
to the activation of the mitochondrial pathway by BID cleavage
and cytochrome c release, thus activating caspase-9 (135, 144).
In transiently transfected HeLa cells (human epithelial cells),
LAT interferes with caspase-8-induced apoptosis (1). Cultures
of mouse neuroblastoma cells (neuro-2A) infected with a
LAT™ mutant contained more cleaved (activated) caspase-9 at
late times after infection as did neuro-2A cells infected with a
wild-type LAT* HSV-1 strain (94). Subtle differences were
also detected in caspase-8 cleavage but not caspase-3 cleavage.
Although these studies suggest that LAT interferes with prox-
imal steps in the caspase cascade, additional studies are nec-
essary for understanding the mechanism by which LAT inhibits
apoptosis. For example, do LAT RNA coding sequences di-
rectly interfere with apoptosis or is a LAT protein involved?
Second, which steps of apoptosis are blocked? Third, does
LAT have other functional properties, in addition to its anti-
apoptotic properties, that are required for the latency-reacti-
vation cycle?

Working Model for the Antiapoptotic Properties of LAT in
the Latency-Reactivation Cycle

A working model has been devised to explain the findings
that LAT inhibits apoptosis (1, 107, 198) (Fig. 4). This model
takes into account previous findings that are consistent with
those of other investigators studying LAT and latency. It is not
possible to include every finding or reference that has been
published. Furthermore, the model does not take into account
any findings that appear to be specific for one HSV-1 strain or
a specific strain of mouse.

During acute infection of TG (1 to 4 days postinfection
[p.i.]), extensive viral gene expression occurs (124, 125, 248).
The toxic effects of HSV-1 infection, in particular ICPO (220),
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Expressed Having Anti-apoptotic Properties.

REACTIVATION FROM LATENCY

Extensive Viral Gene Expression. Same
As Acute Infection of Neurons?

LAT & Other Viral Genes Inhibit or
Delay Viral Induced Apoptosis.

FIG. 4. Model summarizing the role of LAT in enhancing neuronal survival in the context of the latency-reactivation cycle. See the text for

details.

Ug1.5 (80), and U, 13 (80) make neurons vulnerable to damage
and death. The ability of HSV to induce DNA damage (27, 93,
206, 229) would also stimulate the mitochondrial pathway of
apoptosis (246). The antiapoptotic properties of Ug3, U5, gD,
gJ, ICP27, and LAT would promote neuronal survival during
acute infection (4, 5, 63, 64, 111). Deletion of LAT might not
have a dramatic effect on apoptosis frequency during the early
stages of acute infection because the other antiapoptotic viral
genes are expressed. During transition from acute infection to
latency (establishment of latency), viral gene expression is ex-
tinguished, including that of Ug3, Ug5, gD, gJ, and ICP27. At
this time, LAT would be the only antiapoptotic viral gene that
is abundantly expressed. Consequently, neurons in which ex-
tensive viral gene expression had occurred during acute infec-
tion (“permissive neurons”) would be vulnerable to apoptosis
in the absence of LAT expression. Nonpermissive neurons that
harbor viral genomes would have suffered low levels of viral
induced damage and thus would have a higher probability of
survival in the absence of LAT. In mice, subsets of neurons
have been identified in TG and the ability of HSV-1 to infect
these neurons is different (273), supporting the concept that
permissive and nonpermissive neurons exist. This model is in
agreement with the studies that have concluded that LAT
facilitates establishment of latency (24, 44, 59, 65, 164, 166,
200, 223, 224, 257). The model also predicts that LAT protects
neurons from apoptotic stimuli during the maintenance of
latency because it is the only viral gene that is abundantly
expressed.

Apoptosis occurs in neurons during neurodegenerative dis-
orders, trauma, or imbalances of growth factors or cytokines
(19, 68, 69, 104, 142, 195, 241, 242). Withdrawal of survival
factors leads to activation of signal transduction pathways that

initiate neuronal apoptosis (138). The response of the central
or peripheral nervous system to trauma, stress, or immunosup-
pression plays an important role during reactivation from la-
tency. Stress leads to elevated corticosteriod levels, which have
rapid effects on neural activity (115, 170). Dexamethasone, a
synthetic corticosteriod, induces viral gene expression (83),
stimulates an HSV-1 origin of replication (Ori-L) in neuronal
cells (87), and alters splicing patterns in the absence of protein
synthesis (33). Repeated injections of dexamethasone also in-
duce immunosuppression. Finally, corticosteriods induce apo-
ptosis in lymphocytes (48) and neurons (177). Thus, LAT ex-
pression is likely to play an important role in prolonging or
inhibiting neuronal death during reactivation. Since reactiva-
tion induces productive gene expression, the other HSV-1 an-
tiapoptotic genes would also prolong neuronal survival, thus
enhancing virus production.

COMPARISON OF THE BHV-1 LR GENE TO LAT

The LR Gene Restores Efficient Spontaneous Reactivation to
a LAT™ Mutant of HSV-1

The BHV-1 LR gene, like HSV-1 LAT, is transcribed in an
antisense direction of an ICP0O homologue (bICPO) (Fig. 5).
The LR gene, like LAT, is abundantly expressed during latency
of cattle or rabbits (45, 102, 134, 214, 226, 269). Interestingly,
the BHV-1 LR gene also inhibits apoptosis in transiently trans-
fected cells (31). Thus, the BHV-1 LR gene and HSV-1 LAT
share certain structural and functional properties.

To test whether the LR gene can restore spontaneous reac-
tivation to HSV-1, a 2-kb fragment containing the LR pro-
moter and LR coding sequences (HindIII-Sall [Fig. 5B]) was
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FIG. 5. Schematic of the BHV-1 LR gene. (A) Positions of IE transcripts (62, 270-272) and the LR transcript (214, 217) are shown. IE/4.2 is
the IE transcript that encodes bICP4. IE/2.9 is the IE transcript that encodes the bICPO protein (95 kd). One IE promoter activates the expression
of IE/4.2 and IE/2.9, and this IE transcription unit is designated IEtul. E/2.6 is the early transcript that encodes bICP0. Exon 2 (e2) of bICP0
contains all of the protein-coding sequences of bICP0. The origin of replication (ORI) separates IEtul from IEtu2. IEtu2 encodes a protein named
bICP22, which has a predicted molecular mass of 55 kd. Solid lines in the transcript position map represent exons (el, €2, or e3). (B) Partial
restriction map, location of LR-RNA, organization of the LR ORF, and the 3’ terminus of bICP0. The start sites for LR transcription during
latency and productive infection were described previously (45, 102). Reading frame C contains an ORF but lacks an initiating Met. The asterisks
denote the positions of stop codons that are in frame with the respective ORF. The approximate sizes of the ORFs and reading frames without
an ATG are given. (C) DNA sequence of the Sphl fragment and the mutant oligonucleotide. The first ATG in the wild-type (WT) sequence is the
first in-frame ATG for ORF2 and is underlined. Stop codons in the mutant oligonucleotide are in all three reading frames (bold and underlined).
The EcoRI restriction enzyme site (GAATTC) was incorporated into the mutant oligonucleotide to facilitate screening.

inserted into a LAT™ mutant and the recombinant virus was
designated CJLAT (197). Insertion of the LR gene into the
HSV-1 LAT locus restores high levels of spontaneous reacti-
vation in the rabbit eye model and in explant-induced reacti-
vation. In fact, the data strongly suggested that CJLAT in-
duced higher levels of reactivation than did the wild- type
HSV-1 or the LAT™ mutant. CJLAT also induced higher levels
of recurrent eye disease (stromal scarring and detached reti-
nas) in rabbit eyes and was more lethal in mice than were the
LAT" and LAT ™ strains of HSV-1. This result indicated that
LAT functions, at least with respect to enhancing reactivation
from latency, can be replaced by the BHV- 1 LAT homologue.

Summary of LR Gene Functions

The LR RNA is the only abundant viral transcript detected
in latently infected neurons (134, 213, 214). A fraction of
LR-RNA is polyadenylated and alternatively spliced in TG,
suggesting that this RNA is translated into more than one LR
protein (45, 102). LR gene products inhibit S-phase entry, and
an LR protein is associated with cyclin- dependent kinase 2
(cdk2)—cyclin complexes (102, 114). As discussed above, LR
gene products promote cell survival following the induction of
apoptosis in transiently transfected cells (31).

An LR mutant BHV-1 strain that contains three stop codons
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near the beginning of the LR RNA (Fig. 5C) was recently
constructed to test whether LR gene products, in particular LR
proteins, play a role in the ability of BHV-1 to replicate in
cattle (106). Calves infected with the LR mutant consistently
exhibited diminished clinical symptoms and ocular shedding of
the virus compared to calves infected with wild-type virus or
the LR- rescued virus. Conversely, the LR mutant had similar
growth properties in productively infected bovine kidney cells
and the nasal cavity of calves during acute infection. Dimin-
ished levels of virus were also detected in TG of calves acutely
infected with the LR mutant compared to those infected with
wild-type virus or the LR-rescued virus (105). Since cells in TG
and the eye are highly differentiated whereas certain cells that
comprise the mucosal epithelium are actively growing cells, we
hypothesize that LR gene products promote viral growth in
specific cell types or in cell types that are highly differentiated.
The ability of the LR gene to inhibit cell growth (225) and the
of LR protein to interact with cdk2-cyclin complexes (114)
supports the concept that LR gene products regulate produc-
tive infection by altering cell cycle-regulatory components.

Although LR-RNA was detected by PCR in TG of calves
infected with the LR mutant or with wild-type BHV-1, reduced
levels of viral DNA were present in TG of calves latently
infected with the LR mutant compared with those latently
infected with wild-type BHV-1 (105). The LR mutant virus was
not reactivated from latently infected calves following treat-
ment with dexamethasone. In contrast, calves infected with
wild-type virus or the LR-rescued virus reactivated efficiently
following the same dexamethasone treatment. In summary,
wild-type expression of LR gene products is crucial for efficient
viral growth in ocular tissue and for the latency-reactivation
cycle in cattle.

Comparison of the HSV-1 and BHV-1 LAT Regions

In general, HSV-1 LAT is important, but not required, for
the latency-reactivation cycle in rabbits and mouse models
(116, 263). LR gene products are required for the latency-
reactivation cycle in calves when reactivation is initiated by
dexamethasone (105). In addition, the LR gene is important
for virus shedding from the eyes during acute infection (106),
whereas no published study has demonstrated that LAT plays
a role in virus growth in mice or rabbits. The finding that the
BHV-1 LR gene enhances pathogenesis in the context of the
HSV-1 genome implies that the LR gene has additional func-
tions compared to HSV-1 LAT. The most obvious difference
between LAT and the LR gene is the genetic evidence that a
protein encoded by the LR gene plays a role in pathogenesis
and the latency-reactivation cycle (105, 106). BHV-1 also lacks
several genes contained in the HSV-1 repeats that mediate
pathogenesis and/or latency, 34.5, ORFO, and ORFP, for ex-
ample (Fig. 2 and 5). The HSV-1 34.5 gene plays a crucial role
in neurovirulence by inhibiting antiviral functions of the inter-
feron (IFN)-inducible double-stranded RNA- dependent pro-
tein kinase R (PKR) (28, 140). HSV-1 34.5 null mutants have
reduced pathogenesis in rabbits and mice, in large part because
of poor growth properties in the eyes and TG (205). Although
the present studies point to added functions of the LR gene in
the life cycle of BHV-1, the importance of HSV-1 LAT in the
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latency-reactivation cycle may be underestimated because its
role in the natural host cannot be analyzed.

REGULATION OF LATENCY BY THE IMMUNE SYSTEM
Infiltration of Lymphocytes in TG during Acute Infection

Several independent studies have demonstrated that T cells,
CD8™" T lymphocytes in particular, are crucial for controlling
HSYV infection in sensory ganglia (188, 243, 244). Infiltration of
lymphoid cells in TG was examined following ocular infection
of A/J mice with the RE strain of HSV-1 (154, 237). After
corneal infection, transient epithelial lesions are present be-
tween 2 and 4 days p.i. (95, 96, 191). Most infected mice also
develop corneal inflammation and periocular disease 1 to 2
weeks p.. During acute infection, HSV antigen expression
increases until 3 days p.i. in TG but is undetectable at 7 days
p-i. (154). Coincident with a decline in the level of HSV anti-
gen in TG, there is an increase in the levels of Mac-17" cells,
macrophages, NK cells, and certain CD8™ cells. No cells with
characteristic lymphoid cell morphology can be detected in
uninfected TG. After 5 days p.i., the number of CD8" T cells,
F4/80" cells (macrophages), and yd T cells increase dramati-
cally. At 3 days p.i., TG neurons that are viral antigen positive
can be detected that are surrounded by nonneural cells ex-
pressing TNF-a, interleukin-6 (IL-6), or IFN-y (239). Cells
that express IL-2 or IL-4 are detected later after infection,
when viral antigens are difficult to detect. The number of cells
producing IFN-v and IL-4 increases between 3 and 7 days p.i.,
but the same cells do not appear to produce both factors (154).
At 7 days p.i., transcripts encoding IL-2, IL-10, IFN-y, TNF-a,
or RANTES (regulated upon activation, normal T cell ex-
pressed and secreted [mRNA]) are detected by RT-PCR (84).
By enzyme-linked immunosorbent assay IL-2, IL-6, IL-10, and
IFN-vy are detected at the same time, confirming the RT-PCR
results. The same cellular antigens are not detected in TG from
uninfected mice, indicating that these changes are induced by
infection. In summary, several studies have indicated that im-
munological factors play a role in repressing infection. Fur-
thermore, these immunological factors may prevent neuronal
death or promote repair of damaged neurons after infection.

Persistence of Lymphocytes in the
Peripheral Nervous System

If true latency of HSV is established, it is reasonable to
predict that cytokine expression in TG would not be detected.
However, several recent studies have concluded that a persis-
tent cell-mediated immune response occurs in TG of latently
infected mice (21, 84, 154, 238-240). Immunohistochemical
studies have detected IFN-y-positive cells 6 months p.i. (21).
CD4", CD8", vd T cells, and macrophages are present in
latently infected TG from 5 to 92 days p.i. By RT-PCR, IL-10,
IFN-y, RANTES, and TNF-a mRNA expression correlate
very well with the expression of LAT in TG of latently infected
mice (24 to 60 days p.i.). In contrast, the expression of IL-2 is
variable. Although ICP27 is readily detected at 5 days p.i. in
TG, it is not detected at later time points, confirming that
latency is established. Another obvious change in TG after
infection is long-term expression of TNF-a by satellite cells,
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Schwann cells, and infiltrating cells (239). Finally, levels of
serum antibodies directed against HSV-1 remained elevated
125 days p.i. Collectively, these studies demonstrate that im-
mune effector cells persist at the site of a latent infection.

The obvious explanation for the persistence of immune ef-
fector cells in TG is that low levels of viral proteins are ex-
pressed and the immune system is responding. This point is
supported by two findings: (i) an ICP4-specific antibody reacts
with latently infected rabbit TG (73), and (ii) low levels of TK
or ICP4 mRNA are detected in latently infected mouse TG
(126). Acute infection with HSV-1 induces H2-encoded heavy
chains (alphaCs) and their associated light chain, B,-micro-
globulin, in sensory neurons (196), suggesting that reactivating
neurons are recognized by CD8" T cells via the class I major
histocompatibility complex.

A careful examination of TG neurons for viral gene expres-
sion in latently infected mice (37 to 47 days p.i.) demonstrated
that abundant viral transcripts, viral protein, and viral DNA
replication occur in approximately 1 neuron per each 10 TG
(61). The viral transcripts examined were ICP4, TK, glycopro-
tein C, and LAT. The same neurons that were expressing high
levels of transcripts were invariably surrounded by foci of in-
filtrating white blood cells. Productive viral gene expression
during latency is probably due to incomplete reactivation
events or is the result of virus-producing neurons that are
quickly recognized by the immune systems. In the absence of
detectable infectious virus in TG, the term “spontaneous mo-
lecular reactivation” has been coined to describe this process
(61). Considering that distinct subsets of TG neurons exhibit
differences with respect to HSV-1 infection patterns (273), it
would be interesting to know whether specific populations of
neurons are prone to spontaneous molecular reactivation.

Calves latently infected with BHV-1 also have rare cells that
express abundant viral proteins or transcripts in addition to the
LR gene (268). This implies that BHV-1 and HSV-1 latency
does not necessarily mean true quiescence. It seems obvious
that certain latently infected neurons receive stimuli or express
cellular factors that lead to spontaneous molecular reactivation
and that this maintains the persistent cell-mediated immune
response in TG. It is also tempting to speculate that neurons
undergoing spontaneous molecular reactivation do not receive
all of the signals that are necessary for virus production and
spread. It is also not clear whether neurons undergoing reac-
tivation (spontaneous molecular reactivation or reactivation
that leads to the production of infectious virus) are always
killed by infiltrating cells or if some of these neurons can
survive and then resume latency.

Interferon Can Inhibit Reactivation from Latency

The presence of the immune system in TG after the estab-
lishment of latency may play an important role in maintaining
latency. Recent studies have demonstrated that the ability of
CD8" T cells to produce IFN-y plays an important role in
preventing reactivation from latency in sensory neurons (152,
153). An independent study has also concluded that IFN-« and
IFN-y contribute to the control of recurrent herpetic lesions
(36, 176).

HSV-1 encodes three proteins, ICPO (55, 182-184), ICP34.5
(90-92, 139, 140), and Ugll, that counteract distinct IFN-
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induced restrictions to virus replication. ICP34.5 binds to cel-
lular protein phosphatase 1 and acts to reverse the activity of
PKR. Ugll is an RNA-binding protein that prevents PKR
activation. PKR is an IFN-inducible kinase that inhibits pro-
tein synthesis, primarily by phosporylating eukaryotic initiation
factor 2 (eIF-2a). ICPO has the ability to inhibit the induction
of IFN-induced genes by an unknown mechanism. A delicate
balance must exist between IFN and other unknown immuno-
modulatory cytokines with respect to maintaining latency, pre-
venting reactivation from latency, and being neurotoxic. In
summary, reactivation from latency that leads to detectable
levels of infectious virus requires stimuli that induce viral gene
expression and viral DNA replication and suppress immune
functions.

CONCLUSIONS

Latency of HSV-1 is a complicated virus-host interaction
that plays a crucial role in the pathogenic potential of this
virus. Numerous studies have indicated that sensory neurons
are the primary sites of HSV-1 and BHV-1 latency. The ability
of these viruses to reactivate from latency is responsible for
recurrent disease and virus transmission. Since LAT and the
LR gene are the only known viral transcripts that are abun-
dantly transcribed in latently infected neurons, it is reasonable
to hypothesize that they regulate latency. Genetic analysis has
demonstrated that LAT and the LR gene are important. Al-
though the expression of a protein encoded by the BHV-1 LR
gene appears to be required for the latency-reactivation cycle
in cattle, it is currently not clear whether expression of a LAT
protein is important. If a LAT protein is expressed, its expres-
sion is tightly regulated and may occur only at specific times
during latency to prevent immune recognition. Recent studies
demonstrating that the genes encoding LAT and LR-RNA
have antiapoptotic properties strongly suggest that this func-
tion plays a crucial role in promoting neuronal survival and
thus latency. It will be of interest to determine the mechanism
by which these genes inhibit apoptosis and to find whether the
ability to inhibit apoptosis is required for regulation of the
latency-reactivation cycle.
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