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Abstract
Infrared imaging analysis of iliac crest biopsy specimens from patients with osteoporotic and multiple
spontaneous fractures shows significant differences in the spatial variation of the nonreducible:
reducible collagen cross-links at bone-forming trabecular surfaces compared with normal bone.

Introduction—Although the role of BMC and bone mineral quality in determining fracture risk
has been extensively studied, considerably less attention has been paid to the quality of collagen in
fragile bone.

Materials and Methods—In this study, the technique of Fourier transform infrared imaging
(FTIRI) was used to determine the ratio of nonreducible:reducible cross-links, in 2- to 4-μm-thick
sections, from human iliac crest biopsy specimens (N = 27) at bone-forming trabecular surfaces. The
biopsy specimens were obtained from patients that had been diagnosed as high- or low-turnover
osteoporosis, as well as premenopausal women <40 years of age, with normal BMD and
biochemistry, who suffered multiple spontaneous fractures. The obtained values were compared with
previously published analyses of trabecular bone from normal non-osteoporotic subjects (N = 14, 6
males and 8 females; age range, 51–70 years).

Results and Conclusions—Collagen cross-links distribution within the first 50 μm at forming
trabecular surfaces in patients with fragile bone was markedly different compared with normal bone.
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INTRODUCTION
LOSS OF BONE mass, measured clinically as change in BMD, is considered an important risk factor
for osteoporotic fractures. However, BMD is not the sole predictor of whether an individual
will experience a fracture,(1,2) and there is considerable overlap in BMD between populations
that do and do not develop fractures.(3–5) In addition to BMD, factors such as geometry and
bone mass distribution, trabecular bone microarchitecture, microdamage, increased
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remodeling activity, genetics, body size, environmental factors, and changes in bone mineral
and matrix tissue properties(4) also influence fracture risk.

There have been several suggestions that the composition of bone collagen is altered in
osteoporotic tissues.(6–14) Among the distinct features of bone (type I) collagen is its cross-
linking chemistry and its molecular packing structure.(15) Intermolecular cross-linking
provides the fibrillar collagen matrices with properties such as tensile strength and
viscoelasticity. The major cross-links found in type I collagen are dehydro-
dihydroxylysinonorleucine (deH-DHLNL), dehydro-hydroxylysinonorleucine (deH-HLNL),
dehydro-histidinohydroxymerodesmosine (deH-HHMD), pyridinoline (Pyr),
deoxypyridinoline (lysyl analog of Pyr, d-Pyr), histidinohydroxylysinonorleucine (HHL), and
pyr-role. Of these seven major cross-links, the first three (deH-DHLNL, deH-HLNL, deH-
HHMD) are reducible with sodium borohydride, whereas the others are nonreducible.(15) For
the purposes of this report, reducible cross-links include deH-DHLNL and deH-HLNL,
whereas nonreducible cross-links include Pyr and d-Pyr and are referred to as pyridinium cross-
links.

In a series of recent reports,(16–18) we described the spatial variation of the nonreducible
pyridinium/reducible collagen cross-link ratio in trabecular bone surfaces obtained from iliac
crest biopsy specimens from normal humans as a function of surface activity (forming versus
resorbing).(18) In this report, Fourier transform infrared imaging analysis (FTIRI) was used
to examine the spatial variation of the pyridinium/reducible collagen cross-link ratio at bone-
forming trabecular surfaces in bone biopsy specimens obtained from patients with
osteoporosis. Three groups of patients were examined: postmenopausal women and men with
high turnover osteoporosis and low turnover osteoporosis, as well as otherwise normal
premenopausal women who had sustained spontaneous low-trauma fractures. The results show
that all three groups of fracturing subjects exhibit a higher ratio of nonreducible pyridinium/
reducible collagen cross-link than normal and suggest that abnormal bone collagen quality may
contribute to bone fragility.

MATERIALS AND METHODS
Materials

Iliac crest biopsy specimens from 27 osteoporotic patients were subjected to FTIRI analysis.
The diagnosis of osteoporosis was based on cancellous bone volume <15%. Moreover, they
had all sustained at least one osteoporotic fracture. They were further discriminated into high-
turnover (HTOP; N = 9, all female; age range, 46–57 years) and low-turnover (LTOP; N = 9,
3 male and 6 female; age range, 52–77 years) osteoporosis patients based on histological and
histomorphometric evaluation of percentage of osteoblast surface normalized for total bone
surface (Ob.S/BS). The range of values was 2.62–4.17 in the LTOP groups and 5.39–9.77 in
the HTOP group. Subjects with underlying secondary causes of osteoporosis, such as
rheumatoid arthritis or glucocorticoid excess, were excluded from the study.

In addition, biopsy specimens from nine premenopausal women with spontaneous fractures
(SF; age range, 25–35 years; Ob.S/BS values range, 9.88–18.56) were analyzed. All had
sustained multiple, spontaneous fractures despite having normal BMD (spine BMD value
range, 0.934–1.178). Moreover, an exhaustive biochemical evaluation had excluded any
secondary cause of osteoporosis and fractures. Conditions such as osteogenesis imperfecta and
Marfan’s syndrome were also considered and excluded. All biopsy specimens were selected
from cases on file under an IRB-approved protocol. Because this is an intriguing group, some
typical values ranges of the biochemical analyses are listed in Table 1.
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All tissues were fixed in 70% ethanol, dehydrated through serial acetones, embedded in methyl
methacrylate (PMMA), cut at ~4 μm thickness using a Jung Model K microtome (Heidelberg,
Germany), placed onto BaF2 FTIR windows, and stained while on the window with von Kossa
counterstained with neutral red, following the procedures published elsewhere.(19)

The data obtained in this study were compared against the corresponding values obtained in
iliac crest biopsy specimens from iliac crest biopsy specimens from 14 “normal” patients (NL;
age range, 51–70 years; 6 males, 8 females), under appropriate IRB-approved protocols, at
equivalent anatomical locations at the microscopic level. Their “normal status” was defined
based on the absence of fractures and BMD measurements (values range, 0.928–1.185), and
their collagen cross-link ratio as a function of trabecular bone surface activity has been
published previously.(18)

Methods
FTIRI spectral images were acquired on the BioRad (Cambridge, MA, USA) “Sting-Ray”
system, consisting of a step-scan interferometer interfaced to a Mercury-Cadmium-Telluride
(MCT) focal plane array detector imaged to the focal plane of an IR microscope. Interferograms
were simultaneously collected from each element of the 64 × 64 array to provide 4096 spectra
(~4-minute scan time) at a spectral resolution of 8 cm−1. Each spectral image corresponds to
an area of 400 × 400 μm2, and each spectrum corresponds to an area of ~6.3 × 6.3 μm2.(18,
20–22) Background imaging spectra were collected at identical conditions with only the
BaF2 windows. A digital video camera (Panasonic, Tokyo, Japan) attached to the microscope
allowed the acquisition of pictures of the areas under spectroscopic analysis.

Trabeculae in each section were selected for FTIRI analysis based on the presence of osteoid
at the surface as determined by the von Kossa stain counterstained with neutral red. After the
FTIRI image acquisition, eight sequential FTIR spectra were extracted along a line originating
adjacent to the trabecular surface and proceeding toward the trabecular geometrical center. The
first spectrum in every spectral sequence was of the first 6.3 × 6.3-μm area adjacent to the
trabecular surfaces where only PMMA was evident. The second spectrum in every spectral
sequence was the adjacent 6.3 × 6.3-μm area where both PMMA and protein (amide I and II)
spectral peaks were evident. Water vapor and PMMA spectral contributions were subtracted,
and the amide I and II spectral regions were baseline corrected according to the standards
published elsewhere.(23) The spectral curves were fit using a commercially available software
package (Grams/32; Galactic Software, Salem, NH, USA). The initial position and type
(Gaussian) of underlying bands that were input were determined through second derivative
and difference spectroscopy. Once the curve-fitting process converged, the output of the
analysis was expressed as peak position and relative percentage area.(17) Of the various
underlying bands, the ratio of the relative areas of the peaks at ~1660 and 1690 cm−1 was
calculated and plotted as a function of depth in the bone. This ratio has been shown to
correspond to the pyridinium/reducible collagen cross-links ratio.(16–18)

Mean and SD values at equivalent anatomical positions were compared using Bonferroni
statistical test (p < 0.05).

RESULTS
Figure 1 shows the spatial variation in the pyridinium/reducible collagen cross-links at bone-
forming trabecular surfaces as a function of anatomical distance from the osteoid’s outer edge.
The data presented in open symbols are from the subjects with HTOP and LTOP. Previously
reported data from normal (closed symbols) subjects at equivalent anatomical locations(18)
are included for purposes of comparison. In all cases, equivalent loci data were averaged for
each group, and SD was plotted as error bars. The first, most superficial, point consisted only
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of a PMMA peak, and the second point had amide I and II peaks without a peak at ~1660
cm−1 (representative of pyridinium collagen cross-links(16–18)). Significant differences (p <
0.01) exist between the three groups 14–28 and 40–50 μm beneath the trabecular surface, with
HTOP and LTOP exhibiting higher ratios than normal at both locations. At 14 μm, the HTOP
group (open circles) has significantly higher ratio values than the LTOP group (open triangles);
both have higher values than the control group. At 21 μm, the values for the HTOP group fall
below those of the LTOP group, but for both groups, the values remained significantly above
normal. At 28 μm, HTOP values are the same as those of the NL group, whereas both normal
and HTOP values are significantly below the LTOP group. Beyond this depth, the HTOP values
increase again and become significantly higher than those for both the LTOP and NL groups.

Figure 2 shows the comparison of the spatial variation in the pyridinium/reducible collagen
cross-link ratio between the normal, LTOP (open triangles), and SF (open diamonds) groups.
While the LTOP and SF group values are statistically indistinguishable, they are both higher
than NL for the first 42 μm, after which all three groups exhibit statistically comparable values.

DISCUSSION
In this study, the spatial distribution of the pyridinium/reducible collagen cross-link ratio was
determined in thin tissue sections from iliac crest biopsy specimens of patients that had been
diagnosed as either high- or low-turnover osteoporotics, as well as premenopausal women with
normal BMD sustaining multiple spontaneous fractures. The data were compared with recently
reported values encountered in normal bone at equivalent anatomical locations (bone forming
trabecular surfaces). The results of this study show for the first time in human subjects that the
pyridinium/reducible collagen cross-link ratio differs between normal subjects and patients
with fragile bone, even when BMD values are normal.

Fractures, the clinical consequences of osteoporosis, result when bone mass is reduced below
a level sufficient to maintain structural integrity. Tissue heterogeneity is a major complicating
factor in studies of osteoporosis, many of which use bulk-type analyses of the bony tissues.
One of the advantages of FTIR spectroscopic analysis is that it allows for the rapid analysis of
thin tissue sections with a spatial resolution of ~6.3 μm, making it possible to examine discrete
and anatomically equivalent points.

The organic matrix in osteoporosis has received considerably less attention than the bone
mineral. However, accumulated evidence suggests that the matrix content in osteoporotic bone
is decreased relative to age- and sex-matched controls and that biochemical alterations are
apparent in the collagen molecules.(6–14) The intermolecular cross-linking of bone collagen
is a chemical feature that is intimately related to the way matrix collagen molecules are arranged
in fibrils(15) and provides fibrillar matrices with important mechanical properties such as
tensile strength and viscoelasticity.(24,25) The cross-link pattern is determined and influenced
by many factors, including the level of lysine hydroxylation,(26) collagen turnover,(27)
molecular packing structure,(28) and mineralization,(29) and has been shown to be specific to
the type of tissue(15,30) rather than the type of collagen.

In this study, FTIRI was used to examine the cross-linking patterns in bone matrix at bone-
forming trabecular surfaces, showing that distinctive differences in the collagen cross-link ratio
(pyridinium/reducible) are in fact present. At formative trabecular surfaces of normal bone,
the most superficial, that is, the “youngest,” tissue (at the first 6.3 × 6.3-μm measurement point)
seemed to lack the mature Pyr cross-links.(18) This observation is consistent with what is
known about the maturation of collagen cross-links based on biochemical analyses.(29,30) As
the tissue matures (as seen in the next and subsequent 6.3 × 6.3-μm measurement points),
complex variations in the cross-link ratios are apparent.
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In both the HTOP and LTOP samples, the values of the collagen cross-link ratios were higher
than those obtained in the normal samples. This suggests that, in osteoporosis, processes
affecting the collagen cross-link ratio in the osteoid matrix are altered, implying that, in addition
to the well-established imbalance between formation and resorption seen in osteoporosis, the
bone matrix that is produced in osteoporosis is also different from the bone matrix that is made
in normal bone. The case of HTOP is similar to that of LTOP, if more dramatic and somewhat
enigmatic, because the cross-link ratios become higher more rapidly than in either normal or
LTOP samples. However, at ~30 μm from the surface, they become similar to those of normal
samples and then again become higher than either the normal or LTOP samples. This variation,
which indicates a deviation from the expected sequence of matrix “maturation,” is not readily
explained but may become better defined with future knowledge of the mechanism of collagen
maturation in these cases, as well as the effect of collagen polymorphisms.(31–50)

Just as intriguing is the data obtained in the SF group of patients. These young women, all
under age 40, had normal BMD, serum chemistry, and lacked underlying conditions that might
contribute to fractures, yet they spontaneously fractured. The type of analysis presented in this
manuscript suggests an identical collagen cross-link profile with the one encountered in low-
turnover osteoporotic patients. Whether this is the cause of the skeletal fragility or the result
of improper bone repair cannot be determined from this data but importance of bone material
properties, a component of bone quality, when considering bone fragility is emphasized.

In summary, FTIRI analysis of thin sections from human iliac crest biopsy specimens revealed
differences in the spatial distribution of the pyridinium/reducible collagen cross-link ratio
between normal and osteoporotic patients at forming trabecular surfaces. This may be because
of the possibility that the matrix produced in osteoporosis matures at a faster rate than in normal
bone matrix or the bone matrix of osteoporosis undergoes post-translational modification for
a longer period of time than the bone matrix of normal bone, perhaps because of a delay or
alteration in mineralization. The fact that similar trends were observed in spontaneously
fracturing women with normal BMD accentuate the role of the matrix in determining bone
strength and therefore fracture resistance.

As more information concerning details of the matrix is revealed by the use of techniques such
as FTIR imaging, the contributing factors to bone fragility can be better understood, and
therapeutic protocols can be developed that address issues concerning the quality of the matrix
produced, not just its quantity.
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FIG. 1.
Spatial variation in the pyridinium/reducible collagen cross-links at bone-forming trabecular
surfaces as a function of anatomical distance from the osteoid’s outer edge. The data presented
in open symbols are from the subjects with HTOP (open circles) and LTOP (open upright
triangles). Previously reported data from normal (solid squares) subjects at equivalent
anatomical locations are included for purposes of comparison. In all cases, equivalent loci data
were averaged for each group, and SD are plotted as error bars.
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FIG. 2.
Comparison of the spatial variation in the pyridinium/reducible collagen cross-link ratio
between the normal LTOP (open triangles) and premenopausal spontaneously fracturing (SF;
open diamonds) patient groups.

Paschalis et al. Page 10

J Bone Miner Res. Author manuscript; available in PMC 2006 May 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Paschalis et al. Page 11

Table 1
Range of Values of Biochemical Analyses in Patients of the SF Group

Parameter Value range

Serum calcium 8.9–10.1 mg/dl
Serum phosphate 3.1–4.2 mg/dl
Total Alkaline phosphatase 56–89 U/liter
Creatinine 0.7–0.8 mg/dl
Intact PTH 18.64–38.2 pg/ml
25-Hydroxyvitamin D 19–41 ng/dl
1,25D 28–55 pg/ml

All values were within normal range.
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