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Abstract
Adenoviral (Ad) vectors can efficiently transduce a broad range of cell types and have been used
extensively in preclinical and clinical studies for gene delivery applications. The presence of
preexisting Ad immunity in the majority of human population and a rapid development of immune
response against the Ad vector backbone following the first inoculation with the vector have impeded
clinical use of these vectors. In addition, a number of animal inoculation studies have demonstrated
that high systemic doses of Ad vectors invariably lead to initiation of acute inflammatory responses.
This is mainly due to activation of innate immunity by vector particles. In general, vector and innate
immune responses drastically limit the vector transduction efficiency and the duration of transgene
expression. In order to have a predictable response with Ad vectors for gene therapy applications,
the above limitations must be overcome. Strategies that are being examined to circumvent these
drawbacks of Ad vectors include immunosuppression, immunomodulation, serotype switching, use
of targeted Ad vectors, microencapsulation of Ad vectors, use of helper-dependent (HD) Ad vectors,
and development of nonhuman Ad vectors. Here we review the current understanding of immune
responses to Ad vectors, and recent advances in the strategies for immune evasion to improve the
vector transduction efficiency and the duration of transgene expression. Development of novel
strategies for targeting specific cell types would further boost the utility of Ad vectors by enhancing
the safety, efficacy and duration of transgene expression.

1. ADVANTAGES OF ADENOVIRAL VECTORS FOR GENE THERAPY
Adenoviral (Ad) vectors have been the focus of considerable interest in the last few years for
their potential applications as delivery vehicles for human gene therapy [Alemany et al.
2000; Bramson et al. 1995; Chuah et al. 2003; Curiel 2000; Hitt et al. 2000; Liu et al. 2002;
Sadeghi et al. 2005; St George 2003]. Results of animal studies and clinical trials in humans
for cancer therapy and other metabolic disorders using human Ad (HAd) vectors are
encouraging [Akbulut et al. 2003; Ambar et al. 1999; Emtage et al. 1998; Parks et al. 1999;
Trudel et al. 2001; Wen et al. 2001]. Some of the important reasons for the choice of Ad vectors
for gene therapy are: (i) many human and animal adenoviruses are non-pathogenic for their
natural hosts, (ii) a variety of both proliferating and quiescent cell types, such as epithelial
cells, fibroblasts, hepatocytes, endothelial cells and stromal cells, can be infected with Ad
vectors, (iii) Ad vectors can be grown to very high titers that offer a means to infect a large
number of target cells, and (iv) replication-competent (e.g., early region (E) 3 (E3) -deleted
vectors), conditional replication-competent (e.g., vectors in which E1A is under the control of
a tissue- or cancer antigen-specific promoter), replication-defective (e.g., E1, E1 & E3, E2,
E4, E2 & E4, or E1, E2 & E4-deleted vectors) and helper-dependent (e.g., vectors in which
the majority of Ad genome is deleted) Ad vectors can easily be generated. Moreover, the
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absence of germ-line transmission of Ad vectors in mice highlights one of the safety aspects
of HAd vectors [Paielli et al. 2000]. The E1- or E1 and E3-deleted vectors are routinely known
as the first generation Ad vectors, and vectors having the deletion of E2 and/or E4, in addition
to E1 or E1 and E3 deletion are called the second generation Ad vectors. Helper-dependent
(HD)-Ad (HD-Ad) vectors are also referred as gutless, gutted, or high-capacity vectors and
can be classified as the third generation Ad vectors.

2. SIGNIFICANCE OF VECTOR IMMUNITY IN GENE THERAPY
More than 50 different serotypes of HAd are known to infect humans. Due to ubiquitous nature
of HAd, a majority of the human population is exposed to adenoviruses leading to the
development of an HAd-specific immune response [Harvey et al. 1999]. The preexisting vector
immunity is serotype-dependent and some HAd serotypes are less prevalence than others.
Preexisting immunity against a particular serotype will significantly reduce the uptake of the
homologous HAd vector. Currently, most HAd vectors are based on HAd serotype 5 (HAd5).
The E1-deleted replication-defective HAd vectors are capable of expressing viral early and
late genes at a magnitude sufficient to stimulate cellular and humoral immune responses [Dai
et al. 1995; Elkon et al. 1997; Kafri et al. 1998; Yang et al. 1994; Yang et al. 1995]. HAd-
specific neutralizing antibodies are directed against the viral capsid components [Toogood et
al. 1992], and significantly inhibit the virus uptake following readministration of the same
vector [Dong et al. 1996; Moffatt et al. 2000; Sailaja et al. 2002; Walter et al. 1996]. The
cellular immune response, mediated through HAd5-specific CD8+ T cells, eliminates the target
cells expressing viral and transgene products. This causes rapid loss of transgene expression
in Ad vector-inoculated experimental animals [Crystal 1995].

It has been shown that in addition to the E1 deletion, E2A, E2B and E4 deletions resulted in
minimal Ad late gene expression but without a drastic improvement in the duration of transgene
expression [Engelhardt et al. 1994; Kafri et al. 1998; Yang et al. 1995]. Subsequently, HD-Ad
vectors that have a large portion of the genome deleted were developed [Fisher et al. 1996;
Kochanek et al. 1996; Morsy et al. 1998; Parks et al. 1996]. Inoculation of animals with an
HAd vector having all viral genes deleted resulted in improved safety and prolonged expression
of the transgene [Kochanek et al. 1996; Morsy et al. 1998; Parks et al. 1999]. However,
significant levels of humoral and cellular immunity were elicited in HD-Ad inoculated animals
indicating that expression of viral proteins was not essential for the induction of immune
responses [Kafri et al. 1998]. Therefore, the first inoculation with any type of Ad vector would
result in varying degrees of vector-specific immune response [Hackett et al. 2000; Kass-Eisler
et al. 1996]. Since a number of inoculations with the vector containing the transgene may be
needed for most gene therapy applications (Fig. 1), it is important to develop strategies that
could effectively elude immunity to the vector.

3. INDUCTION OF INNATE IMMUNE RESPONSE AND TOXICITY BY AD
VECTORS

Scientists working on Ad vectors for gene therapy learnt a bitter lesson on September 17, 1999,
when 18-year-old Jesse Gelsinger died after receiving a very high dose (3.8 x 1013 particles)
of HAd vector containing the ornithine transcarbamylase (OTC) gene. This tragedy and a
number of subsequent animal inoculation studies demonstrated that higher vector doses
invariably lead to hepatotoxicity and acute inflammatory response mainly due to activation of
innate immunity. Innate immune response is activated following recognition of molecular
patterns on Ad capsid by pattern recognition receptors on macrophages (mφ) and dendritic
cells (DC), resulting in activation of multiple signaling pathways such as mitogen-activated
protein kinase (MAPK) and nuclear factor (NF)-κB pathways that augment expression of
several proinflammatory cytokines and chemokines [Bruder et al. 1997; Lieber et al. 1997;
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Muruve et al. 1999; Shifrin et al. 2005] (Fig. 2). Multiple inflammatory cytokines and
chemokines including interleukin (IL)-6, IL-8, IL-12, tumor necrosis factor (TNF)-α,
interferon-&;ambda;, RANTES (Regulated upon Activation, Normal T-cell Expressed and
Secreted), interferon-inducible protein 10 (IP-10), macrophage inflammatory protein
(MIP)-1β, and MIP-2 are expressed following Ad vector administration in a dose-dependent
manner [Elkon et al. 1997; Zaiss et al. 2002].

3.1. Implication of Route of Inoculation on Innate Immunity
Following intravenous (i.v.) inoculation, HAd vectors are in general taken up by the
reticuloendothelial cells in the liver, leading to a rapid induction of an innate immune response.
Intraportal infusion of an E1-deleted HAd5 vector (7.5 × 1012 particles/kg) in nonhuman
primates resulted in acute activation of mφ and DC followed by considerable apoptosis of
splenocytes and hepatocytes due to activation of innate immunity by viral capsid proteins
[Schnell et al. 2001]. However, vector doses up to 5 × 1012 particles/kg usually lead to only
limited hepatitis suggesting that vector toxicity could be diminished by lowering the vector
dose per inoculation. In another study, i.v. inoculation of mice with a HAd5 vector (2 × 1011

genomes/mouse) led to acute inflammatory response characterized by high levels of IL-6 and
IL-12 expression due to preferential activation of mφ and DC [Zhang et al. 2001].

The i.v. delivery of Ad vectors also lead to activation of endothelial cells as detected by
expression of phosphorylated Akt/PKB kinase, activated endothelial nitric oxide synthase
(eNOS), and nitrotyrosine due to interaction of viral particles with Kupffer cells [Schiedner et
al. 2003a]. Conserved arg-gly-asp (RGD) motifs of the adenovirus capsid appeared to be
important for efficient vector transduction and endothelial cell activation [Liu et al. 2003]. In
rhesus monkeys, i.v. inoculation of HAd vector induced thrombocytopenia by enhancing in
vivo platelet clearance [Wolins et al. 2003]. Similarly, a baboon inoculated with an E1-deleted
HAd vector developed acute symptoms, decreased platelet counts, increased liver enzymes,
injury to the vascular endothelium, and became moribund at 48 h post-inoculation [Morral et
al. 2002]. These studies underscore the importance of induction of a strong innate immune
response following Ad vector administration in mediating an acute inflammatory reaction.

In a subcutaneous mouse mammary tumor model, pre-immunization with an HAd5 vector
resulted in significantly reduced transgene expression in the tumor and normal tissues,
however, the inhibition was more in the liver than in the mammary tumor [Bramson et al.
1997; Vlachaki et al. 2002]. Increasing the vector dose by 10- to 100-fold restored the level of
transgene expression in preimmunized mice, but higher vector doses (2 × 1011 virus particles
or more per inoculation) also led to significantly higher hepatotoxicity compared to naïve
animals. Readministration of a second vector dose was associated with the same degree of
toxicity as the first vector, but prompted a much more vigorous neutralizing antibody response
[Nagao et al. 2001; Nunes et al. 1999]. Increased mortality was observed when pre-immunized
mice were inoculated systemically with a high dose of Ad vector [Varanvski et al. 2005]. Pre-
exposure failed to inhibit induction of pro-inflammatory cytokines but tissue toxicity was
reduced. In cirrhotic rats, the biodistribution of HAd vectors shifted from the liver to the lungs
due to the presence of pulmonary intravascular mφ [Smith et al. 2004b]. High doses of HAd
vectors in cirrhotic rats not only upregulated TNF-α and IL-6 expression, but also led to
markedly prolonged coagulation times, and resulted in fatal pulmonary hemorrhagic edema
[Smith et al. 2004a]. Cellular gene expression in response to wild type Ad, Ad vectors, or
empty Ad particles was similar [Stilwell et al. 2003], suggesting the importance of the viral
capsid proteins in mediating vector toxicity without viral gene expression. Additionally, it has
been shown that intramuscular (i.m.) inoculation but not i.v. inoculation resulted in prolonged
and sustained transgene expression and effective evasion of preexisting Ad immunity [Maione
et al. 2001].
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4. STRATEGIES FOR CIRCUMVENTION OF VECTOR IMMUNITY
In order to improve the clinical application of Ad vectors, it is most important to reduce or
evade the vector immune response and enhance target cell transduction. Several approaches
have been developed to meet these contradictory requirements for improving the efficacy of
Ad vector-based gene transfer.

4.1. Immunosupression or Immunomodulation
It has been shown that the use of immunosuppressive agents, such as cyclosporin,
cyclophosphamide [Smith et al. 1996], deoxyspergualin [Kaplan et al. 1997], FK506, [Ilan et
al. 1997] and CTLA4Ig [Guerette et al. 1996; Jooss et al. 1998], or transient depletion of CD4
lymphocytes using an anti-CD4 monoclonal antibody [Ye et al. 2000], use of anti-CD40 ligand
antibody to block CD40-CD40 ligand interactions [Chirmule et al. 2000], and oral tolerization
to Ad proteins [Ilan et al. 1998] enhance the duration of transgene expression following
systemic delivery of Ad vectors. These approaches help in inhibiting humoral, cell-mediated,
or both responses to Ad. Since mφ play an important role in the induction of innate immune
response following vector inoculation, depletion of mφ and DC in the liver and spleen following
administration of liposome-encapsulated dichloro-methylene-biphosphonate resulted in
reduced cytokine production [Zhang et al. 2001]. Short-term depletion of hepatic mφ resulted
in increased hepatic transgene expression and reduced transgene-specific humoral immune
response following Ad vector inoculation in mice [Schiedner et al. 2003b]. Similarly, depletion
of alveolar mφ prior to intratracheal (i.t.) administration of an Ad vector improved vector
transduction and persistence in both immunocompetent and immunodeficient mice [Worgall
et al. 1997]. The use of immunosuppressive agents or depletion of mφ will not be preferred in
clinical cases due to the inherent toxicity of such strategies. Nevertheless, these studies have
demonstrated the feasibility of manipulation of the host innate immune response against Ad
vectors to allow increased vector survival and prolonged transgene expression.

4.2. Covalent Modification of Ad Capsid
Alteration of the immunodominant epitopes of the Ad capsid was also helpful in evading Ad
immunity [Roy et al. 1998]. Covalent attachment of polymers such as polyethylene glycol
(PEG) [Croyle et al. 2000; Croyle et al. 2002; Lanciotti et al. 2003; O'Riordan et al. 1999] or
N-(2-hydroxypropyl) methacrylamide (HPMA) [Fisher et al. 2001] to Ad capsid has been
shown to curtail antibody-mediated virus neutralization. Such modifications are also expected
to elude innate immunity since they will potentially mask the molecular patterns on the viral
capsid with little or no effect on virus infectivity. Consistent with this, mono-
methoxypolyethylene glycol conjugation of Ad vector lead to reduced innate immunity and
improved therapeutic index in mice when compared to unmodified Ad vectors [Geest et al.
2005].

PEGylation of vectors substantially lowered innate Il-6 responses by HD-Ad as well as first-
generation Ad vectors without significantly affecting transduction efficiency [Mok et al.
2005]. These reduced innate responses paralleled reductions in vector uptake by mφ in vitro
and Kupffer cells in vivo. In addition to demonstrating the possibility of evading vector
immunity by covalent modification of HD-Ad vectors, these studies also highlighted the role
of nonspecific vector uptake by mφ in inducing innate immunity against Ad [Mok et al.
2005]. PEGylation of HD-Ad vectors did not adversely affect in vitro and in vivo transduction
efficiencies but lowered peak serum IL-6, IL-12 and TNF-α levels compared to normal HD-
Ad vectors [Croyle et al. 2005] suggesting that innate immune response elicited by Ad capsid
components is critical in mediating vector toxicity.
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4.3. Altering Native Ad Vector and Cell Surface Receptor Interactions
HAd5 attachment to a susceptible cell occurs via the interaction between the Ad fiber knob
and cosackievirus adenovirus receptor (CAR) on the host cell membrane [Bergelson et al.
1997; Tomko et al. 1997]. CAR is a member of the immunoglobulin superfamily and serves
as a high-affinity receptor for HAd in families A, C, D, E, and F but not B [Bergelson et al.
1997; Roelvink et al. 1998; Tomko et al. 1997]. In addition, major histocompatibility (MHC)
class I α2 domain [Hong et al. 1997], heparin sulfate glycosaminoglycan [Smith et al. 2003]
or sialic acid saccharide [Arnberg et al. 2000] may also serve as the primary receptor for HAd.

In addition to these primary receptors, host cell integrins serve as co-receptors for Ad entry
[Wickham et al. 1993]. The HAd penton base protein interacts with vitronectin-binding
integrins, specifically αvβ3 and αvβ5, for virus uptake [Wickham et al. 1993]. This process is
facilitated by the arginine-glycine-asparagine (RGD) motif of the penton base. Interestingly,
the RGD motif is also found in a number of adhesion molecules that are known to interact with
integrins [Bai et al. 1993]. The interaction of HAd penton and αvβ1 integrins promotes actin
cytoskeletal reorganization via activation of several signaling molecules [Li et al. 2001].
Binding of the HAd5 fiber knob to CAR receptor could be effectively prevented with a knob-
specific antibody. For targeting HAd5 vectors to receptors other than CAR, knob-specific
neutralizing antibody could be complexed either to a specific ligand or a receptor-specific
antibody [Bilbao et al. 1998] (Fig. 3). This complex molecule will efficiently bind Ad knob
on one side and a specific receptor on the other side. With this technology, a wide variety of
HAd5 vectors have been successfully targeted to a number of receptors including folate,
epidermal growth factor, fibroblast growth factor, epithelial cell adhesion molecule (EpCAM),
tumor-associated glycoprotein (TAG)-67, and CD40 [Bilbao et al. 1998; Curiel 1999; Douglas
et al. 1996; Gu et al. 1999; Krasnykh et al. 1998]. These modified vectors should be
preferentially taken up by the specific cells.

HAd5 fiber knob has been shown to induce DC activation and maturation [Molinier-Frenkel
et al. 2003]. Virus-induced maturation of DC was significantly reduced when knobless Ad
particles were incubated with immature DC. Therefore, fiber knob modifications to incorporate
cellular ligands with novel cell-binding capacity might confer targeting and decrease vector
immunogenicity. Ad fiber and CAR interactions are considered important for preferential
hepatic sequestration of Ad vectors following intravenous delivery. Uptake of Ad vectors by
hepatocytes and Kupffer cells lead to an increase in cytokine and chemokine mRNA
expression, and subsequently an enhanced innate immune response [Schoggins et al. 2005].
Fiber-pseudotyped Ad vectors were found to induce significantly lower innate immune
response following systemic delivery, highlighting the importance of fiber-modification in Ad
gene delivery. Similarly, immunogenicity of a chimeric vector containing HAd35 capsid and
HAd5 fiber knob was enhanced indicating a potential role of the fiber knob in the
immunogenicity of HAd5 vectors [Nanda et al. 2005]. It is very important to mention here
that, despite a lower innate immune response, adaptive cellular and humoral responses were
not affected by fiber modification. Since virus neutralizing antibodies are primarily directed
to Ad hexon [Ostapchuk et al. 2001; Sumida et al. 2005], it is anticipated that modification of
hexon will evade vector immunity.

Targeting of Ad vectors could also be achieved by fusing the extracellular domain of CAR to
peptide-targeting ligands [Kim et al. 2002]. Genetic targeting of Ad vectors by engineering
small peptides into the HAd fiber [Aoki et al. 2001; Belousova et al. 2002; Biermann et al.
2001; Douglas et al. 1999; Mizuguchi et al. 2001; Nicklin et al. 2001], protein IX [Dmitriev
et al. 2002; Zakhartchouk et al. 2004] or by replacing the fiber protein with the phage T4 fibritin
[Krasnykh et al. 2001] has been also demonstrated, but the size of the peptide appears to be a
limitation. Similarly, the use of bifunctional polyethylene glycol molecules is useful in ablating
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the vector tropism by CAR-mediated interaction and providing specific vector targeting by
incorporating a ligand for a particular receptor [Lanciotti et al. 2003].

4.4. Vector Microencapsulation
The use of polyethylene glycol-cationic lipid to coat HAd vectors [Chillon et al. 1998] and
poly (lactic-glycolic) acid (PLGA) copolymer encapsulation [Beer et al. 1998] has also been
shown to elude virus-neutralizing antibodies. Sodium alginate-based biodegradable
microparticles have been shown to encapsulate purified protein, bacteria, DNA or viruses and
can be delivered to the animals by various routes of inoculation [Aggarwal et al. 1999;
Bowerstock T.L. et al. 1999; Hilbert et al. 1999; Mittal et al. 2000; Periwal et al. 1997]. Since
alginate microspheres are biodegradable and no harsh treatments or organic solvents are used
in the process of their synthesis, the viability of Ad vectors in these microparticles is usually
very high. Encapsulation of a HAd5 vector into alginate microparticles could effectively evade
the vector-specific immune response [Sailaja et al. 2002]. More than 70% of alginate
microspheres are approximately 5–10 μm in size, and therefore, it is expected that majority of
them will be taken up by mφ and DC [Lomotan et al. 1997]. It appears that alginate
microspheres may be an attractive delivery system to target mφ and DC, but there is a need to
study the role of these microparticles in modulating the immune response through mφ and DC.
Use of bilamellar cationic liposomes to encapsulate HAd vectors also provided protection from
preexisting humoral immune responses [Yotnda et al. 2002]. Similarly, microsphere-liposome
complexes guard HAd vectors from neutralizing antibody responses and are capable of
effectively transducing cells leading to successful transgene expression [Steel et al. 2004]. It
seems that transgene expression levels by encapsulated vectors are usually lower
(approximately 50–70%) than those of unencapsulated vectors both in the naïve and vector-
primed animals [Sailaja et al. 2002]. It may be due to slow release of the vector from
microparticles over time that will also prolong the duration of transgene expression.

4.5. Use of Alternate HAd Serotypes (Serotype Switching)
Since more than 50 HAd serotypes exist, and the neutralizing humoral immune response to Ad
is serotype-specific, another strategy to overcome Ad vector immune response could be
serotype switching in vector construction [Kass-Eisler et al. 1996; Mack et al. 1997;
Mastrangeli et al. 1996; Parks et al. 1999]. Subgroup B Ad, such as HAd3, HAd11, and HAd35,
have been shown to utilize the membrane cofactor protein CD46 as an attachment receptor
[Gaggar et al. 2003; Segerman et al. 2003; Sirena et al. 2004]. This particular feature makes
these viruses attractive for targeting cell types that are refractory to HAd5 vectors that are
primarily dependent on CAR-mediated internalization. Low seroprevalence of HAd11 and
HAd35 makes them promising vectors for in vivo applications. Replication-defective HAd35
vectors efficiently transduced human cells and eluded preexisting HAd immunity [Gao et al.
2003; Reddy et al. 2003; Sakurai et al. 2003; Vogels et al. 2003]. Similarly, HAd11 based
replication-defective vectors have shown expanded tropism [Holterman et al. 2004; Stone et
al. 2005]. HAd35 based replication-defective vector vaccines evaded preexisting HAd5
immunity in mice [Barouch et al. 2004] as well as in rhesus monkeys [Shiver et al. 2004].

4.6. Use of Helper-Dependent Ad (HD-Ad) Vectors
HD-Ad vectors are constructed by removing all coding sequences of the Ad genome except
the packaging sequence and inverted terminal repeats, thereby eliminating the problem of
residual viral gene expression associated with E1/E3-deleted Ad vectors [Mitani et al. 1995;
Parks et al. 1996]. Initial studies showed that HD-Ad vectors elicited limited cell-mediated
immune response, had high cloning capacity, and produced long-term gene expression in both
naïve small laboratory animals [Morsy et al. 1998; Schiedner et al. 1998], and nonhuman
primates [Morral et al. 1998; Morral et al. 1999; Morsy et al. 1998] without causing significant
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liver damage and toxicity. Systemic delivery of HD-Ad vectors has been shown to provide
strong transgene expression for prolonged period with minimal toxicity in the baboon, mouse,
or canine model [Brown et al. 2004; Kim et al. 2001; Morral et al. 1999].

HD-Ad vectors also induce vector-specific immune response similar to that generated by E1-
deleted HAd [Roth et al. 2002]. Systemic administration of HD-Ad vectors in baboons also
leads to acute toxicity accompanied by activation of the innate response in a dose-dependent
manner [Brunetti-Pierri et al. 2004] indicating that vector-mediated acute toxicity is
independent of viral gene expression. Sequential delivery of different HD-Ad vector serotypes
circumvented the humoral response to the virus [Morral et al. 1999] suggesting that long-term
transgene expression was possible by sequential delivery of HD-Ad vectors of different
serotypes. However, acute toxicity due to vector is not prevented or reduced [Brunetti-Pierri
et al. 2004; Stilwell et al. 2003], implying the importance of the viral capsid components in
vector toxicity. The generation and potential applications of HD-Ad vectors have been
reviewed [Ng et al. 2002].

It has been demonstrated that HD-Ad vectors could be used for in utero gene delivery for long-
term transgene expression for genetic disorders such as Duchenne muscular dystrophy (DMD)
[Bilbao et al. 2005]. Like first-generation HAd vectors, HD-Ad vectors do not integrate into
the host cell genome; therefore, vector DNA will be gradually diluted out in dividing cells. In
situations where long-term gene expression is desired, such as DMD, vector integration into
the host genome will further improve longevity of transgene expression. The hybrid HAd-
adeno-associated virus (AAV) vectors could provide nonrandom integration of double-
stranded DNA by ex vivo or in vivo gene delivery [Recchia et al. 2004], thereby serving as a
continuous source of trans-gene expression without potential systemic toxicity. Alternatively,
long-term gene expression can be achieved by using a novel binary HD-Ad-Epstein-Barr virus
(HDAd-EBV) hybrid system for stable transfection of mammalian cells [Dorigo et al. 2004].
This system consists of a cre-recombinase expressing HD-Ad, and a HD-Ad carrying EBV
episome and a transgene flanked by loxP sites.

HD-Ad vectors have also been investigated for their application in long-term neurological gene
therapy. While, transgene expression from a first-generation Ad vector was completely
eliminated following peripheral immune priming, HD-Ad vectors produced sustained
transgene expression in the rat brain [Thomas et al. 2000]. Even in the presence of anti-HAd
immunity, an HD-Ad system resulted in sustained and regulatable transgene expression in the
brain [Xiong et al. 2006]. It may obviate the need to screen patients for pre-existing vector
immunity especially for gene delivery to the brain.

Following i.v. inoculation of HD-Ad vectors, an early expression of inflammatory cytokine
and chemokine genes, including IP-10, MIP-2, and TNFα, was induced in the liver in a pattern
similar to that induced by first generation HAd vectors [Muruve et al. 2004]. HD-Ad vectors
also induced the recruitment of CD11b-positive leukocytes to the transduced liver cells within
hours of administration [Muruve et al. 2004]. While first-generation HAd vectors induced a
second phase of liver inflammation, consisting of inflammatory gene expression and CD3-
positive lymphocytic infiltrate at 7 days post-transduction, these changes were not detected in
the livers of mice receiving HD-Ad beyond 24 h post-transduction [Muruve et al. 2004]. In
addition, adaptive immune responses generated by HD-Ad vectors was also attenuated in
comparison to that of first-generation HAd vectors [Muruve et al. 2004].

4.7. Use of Nonhuman Ad Vectors
Since Ad viruses are species-specific, nonhuman Ad are expected to be nonprevalent in
humans, and therefore, they evade preexisting HAd immunity. In order to extend the range of
Ad vectors that could be used to evade HAd neutralizing immune response, a number of
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nonhuman Ad such as bovine Ad type 3 (BAd3) [Mittal et al. 1995; Reddy et al. 1999b; van
Olphen et al. 2002], canine Ad type 2 [Hemminki et al. 2003; Klonjkowski et al. 1997], ovine
Ad [Hofmann et al. 1999], chimpanzee Ad [Farina et al. 2001; Xiang et al. 2002], and porcine
Ad type 3 [Bangari et al. 2004; Reddy et al. 1999a] were exploited for vector construction. It
has been shown that nonhuman Ad vectors infect human cells in culture leading to expression
of the transgene [Bangari et al. 2004; Bangari et al. 2005; Farina et al. 2001; Klonjkowski et
al. 1997; Mittal et al. 1995; Rasmussen et al. 1999]. Since HAd5-, BAd3- and PAd3-specific
neutralizing antibodies do not cross-neutralize [Moffatt et al. 2000], it is expected that
sequential administration of HAd5, BAd3 and PAd3 would effectively evade the vector-
specific neutralizing immune response. The sera of mice immunized with HAd serotypes 2, 4,
5, 7, and 12 did not neutralize chimpanzee Ad [Farina et al. 2001] indicating the utility of such
vectors in evading HAd preexisting immunity. Following the decline in transgene expression
to background levels, readministration of the vector is necessary to maintain therapeutic levels
of transgene expression; it seems that sequential administration of nonhuman Ad vectors could
provide that opportunity. The progress in design and construction of various nonhuman Ad
vectors has been reviewed recently [Bangari et al. 2006].

5. CONCLUDING REMARKS
Various Ad vectors seem to have considerable potential for preventive or therapeutic
applications where transgene expression for a short duration may be enough for the desired
effects, e.g., for developing recombinant vaccines for human and veterinary use and for cancer
gene therapy. The use of Ad vectors for gene therapy of genetic disorders will be more
challenging since therapeutic gene expression will be required for extended period of time. It
should be noted that induction of proinflammatory cytokines and chemokines by Ad vectors
might not be a limitation in every situation. On the contrary, it may be advantageous in some
situations such as cancer immunotherapy and preventive vaccination.

In addition to vector immunity, the immune response could also be induced against the
transgene product in situations where it is recognized as a foreign antigen by the host. This
would also adversely affect the persistence of transgene expression. It is known that the E3
gene products are involved in modulating host immune responses to the virus; therefore,
inclusion or deletion of one or more E3 genes will have implications in vector immunity. All
novel modifications in vector design are required to be tested extensively in experimental
animal models to evaluate their usefulness in evading vector immunity and toxicity. The use
of transgenic mice will be useful in further evaluating the strategies for evading vector-induced
innate and adaptive immune responses and toxicity. For the purpose of expanding the tropism
and modifying vector immunity and toxicity, development of nonhuman adenoviral vectors
and human-nonhuman chimeric vectors hold considerable potential. Further investigations on
various human and nonhuman Ad surface proteins involved in receptor-mediated
internalization will also help to develop better vectors with the ability to target specific
receptors. The cross-reactivity of cellular immune responses among different Ad needs to be
evaluated to develop strategies for eluding vector cellular immunity by sequential
administration of human and/or nonhuman Ad vectors. Adaptation of the information gleaned
from other viral vector systems, micro- or nano-particle technology, and mechanism/s of
induction of innate and adaptive immune responses will certainly facilitate further
improvement in Ad vector design and delivery.
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Fig. (1).
Preexisting immunity as a barrier to adenoviral (Ad) gene therapy. The presence of preexisting
immunity in the majority of human population interferes with initial transduction with HAd
vectors. In case of individuals with no preexisting immunity, the first inoculation with an HAd
vector may be successful but subsequent development of strong cellular and humoral immunity
renders repeat administration of the same vector less effective. Ad, adenoviral vector; HAd,
human Ad vector
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Fig. (2).
Development of adenoviral (Ad) vector immunity. The first use of an Ad vector leads to a
strong innate as well as adaptive immune responses resulting in development of neutralizing
antibodies and elimination of transduced cells. In response to high amount of vector
administration, a strong innate immune is initiated, which is characterized by production of a
variety of proinflammatory cytokines and chemokines leading to an acute toxic response and
hepatotoxicity.
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Fig. (3).
Some of the strategies for designing targeted adenoviral (Ad) vectors. A) Binding of adenovirus
to cells via the knob domain of the fiber to CAR. B) Adenovirus complexed with an anti-knob
antibody fails to bind to CAR. C) Conjugation of a specific ligand to the anti-knob antibody
would allow virus binding to the targeted receptor on the cell surface. D) Conjugation of anti-
receptor antibody to anti-knob antibody would target the Ad vector to the specific receptor on
the cell surface.
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