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Proteus mirabilis, a cause of complicated urinary tract infection, produces urease, an essential virulence
factor for this species. UreR, a member of the AraC/XylS family of transcriptional regulators, positively
activates expression of the ure gene cluster in the presence of urea. To specifically evaluate the contribution of
UreR to urease activity and virulence in the urinary tract, a ureR mutation was introduced into P. mirabilis
HI4320 by homologous recombination. The isogenic ureR::aphA mutant, deficient in UreR production, lacked
measurable urease activity. Expression was not detected in the UreR-deficient strain by Western blotting with
monoclonal antibodies raised against UreD. Urease activity and UreD expression were restored by comple-
mentation of the mutant strain with ureR expressed from a low-copy-number plasmid. Virulence was assessed
by transurethral cochallenge of CBA mice with wild-type and mutant strains. The isogenic ureR::aphA mutant
of HI4320 was outcompeted in the urine (P � 0.004), bladder (P � 0.016), and kidneys (P < 0.001) 7 days after
inoculation. Thus, UreR is required for basal urease activity in the absence of urea, for induction of urease by
urea, and for virulence of P. mirabilis in the urinary tract.

Proteus mirabilis commonly infects the urinary tracts of in-
dividuals with structurally abnormal urinary tracts or long-term
indwelling catheters (20). Many virulence factors have been
identified from this organism, including several types of fim-
briae (1, 17, 18), hemolysin (28), flagella (21), and immuno-
globulin A (IgA) protease (26, 30). Importantly, P. mirabilis
produces a urea-inducible urease, which hydrolyzes urea into
ammonia and ultimately carbon dioxide. As a result of ammo-
nia production, an increase in local pH causes precipitation of
normally soluble calcium and magnesium ions. These salt crys-
tals can grow to remarkable size to produce bladder and kidney
stones (16), which are a hallmark of infections with Proteus
spp. (6).

We have shown previously that urease is an essential viru-
lence factor in P. mirabilis urinary tract infections (UTIs) (11,
12). A urease-negative mutant was constructed by using ho-
mologous recombination to disrupt ureC, the main urease
structural subunit. The urinary tracts of mice infected with the
P. mirabilis isogenic urease mutant were colonized with signif-
icantly fewer numbers than those of mice infected with the
parental strain (12). This mutant also demonstrated a reduced
ability to persist after a 1- or 2-week infection and did not
promote bladder and kidney stone formation (11).

The P. mirabilis urease gene cluster consists of ureABC,
which encode the apoenzyme structural subunits, and
ureDEFG, which encode proteins that facilitate insertion of the
essential nickel ions into the catalytic site (22). Urease operon

expression is positively activated by UreR, a member of the
AraC/XylS family of transcriptional regulators (3, 9, 23).
UreR, a dimer of identical 293-amino-acid polypeptides (24),
binds urea (5), causing the protein to bind avidly to both the
ureR and ureD promoters within the 491-bp ureR-ureD inter-
genic region (27). RNA polymerase is recruited by UreR, thus
activating transcription (27). To date, all of the work elucidat-
ing the functional role of UreR activation of the urease gene
cluster has focused on UreR in vitro by using reporter con-
structs expressed in Escherichia coli. Since UreR controls ex-
pression of the entire gene cluster, we investigated how UreR
function contributes to basal urease production and virulence
of P. mirabilis in a mouse model of ascending UTI.

P. mirabilis HI4320, originally isolated from an elderly (�65
years old) woman with urinary catheter-associated bacteriuria,
possesses urea-inducible urease activity (13, 29). E. coli DH5�
was used as the host strain for transformation of plasmids
other than pGP704 (19) and derivatives which require E. coli
DH5��pir. Plasmid pMID1010 carries the entire P. mirabilis
gene cluster cloned into pBR322 (14). Strains were maintained
on Luria broth supplemented with ampicillin (100 �g/ml) or
kanamycin (50 �g/ml) when necessary. Nonswarming agar (per
liter, 10 g of tryptone, 5 g of yeast extract, 0.5 g of NaCl, and
15 g of agar, with 0.5% glycerol) was used to prevent P. mira-
bilis swarming when cultured on plates (2).

Construction of the ureR::aphA mutation in P. mirabilis
HI4320. To determine the contribution of ureR to urease ex-
pression in vivo, we constructed a P. mirabilis strain deficient in
UreR production according to the scheme shown in Fig. 1. The
ureR open reading frame was subcloned and insertionally in-
activated with a kanamycin resistance cassette. The fragment
containing disrupted ureR was cloned into a pGP704-based
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suicide vector as described in the legend to Fig. 1. The result-
ing suicide construct, pJD12, was electroporated into P. mira-
bilis HI4320. To verify that a double crossover event had oc-
curred, Kanr colonies were screened for ampicillin sensitivity;
4 of 525 colonies were identified as having appropriate char-
acteristics (Fig. 1C). Homologous recombination of the wild-
type ureR with ureR::aphA was confirmed by PCR by using
chromosomal DNA and primers specific for ureR. A band of
approximately 0.9 kb was amplified in the parent strain, while
a band of approximately 2.2 kb (ureR plus Kanr cassette) was
observed in the Kanr Amps mutant strain (data not shown).
This mutant, designated P. mirabilis HI4320 ureR::aphA, was
found to swarm normally and had a growth rate identical to
that of the wild type (data not shown).

Urease activity in the ureR::aphA mutant. Since UreR func-
tions as the transcriptional activator of the urease gene cluster,
urease activity was quantified in vitro for P. mirabilis HI4320
and the isogenic ureR::aphA mutant (Fig. 2). The wild-type
strain displayed a 5.7-fold increase in urease activity after cul-
ture in the presence of 100 mM urea. Conversely, although the
level of detection for the urease assay is quite sensitive (ap-
proximately 10 nmol of ammonia), urease activity was unde-
tectable for the mutant strain under identical experimental
conditions.

Complementation of the ureR mutation. To determine
whether urease activity could be restored to the P. mirabilis
ureR mutant by complementation, ureR was cloned into the
EcoRV-BamHI site of pACYC184 and was expressed from the
tetracycline promoter. Following electroporation of the con-
struct into the ureR mutant strain, urease activity was measured
and the production of UreD was assayed by Western blotting
(Fig. 2). Complementation by ureR in trans resulted in wild-
type levels of basal urease activity as well as a fourfold induc-
tion (�60% of that of the wild type) after culture in the
presence of 100 mM urea. While ureR provided in multicopy
restored urea inducibility, the level of induction was not sta-
tistically equivalent to that observed in the wild-type strain.

The data to date suggest that the genes encoding the urease
structural subunits and accessory proteins (except ureG) are
transcribed on a single polycistronic mRNA (4). Because UreR
is a transcriptional activator, it is likely that only a few copies
of the gene product are required for activation. It is therefore
not surprising that UreR was undetectable on Western blots of
either wild-type P. mirabilis or the isogenic ureR mutant (data
not shown). To determine if expression of the urease operon
occurred, we measured UreD production by using Western
blotting for the parent, mutant, and complemented mutant
(Fig. 2). As predicted from the presence of basal urease activ-
ity, P. mirabilis produced a small but detectable amount of
UreD in the absence of urea. The amount of UreD increased
significantly upon addition of 100 mM urea, which correlated
with the fold increase observed for urease activity. Under iden-
tical experimental conditions, UreD expression was not de-
tected in the P. mirabilis ureR::aphA mutant regardless of urea
levels, whereas UreD expression was restored by complemen-
tation with cloned ureR expressed in trans from a plasmid.
These data demonstrated that a fully functional ure gene clus-
ter was present and that insertional inactivation of ureR did not
exert polar effects on other ure genes. Importantly, it was
revealed that UreR is responsible for the low basal levels of
urease activity in uninduced P. mirabilis.

The P. mirabilis ureR::aphA mutant is outcompeted by the
parent strain in a murine cochallenge model of UTI. The
virulence of P. mirabilis parent and mutant strains was assessed
in a murine cochallenge model (15) by using a modification
(10) of the procedure developed by Hagberg et al. (7). For
cochallenge experiments, 10 6- to 8-week-old female CBA
mice (Harlan Sprague Dawley, Indianapolis, Ind.) were in-
fected transurethrally with an approximate 1:1 ratio (5 � 106

CFU of each strain) of the P. mirabilis parent and ureR::aphA
mutant strains. Seven days after inoculation, urine was col-
lected and mice were sacrificed. Quantitative counts from the
urine, bladder, and kidneys were obtained by plating on non-
swarming agar (2) to allow growth of both parent and mutant
strains and on nonswarming agar with kanamycin (50 �g/ml) to
detect the mutant strain alone. The limit of detection for de-
termination of viable bacteria was 102 CFU per milliliter of
urine or per gram of tissue. In these studies, the mutant was
unable to colonize the bladder or kidneys in 8 of 10 mice
(median value, 102 CFU, which is below the limit of detection)
(Fig. 3). As a result of the inability to produce urease, the
ureR::aphA mutant strain was dramatically outcompeted by the
wild-type strain in the urine (P � 0.004), bladder (P � 0.016)

FIG. 1. Construction of a P. mirabilis ureR mutant. (A) A 2.535-kb
BsmI fragment from pMID1010 encompassing most of ureR, ureD,
ureA and the first 51 nucleotides of ureB was treated with T4 DNA
polymerase to fill in overhanging ends and render the fragment blunt
and cloned into the SmaI site of pBluescript SK� treated with shrimp
alkaline phosphatase to create pJD10. (B) After digestion of pJD10
with NruI (corresponding to codon 25 of ureR) and shrimp alkaline
phosphatase treatment, a blunt-ended kanamycin resistance cassette
(aphA), excised from pUC-4	 by digestion with HincII, was inserted
into pJD10. Kanamycin- and ampicillin-resistant versions of DH5�
harboring the new construct, pJD11, were isolated. Arrows represent
the direction of transcription. (C) A 3.8-kb XbaI-KpnI fragment con-
taining the entire insert region of pJD11 was excised from an agarose
gel (XmnI digestion was also used to remove the pBluescript vector
from the desired fragment) and subcloned into pGP704 (19) to create
the suicide construct pJD12. The suicide construct pJD12 was electro-
porated into P. mirabilis HI4320, and kanamycin-resistant transfor-
mants were selected on nonswarming agar.
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and kidneys (P 
 0.001) as well as the urinary tract overall (P

 0.001).

UreR is required for basal urease activity in the absence of
urea, for induction of urease by urea, and for virulence in the

urinary tract. Urease is an essential virulence factor for P.
mirabilis colonization and persistence in UTI (11, 12). UreR,
an AraC/XylS family transcriptional regulator, has been shown
in vitro to positively activate ure gene cluster expression in a

FIG. 2. P. mirabilis urease activity in wild-type HI4320, ureR::aphA mutant, and complemented strains. Urease activity (upper panel) was
determined by using the phenol-hypochlorite reaction (31). Overnight cultures (5 ml) of the P. mirabilis wild-type strain HI4320, the ureR mutant
(ureR::aphA), and the complemented strain (Comp.) were used to inoculate fresh medium (1:100) with or without 100 mM urea containing the
appropriate antibiotics when necessary. Bacteria from mid-exponential-phase cultures (optical density at 600 nm, 0.4) (3 ml) were resuspended in
1 ml of 50 mM HEPES, pH 7.5, and lysed by passage through a French pressure cell at 20,000 lb/in2. The protein concentration of crude extract
was determined by the bicinchoninic acid assay (Pierce, Rockford, Ill.). Total protein (10 �g) was diluted into 1 ml of assay buffer (50 mM HEPES,
pH 7.5, and 25 mM urea) and incubated for 20 min at 37°C. Ammonia production was measured by using the reaction of phenyl nitroprusside and
alkali hypochlorite (31). Optical density was measured at 625 nm by using ammonium chloride as a standard. For Western blotting (lower panel),
monoclonal anti-UreD serum was prepared from a murine hybridoma cell line as previously described (8). Crude extract prepared for urease assays
was assessed for production of UreD. Protein was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred overnight
onto Immobilon-P membrane (Millipore, Inc.). Anti-UreD serum (1:100) and anti-mouse IgG conjugated with horseradish peroxidase (1:2,000)
were used as primary and secondary antibodies, respectively. Protein bands were visualized on X-ray film by using chemiluminescence reagents
from Amersham Biosciences (Piscataway, N.J.).

FIG. 3. Cochallenge of P. mirabilis parent and ureR::aphA isogenic mutant strains in the CBA mouse model of ascending UTI. Mice were
transurethrally infected with 107 CFU containing a 1:1 ratio of P. mirabilis HI4320 and ureR mutant strains. After a 7-day infection, urine, bladder,
and kidney specimens were collected and the CFU per milliliter or per gram of tissue of parent and mutant strains was determined for each mouse.
Each unique symbol refers to CFU for the wild type (WT) and the ureR mutant from one cochallenged mouse. The horizontal dashed line
represents the lower limit of detection of viable bacteria. For ease of comparison, the median values (black bars) are connected by dotted lines.
Statistical differences between the median number of log10 CFU per milliliter or per gram of tissue for P. mirabilis HI4320 and its ureR::aphA
mutant were determined by using the Wilcoxon rank sum test.
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urea-dependent manner. To properly assess the role of UreR
regulation activity in P. mirabilis in vivo, homologous recom-
bination was used to construct a P. mirabilis mutant that was
incapable of producing UreR. A kanamycin resistance gene,
aphA, was inserted at the ureR locus in the P. mirabilis chro-
mosome by homologous recombination with a pGP704-based
suicide construct (Fig. 1). This mutant did not produce urease
in the absence or in the presence of urea as measured by using
the phenol-hypochlorite assay on mid-exponential-phase cul-
tures (Fig. 2). We have known for many years that P. mirabilis
produced basal levels of urease activity in the absence of ex-
ogenously added urea (14). Since there is a complete loss of
basal urease activity in the ureR mutant, we conclude that in P.
mirabilis, low levels of UreR may account for basal urease
expression in the absence of urea. Urease activity was restored
upon complementation with ureR expressed on a low-copy-
number plasmid (Fig. 2). Interestingly, full wild-type levels of
induction were not reached in the complemented mutant. It is
possible that translational coupling plays a role in which newly
translated UreR must bind immediately to the adjacent ureR-
ureD intergenic region. UreR synthesized from the comple-
menting plasmid would have to diffuse to the chromosomal
target, an event that may be less efficient than the wild-type
mechanism.

The isogenic ureR::aphA mutant of strain HI4320 was out-
competed by the parental strain in 10 of 10 CBA mice follow-
ing transurethral infection (Fig. 3); indeed, in only one mouse
were the numbers of the ureR mutant and parent strain similar.
In our experience, as well as that of others (25), coinfection
with parental and mutant strains within the same host repre-
sents a more sensitive method to test for attenuation of viru-
lence. To our knowledge, this is the first report of a cochal-
lenge experiment with P. mirabilis and a urease-negative
mutant. We infected 10 CBA mice with a 1:1 mixture (�5 �
106 CFU of each strain) of the HI4320 parent and ureR::aphA
mutant strains. The parental strain outcompeted the mutant
strain in all mice tested (Fig. 3). The low fitness and complete
attenuation of the mutant strain confirms the role of urease as
an essential virulence factor for P. mirabilis and demonstrates
that the urease of the wild-type strain is not sufficient to sustain
the urease-negative mutant in the urinary tract. Interestingly,
in a previously published study (12), the wild type and the
urease-negative (ureC) mutant of P. mirabilis were indepen-
dently inoculated into the bladders of mice. While the mutant
colonized the urine, bladder, and kidneys in �100-fold fewer
CFU per milliliter or per gram, this mutant was nevertheless
able to colonize the urinary tract to some degree in the absence
of a wild-type strain. The inability of the wild-type strain to
support the cocolonization of the ureR mutant suggests that
the alteration of urine pH by urease is not the sole action that
provides advantage to P. mirabilis. It is likely that urease, a
cytoplasmic protein, provides additional advantages, such as
availability of ammonia for glutamine production and protein
synthesis. These latter functions could not be provided to the
mutant by the wild-type strain.

Cochallenge of CBA mice with both parent and mutant
strains represents a powerful method to directly compare the
requirement of urease production to P. mirabilis virulence in a
single mouse. High levels (107 to 108 CFU/g of tissue) of the P.
mirabilis wild type were recovered from a moribund mouse

(Fig. 3, black square) due to the formation of an obstructive
bladder stone. Interestingly, the highest mutant counts were
also observed for this mouse. Our lab has previously visualized
P. mirabilis attached to the surfaces of bladder and kidney
epithelium and within crevices of bladder and kidney stones
(16). We hypothesize that residing close to the stone may help
P. mirabilis evade the host immune response. This observation
suggests that stone formation may not only contribute to P.
mirabilis persistence in the urinary tract (11) but may also
provide an advantage to nonureolytic pathogens as well.

To our knowledge, UreR has not been shown to affect the
expression of any other operon besides the ure gene cluster.
Since our data demonstrate that the absence of the UreR
regulatory protein leads to inhibition of urease expression, this
protein may serve as a possible target for treatment or eradi-
cation of P. mirabilis from the urinary tract. Further experi-
mentation is required to determine if other ureR-positive En-
terobacteriaceae family members will display a similar loss of
urease activity following perturbation of ureR.
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