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Abstract
Any passive rigid inertial object that we hold in our hand, e.g., a tennis racquet, imposes a field of
forces on the arm that depends on limb position, velocity, and acceleration. A fundamental
characteristic of this field is that the forces due to acceleration and velocity are linearly separable in
the intrinsic coordinates of the limb. In order to learn such dynamics with a collection of basis
elements, a control system would generalize correctly and therefore perform optimally if the basis
elements that were sensitive to limb velocity were not sensitive to acceleration, and vice versa.
However, in the mammalian nervous system proprioceptive sensors like muscle spindles encode a
nonlinear combination of all components of limb state, with sensitivity to velocity dominating
sensitivity to acceleration. Therefore, limb state in the space of proprioception is not linearly
separable despite the fact that this separation is a desirable property of control systems that form
models of inertial objects. In building internal models of limb dynamics, does the brain use a
representation that is optimal for control of inertial objects, or a representation that is closely tied to
how peripheral sensors measure limb state? Here we show that in humans, patterns of generalization
of reaching movements in acceleration dependent fields are strongly inconsistent with basis elements
that are optimized for control of inertial objects. Unlike a robot controller that models the dynamics
of the natural world and represents velocity and acceleration independently, internal models of
dynamics that people learn appear to be rooted in the properties of proprioception, nonlinearly
responding to the pattern of muscle activation and representing velocity more strongly than
acceleration.
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Introduction
When we hold rigid objects firmly in our hand, the resulting dynamics of our arm+object is a
field of forces that depends on the motion of our limb, i.e., limb position, velocity, and
acceleration. If this field is represented in the intrinsic coordinates of the limb, e.g., joint
coordinates where θ , is the vector of angular positions, then irrespective of the mass distribution
of the rigid object or the arm, the field is linearly separable into two components (Slotine and
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Li, 1991): the forces due to limb acceleration (inertial field) and the forces due to limb velocity
(coriolis and centripetal field) . That is,

τ = I (θ)θ̈ + C(θ, θ̇)θ̇

where τ is a vector representing torques and θ is a vector representing limb position. The
matrices I and C represent inertia and coriolis/centripetal terms and include constant terms like
link lengths and position of centers of mass. Holding an arbitrary rigid object firmly in hand
will change these constants, but will not affect the structure of the equation. If we wish to build
a robot that can learn to reach while firmly holding passive rigid objects, we might rely on a
model of inverse dynamics (θ, θ̇, θ̈) → τ̂ that estimates the forces τ̂ that are necessary to
achieve a particular desired state θ, θ̇, θ̈ via a set of basis elements:

τ̂ =∑ pigi(θ, θ̇, θ̈).

To learn most efficiently, we would structure this internal model by carefully choosing basis
elements that reflect the natural relationships between states and forces (Schaal and Atkeson,
1998). For example, because the effect of velocity and acceleration remains linearly separable
when holding an object, a reasonable coding might be:

τ̂ =∑
i
p1,ig1,i(θ, θ̇) +∑j

p2, jg2, j(θ, θ̈).

That is, prior knowledge of physics instructs us to form the internal model with linearly
separable sets of basis elements, one sensitive to limb velocity and position the other sensitive
to acceleration and position. Indeed, sensors that one finds on robots independently measure
joint position, velocity, and acceleration.

Unlike the robotic sensors, the proprioceptive sensors in our body, i.e., muscle spindles, do not
code limb velocity and acceleration in a linearly separable way (Houk et al., 1973;Matthews,
1981). A linear superposition of muscle stretch velocity and acceleration cannot fit the complex
discharge rate of spindles (Houk et al., 1981;Prochazka and Gorassini, 1998). Instead, muscle
spindles encode all these variables non-linearly but with maximum sensitivity to stretch
velocity (Lennerstrand, 1968;Lennerstrand and Thoden, 1968;Hasan, 1983;Lin and Crago,
2002). If the internal model that people learn for controlling the dynamics of their limb is
compatible with the way proprioception encodes state of the limb, then the basis elements will
not encode velocity and acceleration in a linearly separable way. If on the other hand the internal
model that people learn was optimized for controlling dynamics of passive inertial objects,
then the internal representation should linearly separate limb velocity from acceleration.

In a recent report, we showed that a large body of data on reach adaptation can be explained
with the theory that the brain represents state of the limb in terms of a coding similar to that
found in muscle spindles (Hwang and Shadmehr, 2005). However, because most previous
experiments considered velocity dependent force fields, the results were also consistent with
a linearly separable coding of velocity and acceleration. As we show in the theoretical
development that follows, the learning strategies structured to match the physical dynamics of
the world will be quite different from learning strategies structured to reflect how our sensors
encode those properties. These two different ways of coding will produce different patterns of
generalization. Here we distinguish between these two strategies by studying the generalization
patterns of the human motor learning system during voluntary reaching movements.

Theory
Suppose we ask a subject to hold an arbitrary rigid object in hand. The mass of that object will
produce a field of forces on the hand that depends on hand acceleration as well as the
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configuration of the mass with respect to the arm. If the mass is held rigidly, the forces on the
hand will take the form:

f = M (θ)ẍ (1)

where f is a force vector due to the motion of the object, M(θ) is a position dependent mass
matrix, and ẍ is hand acceleration. Rather than handing the subject an object to hold, we can
use a robot to actively produce the forces in Eq. (1). In this case, we have fa ≈ f , where fa
represents the active forces produced by the robot. [We use the term active force so to
distinguish these forces from passive forces that are inherent in holding on to the handle of a
robot and moving it about. We can eliminate most of these passive forces using algorithms that
compensate for robot’s passive dynamics.] We can represent this field in terms of the joint
coordinates of the limb,

τa = J TMJ θ̈ + J TM
( dJ1,1dθ )T θ̇ ⋯ ( dJ1,ndθ )T θ̇

⋮ ⋱ ⋮

( dJm,1
dθ )T θ̇ ( dJm,n

dθ )T θ̇
θ̇ (2)

where τa represents the active torques the robot imposes on the subject’s arm, J is the arm’s
position-dependent Jacobian matrix, and Ji,j indicates an element of this matrix. From Eq. (2)
we can now conclude that regardless of the mass structure of the rigid object, the acceleration
dependent and velocity dependent torques remain linearly separable in the intrinsic coordinates
of the limb.

Hypothesis
Suppose that during the process of adaptation, the CNS learns a map that associates limb states
to forces (θ, θ̇, θ̈) → τ̂ , and that this map is computed with a set of basis elements. Our concern
here is to infer the sensitivity of the basis elements to limb acceleration from the patterns of
generalization. Consider two scenarios: 1) The basis elements that are sensitive to limb
acceleration are not sensitive to limb velocity and the basis elements that are sensitive to limb
velocity are not sensitive to limb acceleration:

τ̂ =∑
i
p1,ig1,i(θ, θ̇) +∑j

p2, jg2, j(θ, θ̈) (3)

Such a coding would be optimal for learning control of rigid inertial objects. 2) The basis
elements that are sensitive to limb acceleration are also sensitive to limb velocity but sensitivity
to velocity is stronger than sensitivity to acceleration. This second scenario is motivated by the
observation that spindle afferent discharge is a strong function of limb velocity, but is also
affected by limb position and acceleration (Hasan, 1983).

If we choose M to be an anti-symmetric constant matrix, e.g. M =
0 − 2
2 0

N ⋅ s 2 ∕ m, the

result is a curl field in acceleration space. If one reaches toward a target, the field will push the
hand perpendicular to the acceleration vector. In a stereotypical reach, movements are straight
with a symmetric hand velocity profile. For these movements hand velocities that are visited
in the first half of the reach are again visited in the second half of the reach. However, because
the acceleration vector changes sign from the first half to the second half of the reach, a given
hand velocity during the reach will experience opposite forces in the first and second halves
of the movement. These forces cancel and produce zero net force in hand velocity space.
Therefore, in this field a typical reach is expected to experience zero net force in terms of hand
velocity. This simply implies that learning to reach in an acceleration dependent field would
be impossible with bases that are only sensitive to limb velocity. It also implies that if learning
is with bases described in scenario 1, the velocity sensitive basis elements cannot make a
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significant contribution to τ̂. Rather, learning to reach in a curl acceleration field will be
dominated by the acceleration dependent basis elements.

Note that two reaching movements that are in opposite direction visit exactly the same part of
the acceleration space (but opposite parts of the velocity space). Therefore, acceleration
dependent bases that were used to learn the task in scenario 1 will produce a strong
generalization to movements in the opposite direction. The coding of scenario 1 predicts that
learning of an acceleration field in one direction should strongly generalize to the opposite
direction. In simple terms this means that if one can represent acceleration independent of
velocity, then learning to move a mass in one direction will generalize to movements in the
opposite direction although these two movements involve very different patterns of muscle
activation.

In contrast, in scenario 2 we assumed that the bases are simultaneously sensitive to limb
position, velocity, and acceleration but are most sensitive to limb velocity. Learning to
represent the field of Eq. (1) will be more difficult than a velocity dependent field because of
the weaker sensitivity to acceleration. Importantly, generalization will be incomplete or absent
from movements from one direction to the opposite direction. Here we performed an
experiment to test whether adaptation to an acceleration dependent field generalizes from one
direction of movement to the opposite direction.

Methods
Six healthy individuals (3 women and 3 men) participated in this study. Average age was 25
years (range: 23 to 26 years). The study protocol was approved by the Johns Hopkins University
School of Medicine Institutional Review Board and all subjects signed a consent form.

Experimental setup
Subjects sat on a height adjustable chair in front of a 2D robotic manipulandum (InMotion2,
Cambridge MA) and held its handle. A vertical monitor was placed about 75 cm in front of
subjects and displayed a cursor (diameter 3 mm) representing hand position and circles
(diameter 10 mm) representing start and target positions of reaching.

The task was to reach to a displayed target (displacement of 15 cm) within 550±50 ms. Onset
of movement was determined using an absolute velocity threshold of 0.03 m/s. Feedback on
performance was provided immediately after target acquisition. If the target was acquired
within a 100 ms window around the required movement time (500-600 ms), the target
“exploded” and the computer made a sound. If the target location was acquired too slowly or
too quickly, the target turned blue or red, respectively. Target configuration is shown in the
Fig. 1a. The reaching movements were in an out-and-back pattern. In Fig. 1a, the targets for
the odd number trials are displayed as black arrows. In the even trials, the target always
appeared at the center position. The direction of movement in the even numbered trials is
displayed with gray arrows in Fig. 1a.

We used the robot to produce dynamics of an inertial object. In some trials, the robot produced
active forces fa on the hand that depended on hand acceleration (Eq. 1). where

M =
0 − 2
2 0

N ⋅ s 2 ∕ m. Hand acceleration was measured using an accelerometer mounted

on the handle (Crossbow Technology Inc). Eq. (1) describes only the active forces that were
applied to the hand. We estimated that in our robot, passive dynamics resulted in forces that
were as large as 87% of the active forces. Therefore, the passive forces were not negligible.
How could we be sure that the subjects learned an internal model of the active forces? We used
three different approaches to deal with this issue. First, in addition to the forces that are
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described in Eq. (1), we used a control law on the robot to actively compensate for the passive
dynamics. To do this, we used a system identification procedure to model the robot’s passive
dynamics and then used the robot’s motors to cancel 50% of the forces due to its own inertia
(we could not safely cancel more of the passive dynamics due to stability concerns). The passive
dynamics cancellation control law remained in place during all phases of the experiment.
Second, we used an extensive training period (see Experimental Procedure) to ensure that the
subjects adapted to the (reduced) passive dynamics before we added the active inertial forces.
Third, to independently measure the level of adaptation to the active forces, we used a force
channel (see below) to compare the forces that the subjects produced during training in the
inertial field with the forces that they produced at the end of training with the passive robot.

Force channel
We hypothesized that with adaptation, subjects learned an internal model of fa , i.e., f̂ a . To
test our hypothesis, we used an important technique that was recently introduced by Scheidt
et al. (2000). In this technique, in both the null and field sets a force channel is imposed on
some trials so that it prevents movements from straying from the straight line that connects the
start and end points of the movement. Depending on the strength of the channel walls, one can
severely limit the kinematic errors in the trial (in our case, typically around 1mm). The channel
pushes back with a force that is nearly equal to the force that the subject imposes on the walls.
In this way, the channel allows the experimenter to readout the forces that the subject is
producing perpendicular to the direction of motion without allowing those forces to produce
kinematic errors. We were interested in measuring how training in an inertial field changed
the forces that the subjects produced perpendicular to the direction of motion. We compared
the forces that subject produced in the channel trials of the null set (termed fn ), with the forces
that the subject produced in the channel trials of the field set (termed ff ). The difference in
hand forces was assumed to be the result of adaptation of the internal model:

f̂ a = f f − fn (4)

In the channel trials, the walls had a stiffness of 1000 N/m and a viscosity of 200 N.s/m. Fig.
1c shows the hand paths of a typical subject in the channel trial. We measured the forces that
the subjects produced during the channel trials using a six degree of freedom load cell mounted
at the handle of the robot (Assurance Technology). The forces that we present in this report
were post processed with a zero delay ten-point moving average digital filter. Sampling rate
was 200Hz.

Experimental procedure
To familiarize the volunteers with the task, i.e., dynamics of the passive robot and other
characteristics of the task, subjects began with four to seven sets of 96 movements in the null
field. Once this pre-training was completed, the main experiment began with one set of 96
movements in the null field (baseline set) followed by five sets of 96 movements in a force
field. During the baseline, first field, and last field sets, subjects made movements in all sixteen
directions. However, movements in all direction except 0° were always in the channel. During
the second, third and fourth field sets, subjects made movements only in 0° and 180°.
Movement toward 180° was always in the channel. For movements at 0°, the channel was
present occasionally (probability of 1/12∼1/5). For the remaining trials, movements were in
the force field.

Performance measures
An acceleration dependent field makes movements somewhat unstable by forcing the hand to
make a spiral path as it approaches the target. Therefore, a possible measure of performance
in an acceleration dependent field is the total path length.
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With training, hand path lengths can improve either because the nervous system learns to
predict the environmental forces or because the arm stiffens and better reacts to perturbations
in general. To test between these scenarios, we quantified forces that the hand produced in the
channel trials. Because the robot imposed (active) forces were known, we calculated the forces
subjects needed to produce to fully compensate for the external forces as: − I ẍ . We also
measured forces that the subjects actually produced in the channel f̂ a . To compare f̂ a with
− I ẍ , we computed three related measures: a correlation coefficient, a regression coefficient,
and a mean squared error. The correlation coefficient is simply the covariance of the two signals
divided by the square root of the individual variances. However, note that a correlation
coefficient will indicate perfect correlation even when f̂ a = − kI ẍ and k ≠ 1. Therefore, in
addition to the correlation coefficient we computed the regression coefficient k:

k =
cov( f̂ a, − I ẍ)

var( − I ẍ) =
cov( f̂ a, − I ẍ)

var( − I ẍ) ⋅ var( f̂ a) ⋅
var( f̂ a)
var( − I ẍ)

(5)

We also computed the mean squared difference between f̂ a and − I ẍ along a sampled
trajectory of the two variables during a movement.

Results
We considered the process of adapting reaching movements in inertial force fields. Subjects
experienced the field for only the movements toward target at 0° (Fig. 1a). In this field (Eq.
1), forces on the hand were always perpendicular to the hand acceleration vector. Fig. 1b
provides an example hand trajectory in a well adapted state. The forces initially push the hand
to the right. When the hand reaches peak velocity, forces return to zero. As hand velocity
decreases, forces reverse direction and push the hand to the left. The subplots in Fig. 1b also
show the forces that the hand experiences when the reach trajectory is viewed in hand velocity
and acceleration space. When the forces are viewed in hand velocity space (Fig. 1b, middle
subplot), we note that very similar hand velocities are paired with opposite forces. The
straighter the reaching movement, the more difficult it is to fit a smooth function to these forces
in velocity space. At the limit (a perfectly straight reach with symmetric speed profile), the
mean force at any hand velocity is close to zero. Similar properties hold for torques viewed in
joint velocity space. The implication is that in order to adapt to this field, an internal model
that utilizes linearly separable bases to encode limb position and acceleration (as in Eq. 3)
would have to rely nearly exclusively on position/acceleration dependent bases.

Fig. 2a displays a representative hand path from a null field trial (grey dots) as well as a trial
in the first training set (black dots). When no external forces were applied to the hand, the
movement was nearly straight. As the acceleration dependent curl field was applied, the
movement curved to the right because the hand initially had negative acceleration. As the
movement progressed and the hand decelerated, hand acceleration became positive and the
direction of forces reversed, making the movement come back toward the straight line and go
beyond it. As the hand missed the target, corrective movements via feedback control were
made repetitively but these corrective movements were also perturbed in the direction
perpendicular to the acceleration. As a result, movements exhibited a spiral about the target.
Spirals were a consistent characteristic of this field, as illustrated by the cross-subject averaged
hand paths in Fig. 2b.

Fig. 2a also displays a representative hand path from the last training set (black dots). The
movement became straighter and the spiral at the end clearly decreased. The last movement in
the fifth training set was a catch trial during which the external force was removed (this was
the only catch trial in all the sets). During this trial, the movement was curved in the opposite
direction to the movement in the field trial, indicating that subjects predicted some of the forces
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in the field. However, note that the large loops at the end of the movement in the field trials
were not present in this catch trial, suggesting that the subjects might have increased their arm
stiffness to stabilize the hand during the end of movements.

Fig. 2c displays the averaged path length across six subjects as a function of trial number. The
path length gradually decreased with the training. At the end of training (the last force trial),
path length was significantly smaller than that at the beginning of the training (the first force
field trial) (t-test, t=5.06, d.f.=10, p=2.4×10-4). We also measured the lateral deviation at the
peak speed for each movement, which is the perpendicular distance from the straight line
between the start and end positions. Fig. 2c displays the averaged perpendicular error across
subjects as a function trial number. Similarly to the path length, the perpendicular error
decreased with the training, suggesting adaptation to the force field.

Improvement in performance is likely due to both feed-forward mechanisms that associate
desired limb states to forces (θ, θ̇, θ̈) → τ̂ and feedback mechanisms that learn to better
respond to errors that are sensed online (Wang et al., 2001;Burdet et al., 2001). We interspersed
channel trials during the field sets to quantify the feed-forward forces. In the channel, the
maximum deviation from a straight line was 1.4 ± 0.3 mm (mean+/-SD of maximum deviation
across the 6 subjects). Because the channel minimized kinematic errors perpendicular to the
movement direction, the forces at the hand could not be due to online compensation of
kinematic errors or increased arm stiffness.

Fig. 3a shows the forces f̂ a (Eq. 3) that a subject produced in the first and last channel trials
in the field sets. Note that two field trials preceded the first channel trial. In the first channel
trial, f̂ a in this subject begins by pushing to the left, but at halfway into the movement (near
peak velocity), the forces are near zero. By the end of training, f̂ a is now very similar to the
forces in the acceleration dependent field. That is, this subject produced forces that pushed
initially to the left and then at middle of the movement switched and pushed to the right. Fig.
3b shows the average f̂ a across six subjects in the first and last channel trials. Little
compensation is present in the first channel trial. However, in the last channel trial a clear
acceleration-like force pattern is present.

We examined how well f̂ a matched the theoretical force − I ẍ required to counter the robot
imposed field of forces. For each channel trial, we considered 21 evenly spaced points along
the movement direction. The black line in Fig. 3c is f̂ a for a single subject in a single trial.
The grey line is the quantity − I ẍ .(The data for the black line in Figs. 3c and 3d are same as
the data in Figs. 2a and 2b.) In the first channel trial, f̂ a did not match the estimated external
forces very well. However, in the last channel trial, f̂ a was quite similar to the external force.
Fig. 3d shows the cross-subject averaged f̂ a and − I ẍ for the first and last trials. With training,
the forces that subjects produced in channel trials approximated what was need to counter the
field.

Fig. 4a shows the correlation between f̂ a and − I ẍ for each channel trial, averaged across
subjects. By the end of training the two variables were highly correlated (r=0.89±0.04) and the
measure appeared to plateau by the second training set. Because correlation is insensitive to
linear dependence between the variables, a large correlation is indicative of a high similarity
between the shapes of the waveforms but not necessarily a match between the absolute values
of the waveforms. We therefore computed a regression coefficient k (Eq. 5), where
f̂ a = − kI ẍ . In the beginning of training, k was close to zero but it gradually increases to
about 0.6 by the end of training. The data in Fig. 4b indicates that the rise time for k was
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somewhat slower than the correlation coefficient. Fig. 4c plots the mean squared difference
between f̂ a and − I ẍ (solid line). The dotted line indicates the expected difference when there
is no compensation for the field, i.e., f̂ a = 0 . The ratio between the solid and dotted line is a
decreasing function (not shown) that starts at 1 and plateaus near the middle of the third set to
around 0.4. This implies that by the end of training, f̂ a compensated for around 60% of the
external forces. Thus, using various measures we found f̂ a was highly correlated with the
time-dependent waveform of the external forces fa but ultimately compensated for only about
60% of these forces. Because the various measures converged in the second or third sets, it is
unlikely that further training would have significantly changed this incomplete compensation.

We next examined how learning an acceleration dependent field in one direction was
generalized to other directions. Fig. 5a shows f̂  for all sixteen directions during the last set of
training. Note that all movements were performed in the channel except for some trials in 0°
where the acceleration dependent field was present. Fig. 5a shows that in directions near the
training direction, there are acceleration dependent force patterns but this generalization
decayed quickly with angular distance. To quantify generalization, we computed the regression
coefficient (Eq. 1) between f̂ a and − I ẍ for each movement direction. Fig. 5b shows this
measure for all sixteen directions. Generalization decayed quickly with the angular distance.
Only in directions -22.5°, -11.25°, and 11.25°, significant amount of generalization was
observed (t-test, p<0.01). Beyond ±45°, there is no significant generalization.

Note that movements in 180° experience nearly the same acceleration and deceleration as the
0° direction (our analysis finds that only 25±12 % of acceleration values in 180° lie outside
the acceleration space that is covered in 0° direction). Despite this large overlap of acceleration,
there is no generalization in the 180° direction. If learning were with two separate groups of
basis elements, one that was sensitive to limb acceleration and one that was sensitive to limb
velocity (scenario 1), then subjects should have learned a pure acceleration and force
relationship and there should be near perfect force compensation for 180° direction. Instead,
subjects seemed to have learned a more specific mapping, i.e., force as a function of all available
arm states including arm acceleration, velocity and position, consistent with the scenario 2.

Discussion
We examined adaptation of reaching in a force field that depended exclusively on hand
acceleration. Our first result was that in force channels that prevented the hand from moving
outside of a straight line, the adapted system produced forces at the hand that closely
approximated the acceleration dependent external forces along the entire hand trajectory. This
is a crucial prediction of the hypothesis that the CNS learned a model of inverse dynamics of
the task. Our second result was that this internal model generalized locally to directions ±45°
with respect to direction of training. Importantly, adaptation did not generalize to 180°. Because
movements to 180° visited nearly the same acceleration space as the trained movements but
at very different velocities, the lack of generalization suggests that the basis elements that form
the internal model cannot be linearly separated into groups that are exclusively sensitive to
limb acceleration but not velocity. Instead, it agrees with our second hypothesis that the basis
elements are sensitive to both acceleration and velocity. Indeed, the lack of generalization
suggests that the sensitivity to limb velocity is the dominant factor.

Traditionally, adapting to altered dynamics of reaching has been assessed by examining change
in kinematic features of reaching. Uncompensated dynamics tend to displace the hand from a
straight line trajectory to the target, and with adaptation this displacement declines in field
trials while the displacement increases in catch trials (Shadmehr and Mussa-Ivaldi,
1994;Lackner and Dizio, 1994;Singh et al., 2003). Here we found that in an acceleration
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dependent field, movements became straighter and clear after effects existed. It is possible that
this improvement was due to formation of an internal model that mapped desired states of the
limb to forces. Alternatively, performance improvements might have occurred because of
adaptive changes in arm compliance (Burdet et al., 2001) or because of adaptive changes in
how the CNS responded to kinematic errors that occurred during a movement (Wang et al.,
2001). For example, in an acceleration-dependent field where forces change direction at
maximum hand speed, it is possible that subjects learned to predict only the forces that were
present during the initial part of the movement and then relied on feedback-error measures to
correct for the forces that were present in the later part of the trial. This strategy is particularly
relevant in acceleration dependent fields because the main effect is a spiraling of the hand near
the target. Increased stiffness of the arm as it nears the target is a potential strategy for improving
control. This strategy does not involve learning to predict an acceleration dependent force
pattern and yet could account for both the improved straightness and the after effects of training.
Indeed, the trajectories in catch trials did not show the consistent spiraling pattern near the
target that we had observed in field trials. Therefore, kinematic analysis of field and catch trials
could not provide strong evidence that the CNS learned to predict the acceleration dependent
forces.

The internal model theory assumes that the CNS learns to associate desired states of the limb
with forces. Therefore, if the limb follows the desired state trajectory, the force f̂ a produced
by the subject should predict the external dynamics. Scheidt et al. (2000) pioneered the use of
a force channel to directly measure f̂ a . In a force channel, changes in limb stiffness or
improved error feedback control can not produce field-specific changes in hand forces because
hand position does not deviate significantly from a straight line (presumably the intended
trajectory). Scheidt et al. (2000) demonstrated that in a velocity dependent field f̂ a ≈ f a(ẋ) .
Here we used their approach and measured f̂ a when the field depended on hand acceleration
ẍ. We found that with practice, f̂ a became highly correlated with fa . Therefore, the data
appeared in agreement with a crucial prediction of the hypothesis that during adaptation, the
CNS learned a map from limb states to forces. However, the regression coefficient between
f̂ a and fa saturated around 0.6. This implies that the “feed-forward” motor commands learned
only about 60% of the external force. The regression coefficient appears to saturate, implying
that further practice was unlikely to significantly alter this result.

Subjects experienced the acceleration field only for movements to a single target. Movements
to all other target directions were in a channel. This allowed us to directly measure the
generalization pattern from the trained region of the limb state space to neighboring regions.
Despite the fact that subjects moved in all directions but never experienced error in any
direction but one, they generalized this error to neighboring directions. The pattern of
generalization was similar to the generalization patterns in a task where a rigid object was
attached to the arm (Sainburg et al., 1999). Therefore, the limited generalization pattern is
likely not due to the unusual nature of the acceleration dependent field. Importantly, we did
not observe significant generalization to movements at 180° away from the direction of
training. This lack of generalization may be due to two reasons. First, movements at 180°
include the same accelerations as the trained movements but in reversed temporal order.
Second, movements at 180° involve very different limb velocities than movements in 0°. (In
our experiment design, movements were out-and-back. Therefore, movements at 180° visited
precisely the same limb position and very similar limb acceleration space of movements at 0°).
Therefore, lack of generalization may have been due to either the fact that there was a difference
in the temporal order in which the states were visited in the trained and test movements or the
fact that the two movements had very different limb velocities.
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The temporal order difference is unlikely because movements made in straight lines generalize
to circular movements (Conditt et al., 1997;Conditt and Mussa-Ivaldi, 1999). This suggests
that as long as the states of the two movements are similar, the temporal order in which those
states are visited generally does not affect generalization. Furthermore, note that the
accelerations experienced at the same velocity in straight and circular movements are very
different. Despite that, the velocity dependent force field learned in straight line movements
generalize to the circular movements as if subjects learned a velocity dependent force field in
the circular movements (Conditt et al., 1997;Conditt and Mussa-Ivaldi, 1999). Thus, the
receptive field of the basis elements must be relatively wide in acceleration space compared
to velocity space. This suggests that the lack of generalization to 180° was due to the difference
between those two movements in velocity space.

Our results reject the hypothesis that internal models for arm movement have basis elements
that separately specialize in each limb state (position, velocity, and acceleration). Instead, the
basis elements probably encode all state variables in a combined way. For example, a previous
study used patterns of generalization to suggest that the basis elements encoded limb position
and velocity via multiplicative coding: at a given velocity, the bases were globally and possibly
linearly sensitive to limb position but at a given position, the bases were locally sensitive to
limb velocity with possibly a Gaussian-like function (Hwang et al., 2003). This produces an
ability to learn dynamics that is a non-linear function of both limb position and velocity, and
produces global generalization in terms of limb position (Shadmehr and Moussavi, 2000) but
local generalization in terms of limb velocity (Thoroughman and Shadmehr, 2000).

One possibility is that the basis functions that encode the internal model represent limb state
in a way that is similar to how limb state is sensed by proprioception (Hwang and Shadmehr,
2005). For example, a common representation of position, velocity, and acceleration of the
limb in muscle spindles is with firing rates that encode these variables multiplicatively (Hasan,
1983). In this coding, limb position is coded very broadly, limb velocity has strong directional
bias, and limb acceleration is coded weakly. The linearly separable effects of acceleration and
velocity of inertial objects is not reflected in this coding. Indeed, several neurophysiological
studies have reported that no cell or only a small population of cells in both the peripheral and
central nervous system have activities correlated with limb acceleration (Ashe and
Georgopoulos, 1994;Hasan, 1983;Hasan and Houk, 1975;Matthews, 1981). All of these
observations appear inconsistent with a control system that is optimized for learning dynamics
of inertial objects.

Our data suggests that in a novel inertial field, the feed-forward mechanisms of the internal
model at best compensated for 60% of the forces. In contrast, in a viscous field the
compensation is nearly 100% (Scheidt et al., 2000). This is consistent with a strong
representation of limb velocity in the CNS. However, we cannot reject the possibility that the
learning control of a simple inertial object like a point mass (e.g., an apple held in hand) might
be different from the adaptation we recorded for curl fields. For example, significant amount
of force imposed by the mass in the hand can be compensated by simply scaling up the force
output without a fine tuning of force as a function of velocity or acceleration.

In sum, our results suggest that the brain builds internal models of acceleration dependent
forces with basis elements that encode limb acceleration, velocity and position in a combined
way and not through specialized basis elements that are responsive to limb acceleration
independent of limb velocity. In this combined representation, encoding of limb velocity
appears to dominate acceleration. This type of coding of limb state is inconsistent with a system
that is optimized to learn control of inertial objects. Rather, it raises the possibility that in the
computation of the internal model, limb state is represented in a way that closely matches how
limb state it is coded by sensors in the peripheral nervous system.
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Figure 1.
Experiment setup. (a) The experiment consisted of one baseline (null field) and five force field
sets. During the baseline set, the first field set, and the fifth field set, subjects made movements
in all 16 directions in a random order. However, center-out movements were always followed
by out-center movements. The black lines indicate center-out movements and the grey lines
indicate out-center movements. The out-center movements were drawn at the shifted positions
for the purpose of clarity. Movements in all directions other than 0° were always in a force
channel. During the second, third and fourth field sets, subjects made movements only in the
0° and 180° directions. (b) In field trials, an acceleration dependent curl field was imposed on
the hand for movements toward 0°. Representative hand trajectory and the robot imposed forces
are plotted here in position, velocity, and acceleration space of the hand. The example is from
a representative trial in the last field set. Dots are sampled hand position every 20ms. (c)
Movements in the force channel. Dots are sampled hand position (200 Hz) from single trials
in the force channel from the fifth field set.
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Figure 2.
Hand trajectories during adaptation. (a) Hand paths in a typical subject for four representative
trials, sampled at 200 Hz. Grey dots are from a trial in the null field. Black dots are from a trial
in the force field. (b) Averaged hand paths across six subjects in the same format as (a).
Movements were aligned to hand position at peak hand speed. (c) Path length as a function of
trial number for movements toward 0°. The shaded area represents the standard deviation across
subjects. Vertical dotted lines indicate each of the 5 field sets. In the first and last field sets,
movements were performed in all 16 directions whereas in the middle 3 field sets, movements
were only toward 0° and 180°. (f) Perpendicular distance at peak speed as a function of trial
number (mean+/-SD).
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Figure 3.
Forces that subjects produced in the channel trials for movements to target at 0°. (a) Forces
f̂ a (Eq. 3) produced by a typical subject in the first and last channel trials plotted as a function
of hand position between start and end of the movement. (b) Across subject averaged forces
for the first and last channel trials. (c) Comparison of forces f̂ a produced in the channel trials
and forces required for compensation of the field, fa (Eq. 1). The black trace is f̂ a produced
by a typical subject as a function of movement displacement in the first and last channel trials.
The grey trace is fa . (d) Averaged f̂ a and fa across six subjects.
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Figure 4.
Evolution of forces during adaptation. (a) Correlation coefficient between forces f̂ a produced
in the channel trials and forces fa required for compensation of the field. Each dot indicates a
channel trial (mean+/SD). The solid line is an exponential fit to the data. (b) Slope of the linear
regression between f̂ a and fa (Eq. 4). (c) Mean squared error between f̂ a and fa . The dotted
line indicates the expected difference when there is no compensation for the field, i.e.,
f̂ a = 0 .
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Figure 5.
Generalization of the acceleration dependent field. (a) Across subject averaged f̂ a recorded
in force channels plotted as a function of displacement. The trained direction is for the
downward movement at 0° and all other movements are measures of generalization. The data
comes from the last set of training. (b) Generalization as a function of angular distance of the
movements in the last training set. The measure is regression coefficient (Eq. 4) between f̂ a
and fa in the last training set. Error bars are standard deviation. * indicates that the measure is
significantly different from zero (p<0.01).
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