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Using representation-theoretic methods, we determine the spec-
trum of the 2 3 2 system

Q(x, Dx) 5 AS2
­x

2

2
1

x2

2 D 1 BSx­x 1
1
2D, x [ R,

with A, B [ Mat2(R) constant matrices such that A 5 tA > 0 (or <0),
B 5 2tB Þ 0, and the Hermitian matrix A 1 iB positive (or negative)
definite. We also give results that generalize (in a possible direc-
tion) the main construction.

1. Introduction

I t is a natural and important problem to find an efficient and
invariant way of studying the spectrum of systems of differ-

ential equations. We deal first with the spectral problem of
particular systems that are the Weyl quantization of noncommu-
tative quadratic form (that we shall call noncommutative har-
monic oscillators) of the kind

Q~x, j! 5
1
2

A~x2 1 j2! 1 iBxj ~i 5 Î21!,

where (x, j) [ R2 . T*R, A, B [ Mat2(R) are constant 2 3
2-matrices with A 5 tA definite, either positive or negative, B 5
2tB Þ 0, and A 1 iB . 0 (or , 0). The Weyl quantization of
the above noncommutative quadratic form is

Q~x, Dx! :5 Qw~x, Dx! 5 AS2
­x

2

2
1

x2

2 D 1 BSx­x 1
1
2D ,

Q(x, Dx): 6(R; C2) 3 6(R; C2), Q(x, Dx): 69(R; C2) 3 69(R;
C2) continuously, and it is important to remark that in the above
hypotheses the system Q(x, Dx), as an unbounded operator in
L2(R; C2) (with maximal domain B2(R; C2) :5 {u [ L2(R; C2);
xa­x

b u [ L2(R; C2), @a, b, 0 # a 1 b # 2}) is self-adjoint with
discrete spectrum made of eigenvalues mk [ R (with finite
multiplicities) such that umku 3 1` as k 3 1`. The main
problem in analyzing the spectrum of such systems comes from
two sources: the noncommutativity of matrices and the noncom-
mutativity of the quantized variables x and j.

Our aim is in the first place to find a systematic way of solving
algebraically in L2(R; C2) (that is, taking into account L2-
convergence or, at most, 69-convergence) the above kind of
systems. The operator Q(x, Dx) naturally possesses an sl2(R)-
action (and more generally a metaplectic group action), due to
the Weyl quantization. Hence, the algebraic viewpoint consists of
using this sl2(R)-symmetry and the symmetries carried by A and
B to develop a method that determines, as a first step, a
candidate for an eigenvalue along with the formal sequence of
coefficients of a potential eigenfunction belonging to that eig-
envalue (in the sense that the eigenfunction has that sequence as
coefficients with respect to some Schwartz L2-basis obtained by
means of the oscillator representation of sl2(R); this may be
thought of as a necessary condition). Then the second step
consists of determining which candidate eigenvalues can be
actual ones, by studying the convergence properties (in L2 or 69)

of the related formal sequences of coefficients (see ref. 1). In
Section 2, we shall give a survey of the results of refs. 2 and 3
described above. As it will be seen below, the key step is to obtain
a three-term recurrence system that can be ‘‘diagonalized.’’ In
Section 3, we shall next consider a different system of ordinary
differential operators and treat the relative spectral problem by
employing the tensor-product of the oscillator representation
and the vector (standard) representation of sl2(R). That system
(which is also interesting, for the most general noncommutative
harmonic oscillator is given by A(2­x

2y2) 1 B(x­x 1 1y2) 1
C(x2y2) 1 D, with A 5 tA, B 5 2tB, C 5 tC and D 5 tD) might
look more difficult at first glance than the ones considered in
Section 2, because of the presence of a zeroth-order nonconstant
matrix-valued term. However, the difficulty is only ‘‘virtual,’’ for
the use of the aforementioned tensor product representation of
sl2(R) allows one to treat the eigenvalue problem in a completely
straightforward way: the above system is just a pair of ‘‘harmonic
oscillators’’ in disguise. We shall also exhibit a family of systems
parametrized by « [ R, which ‘‘interpolates’’ the pair of ‘‘har-
monic oscillators’’ and a system of the above type. This family
possesses the remarkable property that all the eigenvalues have
multiplicity 1, provided « [y (1y2)Z. This approach will be
generalized in ref. 4 to treat more general 2 3 2-systems and
higher-rank cases in a unified way.

Applications of the study of the spectrum of N 3 N noncom-
mutative harmonic oscillators are in the field of lower bounds
and hypoellipticity of systems of pseudodifferential operators
(see refs. 5–10).

We finally remark that the spectral problem for Q(x, Dx) can
be translated into a family of Fuchsian type third-order equa-
tions with four regular singularities, in the complex unit disk (see
ref. 11). We believe that the results on the multiplicity of the
spectrum of Q(x, Dx) may provide a crucial information to
determine the monodromy of the ordinary differential equation
discussed in ref. 11.

2. Study of the Spectrum of Q
The condition that the Hermitian matrix A 1 iB be definite,
either positive or negative, is equivalent to requiring that det
A . (pf(B))2, and also equivalent to requiring that the operator
Q(x, Dx) be elliptic, i.e., det Q(x, j) Þ 0 for (x, j) Þ (0, 0), det
Q(x, j) being positively homogeneous of degree 4 in (x, j).
Hence, Q(x, Dx), as an unbounded operator with domain
(maximal domain)

$~Q! :5 $u [ L2~R; C2!; Qu [ L2~R; C2!%

5 B2~R; C2!, ^Quuw# &69, 6 5 ~u, Qw!L2 ,
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for any given w [ 6(R; C2), has a discrete spectrum made of real
eigenvalues with finite multiplicities, diverging (in absolute
value) to 1`.

Define

I 5 F1 0
0 1G , J 5 F0 21

1 0 G , K 5 F0 1
1 0G , I~a, b! 5 Fa 0

0 bG .

Since B 5 6pf(B)J, and by the commutativity of J with SO(2),
one can easily reduce the study of Q to that of

Q~a, b!~x; Dx! 5 I~a, b!S2
­2

2
1

x2

2 D 1 JSx­ 1
1
2D ,

where, after possibly conjugating by K, we may assume a,
b . 0. We may thus suppose A 5 I(a, b), B 5 J. Set , 5
=ab 2 1 . 0, and define

C†~,! 5
1

Î2,
~xI 1 ­J 2 ,xJ!, and C~,!

5
1

Î2,
~xI 1 ­J 1 ,xJ!. [1]

Since [C(,), C†(,)] 5 I, putting

X1 :5
C†~,!2

2
, X2 :5 2

C~,!2

2
, H :5 C~,!C†~,! 2

1
2

I,

yields that H, X1, X2 satisfy the commutation-relations of sl2(R)

@X1, X2# 5 H, @H, X6# 5 62X6. [2]

This gives in fact the tensor product of the oscillator represen-
tation and the two-dimensional trivial representation of sl2(R).
For v [ C2\{0}, set

j0~v! :5 exp~x2Jy2!exp~2,x2Iy2!v, and

jN~v! :5 C†~,!Nj0~v!, N [ Z1 .

Since X2 annihilates j0(v) [j0(v) is a lowest-weight vector], jN(v)
is a weight vector of H with weight N 1 1y2, and it also follows
that whenever v and w are nonzero vectors such that ^v, w&C2 5
0, {jN(v), jN(w)}N[Z1

is an orthogonal basis of L2(R; C2). The
operator Q(a,b) is unitarily equivalent to (,y=ab)Q̃, where Q̃ :5
A1/2HA1/2. The problem is therefore to understand the structure
of the spectrum of Q̃. There are now (at least) two ways of
studying the spectral problem for Q̃: (1) studying the equivalent
problem of finding l and h such that (H 2 lA21)h 5 0 (the
twisted eigenvalue problem); and (2) studying directly the eigen-
value problem (Q̃ 2 lI)h 5 0. In both cases, the key point is to
get an appropriate recurrence formula that allows one to control
the coefficients of the eigenfunctions. (One can easily see that an
expansion in terms of the usual Hermite functions is not
‘‘convenient’’ for this purpose.) As we shall explain below, we get
a system of recurrence equations that, by suitable rotations, can
be diagonalized into a scalar three-term recurrence equation (this
is highly nontrivial, for we do not know a priori that that is
possible). We remark that the crucial point is the choice of the
basis to be used in the discussion. Since A21 5 s1I 1 s2KJ,
A1/2 5 m1I 1 m2KJ, in both problems 1 and 2 the action of the
operator K appears. Since K does not commute with H (whereas
J does), what is missing here is the explicit formula for the action
of K on the jN(v) in terms of the j. Set jN

j 5 jN(ej), j 5 1, 2,

where {e1, e2} is the canonical basis of C2, and, for v1 :5 [2i
1 ],

define jN
1 :5 jN(v1).

LEMMA 2.1. The set Bmix :5 {jN
1, KjN

1}N[Z1
is an orthogonal

basis of L2(R; C2).
As the system preserves parity, we shall consider hereafter

only the even case.

Dealing with Problem 1. Since the action of H on the KjN involves
both the j and Kj, we use both bases Bcan

1 :5 {j2N
1 , j2N

2 }N[Z1
and

Bcan
1,K :5 {Kj2N

1 , Kj2N
2 }N[Z1

at the same time, and the fact that
they are related by K. The latter means that if ({aN}N[Z1

,
{bN}N[Z1

) are the coordinates of a solution h to the twisted
eigenvalue problem with respect to the basis Bcan

1 , and
({cN}N[Z1

, {dN}N[Z1
) those of h with respect to the basis Bcan

1,K,
then there exists an involutive linear function

K̃: ~$aN%N [ Z 1
, $bN%N [ Z 1

! ° ~$cN%N [ Z 1
, $dN%N [ Z 1

!.

Using K̃, we get a nonconstant matrix-coefficient system of
recurrence equations in C4 for the (aN, bN, cN, dN) that can be
reduced to two recurrence systems for (aN, bN) and (cN, dN) plus
a linear relation between (aN, bN) and (cN, dN). At this point
there exists an explicitly known constant matrix M0(,) such that
(1/=c,) M0(,) [ SO(2), where

c, :5
,2 1 1

,4 , and, upon setting vN :5 M0~,!NFaN

bN
G

and wN :5 M0~,!*NF cN

dN
G ,

we arrive at the recurrence equations

~P1N
l ! d2N~l!vN 1 c,L2~N21!~l!vN21

1 2~N 1 1!~2N 1 1!L2~N11!~l!vN11 5 0,

~P2N
l ! d2N~l!wN 1 c,L2N~l!wN21

1 2~N 1 1!~2N 1 1!L2N~l!wN11 5 0,

~P3N
l ! L2N~l!vN 5 ls2M0~,!NJK~M0~,!*!2NwN ,

where N [ Z1, v21 5 w21 5 0 and

d2N~l! :5 S1 1
2
,2DL2N~l!2 1

2
,2ls1L2N~l! 2 l2s2

2 ,

L2N~l! 5 2N 1
1
2

2 ls1 .

The key point now is the compatibility condition: Suppose l gives
rise to a solution ({aN}N[Z1

, {bN}N[Z1
) to (P1N

l ) that defines a
function u1 :5 (N50

1` (aNj2N
1 1 bNj2N

2 ) [ L2(R; C2), then with
({aN}N[Z1

, {bN}N[Z1
) we associate, in an algebraic fashion

through (P3N
l ), a solution ({cN}N[Z1

, {dN}N[Z1
) to (P2N

l ) that
corresponds to a function u2 :5 (N50

1` (cNKj2N
1 1 dNKj2N

2 ) [
L2(R; C2), for which u1 5 u2 iff K̃(({aN}N[Z1

, {bN}N[Z1
)) 5

({cN}N[Z1
, {dN}N[Z1

). In this and only in this case, h 5 u1 5 u2
is a solution to the twisted eigenvalue problem.

To study the recurrence (P1N
l ), we first observe that by virtue

of the initial condition v21 5 0, it is actually a scalar recurrence,
depending only on the initial condition v0 [ C2. At this point,
all the solutions to (P1N

l ) [and hence to (P2N
l )] are of the form

h(l) R v0, for some sequence h(l) 5 {hN(l)}N[Z1
[ CZ1

depending only on l. One next sees that it is possible to
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construct, for l [ R, only two kinds of solutions: the ones for
which there exists N0 such that hN(l) 5 0 for all N $ N0 1 1
[such solutions are called finite-type (l, N0)-solutions] that are
hence obviously associated with Schwartz candidates as solutions
to the twisted eigenvalue equation; the ones that are not of finite
type, for which there exists N0 $ 0 such that hN(l) 5 0 for every
N # N0 2 1 and hN(l) Þ 0 for infinitely many N $ N0 [one sets
h21(l) [ 0]. The latter solutions are not in general associated
with any reasonable distribution in 69(R; C2) unless l satisfies an
equation of the kind qN0

(l) 5 fN0
(l), where qN0

is a suitably
defined rational function and fN0

is a suitably defined continued
fraction [both depending on L2N(l) and d2N(l)], case in which
the associated function is actually a Schwartz function [such
solutions are called infinite-type (l, N0)-solutions]. Notice that
the algebraic-companion solutions k(l) R w0 to (P2N

l ), algebra-
ically obtained from a solution h(l) R v0 of (P1N

l ) (of finite or
infinite type) through (P3N

l ), are automatically associated with
Schwartz functions. Hence, for a fixed l that gives rise to
finite-type or infinite-type solutions, we get at least two solu-
tions, for we have the freedom of the choice of v0 [ C2. On the
other hand, the aforementioned compatibility condition rules out
that freedom: if one defines for h(l)(Þ 0) of finite or infinite
type

Wl~h! :5 $h~l! ^ v0 ; h~l! ^ v0 and k~l! ^ w0

are compatible, v0 [ C2%,

then dimC Wl(h) # 1. The reason why Wl(h) might be
zero-dimensional (corresponding to v0 5 w0 5 0) comes
from the fact that the operator K̃ acts in a highly unknown
fashion, and we cannot a priori conclude that a solution h(l)
R v0 to (P1N

l ) and the algebraic companion k(l) R w0 relative
to (P2N

l ) are related (for the same l) through the compatibility
condition.

Let us define

O0
1 :5 $l [ R; there exists a finite-type l-solution h~l! ^ v0%,

O`
1 :5 $l [ R; there exists an infinite-type l-solution h~l! ^ v0%

(and analogously the sets (0
2 and (`

2 relative to the odd
case). One has also the following description of (0

1: upon
defining polynomials j2N [ R[l] inductively by the recurrence
formula

j2N~l! 5 d2N~l!j2N22~l! 2 c,2N~2N 2 1!

L2N22~l!L2N~l!j2N24~l!, N $ 1,

j22(l) 5 1, j0(l) 5 d0(l) [they appear as determinants of
particular Jacobi matrices (see ref. 2)], then

O0
1

5 $l [ R; ' N0 [ Z1 , L2N0
~l! 5 j2N0

~l! 5 0%

(and analogously in the odd case). Put (0 :5 (0
1 ø (0

2, (` :5 (`
1

ø (`
2, and for l [ (0 ø (` define Vl

1 :5 {u [ L2(R; C2); Q̃(x,
Dx)u 5 lu and u is even} and Vl

2 :5 {u [ L2(R; C2); Q̃(x,
Dx)u 5 lu and u is odd}. It is important to notice that at this
point we do not know as yet that the Vl

6 are eigenspaces
belonging to l (because we do not know as yet that any given l
in (0 ø (` is an eigenvalue). Thus, as proved in ref. 2, we have
the following theorem (that might be thought of as the first half
of Theorem 2.4 below).

THEOREM 2.2. One has

Spec~Q̃~x, Dx!! , O0 ø O` ,

and

dim Vl
1 # H2 if l [ O0

1

1 if l [ O`
1\O0

1
dim Vl

2 # H2 if l [ O0
2

1 if l [ O`
2

\O0
2

.

Dealing with Problem 2. In this case, the key ingredients for dealing
directly with problem 2 are the formula

Q̃ 5 m1
2 H 1 m2

2 KHK 1 m1m2~HK 1 KH!J

and the use of the basis Bmix (see Lemma 2.1). Again, we restrict
to the even-eigenfunction case. Hence, consider the equation
(Q̃ 2 lI)h 5 0, with h of the form h 5 (N50

1` (aNj2N
1 1 bNKj2N

1 ).
Upon setting a21 5 b21 5 0, zN :5 ,22N (1 2 i,)N

(m2aN 2 im1bN), we get the recurrence equations

~P2N
l !9 d2N~l!zN 1 c,L2N~l!zN21

1 2~N 1 1!~2N 1 1!L2N~l!zN11 5 0,

i.e., exactly the recurrence equations (P2N
l ). It is a key observa-

tion now, and the reason why the basis Bmix is of fundamental
importance, that the compatibility condition is automatically
satisfied. Hence, since l [ (0 ø (` gives rise to Schwartz
solutions to the eigenvalue equation, it follows from (P2N

l ) 5
(P2N

l )9 that l [ Spec(Q̃). Thus Spec(Q̃(x, Dx)) 5 (0 ø (`. Now,
since any finite-type (l, N0 1 1)-solution of (P1N

l ) corresponds to
a finite-type (l, N0)-solution of (P2N

l ), and hence of (P2N
l )9, we

have the following crucial fact.
LEMMA 2.3. One has (0

1 , (`
1 and (0

2 , (`
2.

As a consequence of this approach and of Theorem 2.2 above,
we get, as proved in ref. 3, the following rather complete
description.

THEOREM 2.4. One has

Spec~Q̃~x, Dx!! 5 O0 ø O` ,

and

dim Vl
1 5 H2 if l [ O0

1

1 if l [ O`
1 \ O0

1
dim Vl

2 5 H2 if l [ O0
2

1 if l [ O`
2 \ O0

2
.

Remark 2.5: In general (0
6 Þ À (see ref. 2).

3. A New System
As an example of some possible directions of generalization of
the system defined by the operator

Qh~x, Dx! 5
2­x

2 1 2x2

2
I 1 Sx­x 1

1
2D J 5 C~1!C†~1! 2

1
2

I

(see Eq. 1), we propose here the spectral problem relative to the
operator

Qvect~x, Dx! 5
2­x

2 1 2x2

2
I 1 Sx­x 1

1
2D J

1 Fcos~x2! sin~x2!
sin~x2! 2cos~x2!G ,

i.e., the study of the equation
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5S
2­x

2 1 2x2

2
1 cos~x2!Du1 2 Sx­x 1

1
2

2 sin~x2!Du2 5 lu1

S2­x
2 1 2x2

2
2 cos~x2!Du2 1 Sx­x 1

1
2

1 sin~x2!Du1 5 lu2 .

Notice that, as an unbounded operator in L2(R; C2) with domain
B2(R; C2), Qvect(x, Dx) is self-adjoint with compact resolvent
(this again by virtue of the global ellipticity of its principal part).
It seems quite nontrivial to obtain the eigenvalues of Qvect(x, Dx).
We want to show that exploiting the oscillator representation
allows one to solve the spectral problem. Notice that Qh(x, Dx)
is unitarily equivalent (through a symplectic scaling) to
Q(=2,=2)(x, Dx) (in the notations of Section 2). The main
problem here is to treat the zeroth-order part of Qvect(x, Dx).
That seems difficult, but that is not the case, by virtue of the
tensor product representation of sl2(R) to be constructed below.
Hence, let {H, X1, X2} be the basis of sl2(R), which satisfies Eq.
2. Put

c :5
x 1 ­x

Î2
, c† :5

x 2 ­x

Î2
.

Then it is clear that [c, c†] 5 1, and hence the map v: sl2(R)3
EndC (6(R))

v~H! 5 cc† 2
1
2

, v~X1! 5
~c†!2

2
, v~X2! 5 2

c2

2
,

gives the oscillator representation of sl2(R) on 6(R). Because the
action of sl2(R) leaves the parity invariant, we have

6~R! 5 6even~R! % 6odd~R! 5: 61~R! % 62~R!,

the irreducible decomposition of v. Put v6 :5 vu66(R). Then
v0 5 e2x2/2 (resp. c†v0) gives the lowest weight vector of the
irreducible representation of (v1, 61(R)) (resp. of (v2,
62(R))) (see ref. 12). Let (p, V) (V . C2) be the vector
representation of sl2(R):

p~H! 5 F1 0
0 21G , p~X1! 5 F0 1

0 0G , p~X2! 5 F0 0
1 0G .

We have the following proposition.
PROPOSITION 3.1. Put r(H) :5 Qvect(x, Dx),

r~X1! :5
1
2HC†~1!2 1 F 2sin~x2! 1 1 cos~x2!

21 1 cos~x2! sin~x2! GJ ,

r~X2! :5
1
2H2C~1!2 1 F 2sin~x2! 21 1 cos~x2!

1 1 cos~x2! sin~x2! GJ .

Then (r, 6(R; C2)) defines a representation of sl2(R). Furthermore,
r is equivalent to the tensor product representation (v R p, 6(R)
R C2). In fact, the operator exp(x2 J/2) defines the intertwining
operator between these representations:

r~X!ex2J/2 5 ex2J/2v ^ p~X!,

where, recall, v R p(Y) 5 v(Y) R 1 1 1 R p(Y) [we have here
identified 6(R) R C2 with 6(R; C2)]. In particular, the system
defined by the operator Qvect(x, Dx) is unitarily equivalent to the
system defined by the operator v R p(H).

Proof: All the statements follow from the fact

r~H! 5 ex2J/2v ^ p~H!e2x2J/2,

r~X6! 5 ex2J/2v ^ p~X6!e2x2J/2.

Details are left to the reader.
Using the irreducible decomposition of the tensor product

representation v R p we have the following theorem.
THEOREM 3.2. Put j0

6 :5 ex2Jy2 w0
6 and j1

6 :5 ex2Jy2 w1
6, where

w0
1 :5v0 ^ @1

0#,w0
2 : 5 c†v0 ^ F0

1G ,

w1
1 :5 ~c†!2v0 ^ F0

1G 1 v0 ^ F1
0G ,

w1
2 :5 ~c†!3v0 ^ F0

1G 1 c†v0 ^ F1
0G .

Define, for N $ 0, j0,N
6 :5 r(X1)N j0

6, j1,N
6 :5 r(X1)N j1

6. Then

Qvect~x, Dx!j0, N
6 5 S2N 7

1
2Dj0, N

6 ,

Qvect~x, Dx!j1, N
6 5 S2N 1 2 7

1
2Dj1, N

6 .

Remark 3.3: As an sl2(R)-module, the above theorem implies
the irreducible decomposition of (r, 6(R; C2)):

6~R; C2! . Span$j0, N
1 %N$0# % Span$j1, N

1 %N$0#
Ç

even
% Span$j0, N

2 %N$0# % Span$j1, N
2 %N$0#

Ç
odd

where the closure refers to the 6-topology (the same decom-
position holds for L2(R; C2) with closure in the L2-topology). In
particular, j0

1, j1
1 and j0

2, j1
2 give the lowest-weight vectors of the

irreducible summands, respectively. The L2-structure of Spec-
(Qvect(x, Dx)) is given by

eigenvalue 21/2 2N 2 1/2 ~N $ 1! 1/2 2N 1 1/2 ~N $ 1!
eigenvector j0

1 j0,N
1 , j1,N21

1 j0
2 j0,N

2 , j1,N21
2

multiplicity 1 2 1 2

Furthermore, the proof of the above theorem gives the following
result (see ref. 4).

THEOREM 3.4. Let

Q«~x, Dx! :5
2­x

2 1 2x2

2
I 1 Sx­x 1

1
2D J

1 «Fcos~x2! sin~x2!
sin~x2! 2cos~x2!G , « [ R.

The system Q«(x, Dx) interpolates systems Qh(x, Dx) and Qvect(x,
Dx), it has spectrum given by the numbers 2N 1 1y2 6 « (with even
relative eigenfunctions) and 2N 1 3y2 6 « (with odd relative
eigenfunctions), where N [ Z1, with multiplicity one for any N $
0 when « ¸ (1y2)Z.

Remark 3.5: We remark that the eigenfunctions of Q«(x, Dx)
do not depend on « (see ref. 4). This is the main reason why we
think the eigenfunction basis of Q« may serve as a useful tool for
studying more general systems.

We shall give further generalizations in ref. 4. One of our
main motivations is to provide a class of examples whose
spectral problems can be explicitly solved in a unified way.
Indeed, if we take any unitary transformation U(x) in place of
ex2J/2 in Proposition 3.1, we may write down a number of
examples that look more difficult, but that actually are obvi-
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ously all unitarily equivalent to system Qvect(x, Dx). Moreover,
it is also quite interesting to consider the eigenvalue problem
for

Q~x, Dx! 5 AS2
­x

2

2
1

x2

2 D 1 BSx­x 1
1
2D

1 CFcos~x2! sin~x2!
sin~x2! 2cos~x2!G ,

even for the special case C 5 A, for one may write

Q~x, Dx! 5 AS2
­x

2

2 D 1 BSx­x 1
1
2D 1 ~A 1 2CK!Sx2

2 D
1 CKJ 1 O~x4!

(A and C are real self-adjoint matrices, B real skew-adjoint).
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