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ABSTRACT

A linkage analysis for finding inheritance states and haplotype configurations is an essential process for
linkage and association mapping. The linkage analysis is routinely based upon observed pedigree informa-
tion and marker genotypes for individuals in the pedigree. Itis not feasible for exact methods to use all such
information for a large complex pedigree especially when there are many missing genotypic data. Proposed
Markov chain Monte Carlo approaches such as a single-site Gibbs sampler or the meiosis Gibbs sampler are
able to handle a complex pedigree with sparse genotypic data; however, they often have reducibility
problems, causing biased estimates. We present a combined method, applying the random walk approach to
the reducible sites in the meiosis sampler. Therefore, one can efficiently obtain reliable estimates such as
identity-by-descent coefficients between individuals based on inheritance states or haplotype configurations,
and a wider range of data can be used for mapping of quantitative trait loci within a reasonable time.

linkage analysis can find patterns of inheritance

states, genotype configurations, or haplotype
configurations. These latent variables are essential for
linkage mapping and association mapping. In linkage
mapping, for example, the coefficients sharing founder
genes through segregationin arecorded pedigree can be
estimated on the basis of the inheritance states [i.e.,
pedigree-based identity-by-descent (IBD) probabilities].
In association mapping, the coefficients sharing the genes
from a common ancestor beyond the recorded pedigree
can be estimated on the basis of the haplotype config-
urations [i.e., linkage disequilibrium (LD)-based IBD
probabilities].

The linkage analysis is routinely based upon observed
pedigree information and marker genotypes for indi-
viduals in the pedigree. This could cause difficulties
in general pedigrees as genotype probabilities are hard
to derive when pedigrees are complex, especially when
there are many missing genotypic data. Exact methods
for linkage analysis such as pedigree peeling (ELsTON
and STEWART 1971; CANNINGS et al. 1978) or chromo-
some peeling (LANDER and GREEN 1987) increase ex-
ponentially in computational complexity with the number
of markers or the number of pedigree members. In
addition, having a number of individuals with missing
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genotypic data severely affects the computational task in
deriving such probabilities.

Markov chain Monte Carlo (MCMC) algorithms are
an alternative and flexible method to estimate genotype
probabilities. In early MCMC, genotypic configurations
or segregation indicators as latent variables are updated
at each site, which makes it possible to deal with a large
proportion of missing genotypic data in a complex gen-
eral pedigree (LANGE and MATTHYSSE 1989; SHEEHAN
et al. 1989; THOMPSON 1994), although reducible sites
often occur in complex pedigree structures and mixing
problems also appear in using multiple marker loci
(THoMPsoN and HEATH 1999; CANNINGS and SHEEHAN
2002). By updating segregation indicators jointly for
all marker loci in a single meiosis, the meiosis Gibbs
sampler (THoMPsoN and HEATH 1999) greatly improves
mixing of the Markov chain. However, noncommuni-
cating classes are generated when founder allelic types
are determined by direct or indirect observations, which
makes the chain reducible (THOMPSON and HEATH
1999; HeaTn 2003). The random walk approach sug-
gested by SOBEL and LANGE (1996) remedied the re-
ducibility problems by taking multiple moves of the
random walk that allow the chain to pass through illegal
configurations of segregation indicators on its way be-
tween legal configurations of segregation indicators.
However, illegal or less likely configurations are often
proposed, which are mostly rejected by a Metropolis
mechanism; therefore, the computational efficiency of
the random walk approach is much less than that of
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the meiosis Gibbs sampler, where updated variables are
always accepted.

It is desirable to combine the merits from both the
random walk approach and the meiosis Gibbs sampler.
The meiosis sampler is used for all sites where updated
variables are always accepted; therefore, the variables
are more frequently updated at the same time (com-
putational efficiency is high if there is no reducibility
problem). If there are noncommunicating classes, the
random walk approach is applied. Combining these two
approaches should give a higher computational effi-
ciency than the random walk approach alone. In addi-
tion to that, joint updates of segregation indicators for
all marker loci help mixing and therefore improve ac-
curacy. On the other hand, reducibility problems in the
meiosis sampler alone can be remedied with the ran-
dom walk approach. This study proposes a combined
sampler and investigates its performance.

MATERIALS AND METHODS

Distribution of segregation states conditional on marker
data and pedigree: One realization of segregation states (S) in
a pedigree can be expressed in an M X L matrix whose ele-
ments are 0 or 1. If the gene in the mth meiosis at the /th locus
receives the paternal parental allele, the segregation indicator
S = 0,and S,,; = 1 for the maternal parental allele. The maxi-
mum number of possible configurations for S is 2*% when
none of the pedigree members is genotyped. The probability
of S given observed marker data is

pr(GlS)pr(S)
S G I) .

where G represents the observed marker data, pr(S) is the
prior probability of the segregation indicators, Pr(G|S) is the
probability of the observed marker data given S,and the denom-
inator is summed over the probabilities of all possible con-
figurations of S. Since the computation of the denominator
is infeasible in general pedigrees, a MCMC approach is re-
quired to obtain the posterior distribution of the segregation
indicators.

Likelihood estimation: The likelihood for observed marker
data given one configuration of segregation indicators is a
function of all recombinations in every meiosis and of the sum
of all genotype configurations of founders, which are consis-
tent with the segregation indicators,

Mme Mmi—1
pr(G|S) = {H TT (=185 = Sy )1 = 0)) + S5 — S;4116;

1 j=1

X [ﬁipr (gu S)}
1 1=1

(2)

where %y, 7tmi, and ng. are the numbers of meioses, marker
loci, and founder genotype configurations, respectively. S;; is
the segregation indicator for the ith meiosis at the jth locus, 6;
is the recombination rate between markers jand j + 1, and gis
a genotype configuration for founders. Note that since non-
founders’ genotypes are totally dependent on founders’ geno-
types and the segregation indicators, there is no need to
consider their genotype configurations in (2). The computa-

tion of the first term in (2) is the function of all recombina-
tions given S and is therefore relatively straightforward. The
second term is the sum of all genotype configurations for
founders given the segregation indicators. It involves allele
assignments to founder genes consistent with $ (see SOBEL and
LANGE 1996; BUREAU 2001).

Updating schemes for segregation indicators: In a MCMC
method, updated variables for segregation indicators are pro-
posed on the basis of an approximate distribution and the
decision of acceptance for the updated variables is made by
the Metropolis-Hastings algorithm (METROPOLIS et al. 1953;
HasTtings 1970), which gives the correct equilibrium distribu-
tion of segregation indicators. In a Gibbs sampler (a special
case of MCMC), updated variables are always accepted because
they are sampled on the basis of the correct distribution.

Meiosis Gibbs sampler: This algorithm makes joint updates for
the inheritance at linked loci for one individual at a time (e.g.,
by order of age). For example, for the ith individual, segrega-
tion indicators at all loci can be sampled using a forward-
backward algorithm (THoMPsoNand HEaTH 1999), according
to all possible segregation states for the ith individual, con-
ditional on the segregation indicators for other individuals
(see APPENDIX A). Joint updates for each individual result
in better mixing properties and the process is much more
reliable than that of a single-site Gibbs sampler (THOMPSON
and HEAaTH 1999). Because of joint updates without rejection,
the method is more computationally efficient than other
MCMC methods where proposed variables are often rejected.
However, when founders’ genotypes are constrained, some
sites can be reducible where new variables are never updated.

Random walk approach with a Metropolis mechanism: Updated
variables for segregation indicators are a series of sequential
movements in which the magnitude and direction of each
move are determined by chance. To apply this approach to in-
heritance states, transition rules (see APPENDIX B) were intro-
duced by LANGE and MATTHYSSE (1989) and developed as
more suitable for segregation indicators by SOBEL and LANGE
(1996). Taking multiple transitions at each update, the Markov
chain can move through illegal configurations of segregation
indicators on its way to other legal configurations. This makes
reducible sites have new variables and results in no or few non-
communicating classes in the Markov chain. The new updated
variables are either accepted or rejected by the Metropolis
probability a (METROPOLIS ef al. 1953):

- Pr(Shew| G) } { pr(GSaew) }
Qcurrent,new — MIN 1, — 1. —"7
‘ { "pr(Seurrent| G) 1(G|Seurrent)

(3)

Method combining the meiosis sampler and random walk approach.:
It is desirable to use the advantageous factors from each
method, i.e., the computational efficiency and higher mixing
property from the meiosis sampler and the irreducibility from
the random walk approach. For this purpose, the meiosis
sampler is first applied to all loci for every individual. During
the meiosis sampler, it is possible to detect potential reducible
sites. On the basis of transition probabilities, if the current
state for the ith individual at the jth locus does not update to
any other states, Sj is treated as a reducible site. After a cycle of
the meiosis sampler, a random walk is carried out for segrega-
tion indicators, proposing different variables in every move. As
noted earlier, the size and direction of each move are ran-
domly determined. If proposed variables include any reduc-
ible sites that were never updated in the meiosis sampler,
proposed variables are accepted as new variables with a Metro-
polis acceptance probability (3). If proposed variables do not
include any reducible sites, a new set of variables is proposed
without updating because nonreducible sites are already
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updated in the meiosis sampler. After enough moves of the
random walk (e.g., number of moves ~ number of meioses X
number of markers), all reducible sites have an equal chance
to be updated and they can have new variables.

Initial legal configuration for the Markov chain: A MCMC
approach requires a starting configuration, consistent with
observed marker data. The genotype elimination through in-
heritance constraint (GEIC) algorithm (HENSHALL et al. 2001)
is suitable for finding a legal configuration of segregation
indicators at a single locus. After this algorithm finds a legal
configuration for each locus independently, the MCMC mech-
anism in the combined method obtains the desired condi-
tional distribution, taking into account the linkage between
markers and the relationships between individuals.

Simulation study: A population size of 100 was simulated for
10 biallelic or multiallelic marker loci for 100 generations
before pedigree recording. In each generation, the number of
male and female parents was 50 and their alleles were trans-
mitted to descendants on the basis of Mendelian segregation
using the gene-dropping method (MACCLUER et al. 1986).
Parents were randomly mated with a total of two offspring for
each of 50 mating pairs. In the multiallelic marker model (e.g.,
microsatellites), the number of alleles assumed in each marker
locus was 4 and base allele frequencies were all at 0.25. In the
biallelic marker model (e.g., SNP), the number of alleles was 2
and starting allele frequencies were 0.5. The marker alleles
were mutated at rates of 4 X 10~ per generation in multiallelic
markers (Darras 1992; WEBeER and WoNG 1993; ELLEGREN
1995) and 2.5 X 10°®* per generation in biallelic markers
(NacHMAN and CROWELL 2000). A mutated locus was switched
between the two existing alleles for biallelic markers whereas a
new allele was added for multiallelic markers. This simulation
model ensured that the population would have an equilibrium
distribution of alleles in all loci after 100 generations. Note that
pedigree information is not available for these 100 generations.

At generation 101, a population of size N, was simulated for
tgenerations with pedigree recording. In each generation, the
number of male and female parents was N,./2 and they were
randomly mated with a total of two offspring for each of N./2
mating pairs. Therefore, the recorded pedigree had complex
relationships between animals with a value of (> 2.

The efficiency of three algorithms was investigated with
complete or incomplete genotypic data, i.e., the random walk
approach, the meiosis sampler, and the combined method.
In complete genotypic data, genotypes were available for all
pedigreed individuals. In incomplete genotypic data, geno-
types were available for progeny in the last generation (an-
cestral and parental genotypes were all missing but their
relationships were used).

IBD probabilities were estimated on the basis of true haplo-
types or sampled haplotypes, using the random walk approach
(RA), the meiosis Gibbs sampler (MS), and the combined
method (RAMS). IBD probabilities were also estimated using
MCMC linkage software “SimWalk2” (SoBEL and LANGE
1996). SimWalk2 implements the same random walk approach
asin RA; however, the most likely segregation state is found by a
simulated annealing and used as a starting legal configuration
for the Markov chain while RA, MS, and RAMS use any legal
segregation configuration. Therefore, SimWalk2 takes much
more computing time than other methods. To check the
accuracy of estimating IBD probabilities, correlation between
true and estimated IBD probabilities for progeny in the last
generation was calculated at the middle point of each marker
interval and averaged over all positions. The mean and stan-
dard error of correlations over 10 replicates were plotted
against the time spent for sampling segregation indicators.
Therefore, in each analysis, 90 sets of IBD probabilities were
estimated (9 sets of IBD probabilities within a replicate).

To investigate robustness to alternative family structures,
unequal numbers of male and female parents with a larger
number of progeny were simulated for the recorded pedigree.
Furthermore, to illustrate our proposed method with a real
data set, we considered an existing pedigree and genotypic
data of four half-sib families with a back pedigree spanning
approximately four to five generations. Four sires were related
through back pedigree, and most dams were unrelated among
themselves and to the sires except ~50 dams that were related
to each other and to the sires. Base animals were assumed un-
related. The number of individuals in this pedigree was 1252.
Each sire was mated to ~100-200 dams and had an average of
~143 offspring. The offspring were genotyped for 13 micro-
satellites positioned at 10-cM intervals on average. However,
there were missing genotypes: some offspring were genotyped
for <13 markers and ancestors were not genotyped at all. The
proportion of missing genotypes at all marker loci in the whole
pedigree is 73%. Since the true IBD probabilities were not
known for the real data set, it was not feasible to determine the
accuracy of each sampler. Therefore, we simulated genotypes
at all marker loci for all individuals in the real pedigree,
according to real data; e.g., the pedigree, the marker distance
and order, and the structure and proportion of missing
genotypes were the same. Given simulated data but on the
basis of a real data structure, estimated IBD probabilities using
different samplers were compared to true IBD probabilities.

RESULTS

Pedigree spanning three generations: A population
with N. = 20 was simulated for three generations with 10
multiallelic markers at 10-cM intervals. The kinship co-
efficient between parents in the last generation aver-
aged over replicates was 2%.

Figure 1A shows correlations between true IBD prob-
abilities and those estimated using RAMS, RA, and MS
when genotypes are available for all pedigreed animals.
The correlation (i.e., the accuracy of IBD estimates) for
RAMS converged slightly more quickly to a stable value
than that for RA. After 20 sec, the accuracy is similar
between RAMS and RA (0.995 and 0.994). The accuracy
for MS is always lower than that for RAMS or RA. The
numbers of rounds after 100 sec real time are 800,
670,000, and 1700 for RAMS, RA, and MS, respectively.
Note that 1 round for RA is one move of the random
walk, which involves a few individuals and loci at any
limited number of sites while 1 round for RAMS and MS
updates all sites (after each round RAMS operates an
additional move of the random walk).

Figure 1B shows the accuracy of each method for the
same situation except that genotypes are available only
for progeny in the last generation (ancestral genotypes
are all missing). In this situation, the accuracy of RAMS
is much quicker to reach a stable value than that of RA;
i.e., RAMS reaches a stable value at 25 sec (0.952), which
RA can reach at 100 sec (0.948), indicating that RAMS
is approximately four times quicker. The accuracy of MS
is higher than that of RA until 20 sec; however, it is
not improved afterward. The numbers of rounds per-
formed after 100 sec real time are 2500, 1,600,000, and
6300 for RAMS, RA, and MS, respectively. It should be
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F1cure 1.—Correlation between true IBD prob-
abilities and estimated IBD probabilities using

1 1

A > kB the combined method (RAMS), the random walk
c 0.98 A . 0.98 approach .(RA), and .the meiosis sam.pler (MS_)
8 s with a pedigree spanning three generations (N, =
© 0.8 s 09 ¥ 3 20). In complete genotypes (A), all individuals
2 ho4 2 goad - ———— = aregenotypedand thenumbersofsamplingrounds
8 ) T i at 100 sec are 800 for RAMS, 670,000 for RA, and
0.92 0.2, 1700 for MS. In incomplete genotypes (B), only
individuals in the last generation are genotyped

0.9 4 . : . . , 0.9+ : . . v ' .
’ 0 20 40 60 80 100 ’ 0 20 40 60 80 100 and the numbers of Sampllng rounds at 100 sec
time (sec) time (sec) are 2500 for RAMS, 1,600,000 for RA, and 6300

noted that empirical standard errors (SEs) of these es-
timated correlations are very low (see SE bars in figures
and SEs in Table 1).

More complex pedigree: A population with N, = 20
was simulated for five generations with 10 multiallelic
markers at 10-cM intervals. The kinship coefficient
between parents in the last generation averaged over
replicates was 7%.

With a more complex pedigree and complete geno-
typic data (Figure 2A), itis clear that the accuracy of RA
is slow to reach the same stable value as that of RAMS.
Similar accuracies are shown at 300 sec (0.988 and 0.989
for RAMS and RA). The accuracy of MS is always lower
than those of the other methods. The numbers of
rounds at 300 sec are 600, 1,140,000, and 1500 for
RAMS, RA, and MS, respectively.

In Figure 2B, the accuracies show that the combined
method is much more efficient than either the random

for MS. Solid diamond, RAMS; solid box, MS;
shaded triangle, RA.

walk approach or the meiosis sampler alone when using
incomplete genotypes (genotypes are available only for
progeny in the last generation). The accuracy of RAMS
is reasonably high at 300 sec (0.91). However, the ac-
curacy of RA is lower and it takes longer to reach the
same value: 0.893 at 300 sec for RA and 0.89 at 25 sec for
RAMS. Although the accuracy of MS is higher than that
of RA until 200 sec, it does not increase thereafter. The
numbers of rounds at 300 sec are 5100, 4,800,000, and
9300 for RAMS, RA, and MS, respectively.

Compared to a pedigree of three generations, accu-
racies are slower to reach a stable value in a pedigree
spanning five generations. This is probably due to the
fact that the state space of the Markov chain becomes
larger with a more complex pedigree. After reaching a
stable value, the accuracy for RAMS in a pedigree of
three generations is similar to that in a pedigree of five
generations with complete genotypic data (0.995 and

TABLE 1
Comparison of RAMS, SimWalk2, and MS

RAMS
SimWalk2*
MS

RAMS
SimWalk2
MS

RAMS
SimWalk2
MS

RAMS
SimWalk2
MS

Accuracy” SE’ Time (sec) No. of rounds
Three generations with complete genotypic data
0.995 0.001 100 770
0.974 0.004 >1,800 >19,200,000
0.974 0.003 100 1,480
Three generations with incomplete genotypic data
0.952 0.004 100 2,480
0.938 0.004 >1,200 >19,200,000
0.935 0.006 100 6,330
Five generations with complete genotypic data
0.988 0.002 300 660
0.974 0.003 >4,200 >32,000,000
0.95 0.005 300 1,600
Five generations with incomplete genotypic data
0.91 0.009 300 5,000
0.899 0.008 >2,400 >32,000,000
0.88 0.013 300 9,372

Data are from random mating of 10 males and females with 20 progeny per generation.

“ Correlation between true and estimated IBD probabilities.
’Standard error of mean accuracy based on 10 replicates.
“SimWalk2 carried out a simulated annealing for approximately half of the sampling rounds.
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Ficure 2.—Correlation between true IBD
probabilities and estimated IBD probabilities us-
ing RAMS, RA, and MS with a pedigree spanning
five generations (N. = 20). In complete geno-
typic data (A), the numbers of sampling rounds
at 300 sec are 600 for RAMS, 1,140,000 for RA,
and 1500 for MS. In incomplete genotypic data
(B), the numbers of sampling rounds at 300 sec
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0.989); however, they are quite different with incom-
plete genotypic data (0.952 and 0.910). This is because
the amount of missing ancestral genotypic data is larger
in a pedigree spanning five generations (four gener-
ations missing) than in a pedigree spanning three gen-
erations (two generations missing).

Alternative family structures: When a much smaller
effective size is used with an unequal number of male
and female parents and a larger family size for three
generations with genotyping only on the last, the ac-
curacy for all methods decreased (Figure 3). When
there are five sires and 10 dams with 10 random-mating
pairs of five offspring producing a total of 50 progeny
in each generation, the accuracy for RAMS is 0.843 at
100 sec. Note that the kinship coefficient between parents
in the last generation is 4%. When the number of sires
and dams is two and 10 with 50 progeny in each genera-
tion, the accuracy for RAMSis 0.76 at 100 sec. The kinship
coefficient in this case is 8%. Although overall accuracy is
low in such extreme cases, the combined method still
performs better than any other method alone.

Using a larger pedigree: A relatively large pedigree
where N. = 100 for five generations (total number of
individuals is 500) was further investigated only for the
combined method. The kinship coefficient between 100
parents in the last generation was 1.6%.

Figure 4 shows that when genotypes are available for
all animals, the correlation between true and estimated
IBD probabilities rapidly increases to 0.952 over the first
10 min and then gradually increases (0.976 at 100 min)
to finally stabilize (0.98 at 500 min). Each sampling

are 5100 for RAMS, 4,800,000 for RA, and 9300
for MS. Solid diamond, RAMS; solid box, MS;
shaded triangle, RA.

300

round took ~1 min. With incomplete genotypic data,
the correlation is also reasonably high although overall
values are low compared to those based on complete
genotypic data. The correlation substantially increases
in the first 10 min (0.838) and then gradually increases
(0.886 at 100 min) until it reaches a stable level (0.902
at 500 min). Analysis with incomplete genotypes took
~b sec per round.

The accuracy of the combined method with complete
genotypic data using a larger pedigree is similar to that
using a smaller pedigree (N, = 20 for five generations),
reaching stable values of 0.988 and 0.98 for the small
and large pedigrees, respectively. With incomplete
genotypic data, the accuracies are 0.91 and 0.902 for
smaller and larger pedigrees, respectively. This suggests
that the combined method should be able to handle
much larger pedigrees. The accuracy of the random
walk approach alone did not reach the same value as
that in the combined method after 500 min for
complete and incomplete data (result not shown).

Simulation based on real data: The accuracy of
RAMS, MS, and RA for analyzing a real pedigree with
simulated genotypes is shown in Figure 5. The accuracy
of MS rapidly increases in the first 10 min (0.731) while
that of RAMS is lower (0.704) and that of RA is much
lower (0.642). The accuracy of RAMS and RA keeps
increasing, whereas that of MS hardly improves (0.773
for RAMS, 0.725 for RA, and 0.757 for MS at 100 min).
Ultimately, RAMS and MS have reached a stable value
and RA is slightly improving (0.778 for RAMS, 0.759 for
MS, and 0.738 for RA at 500 min). Again, the accuracy of

Ficure 3.—Correlation between true IBD
probabilities and estimated IBD probabilities us-
ing RAMS, RA, and MS with alternative family
structure. In (A) alternative family structure A,
the numbers of sires and dams are 5 and 10 with
50 progeny produced in each generation, and
the numbers of sampling rounds at 100 sec are
600 for RAMS, 890,000 for RA, and 1200 for
MS. In (B) alternative family structure B, the
numbers of sires and dams are 2 and 10 with
50 progeny produced in each generation, and

A 085 B 085
c 0.8 4 -
8 S
2075 -
:
0.7 1
0.65 T T T T | T T T T
0 20 40 60 80 100 0 20 40 60 80
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the numbers of sampling rounds at 100 sec are
1000 for RAMS, 1,080,000 for RA, and 2000 for
MS. In both cases, the pedigree spans three gen-
erations with genotyping only in the last genera-
tion. Solid diamond, RAMS; solid box, MS;
shaded triangle, RA.

100
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F1Gure 4.—Correlation between true IBD probabilities and
estimated IBD probabilities using the combined method
when N, = 100 is simulated for five generations (500 individ-
uals are used for analysis). Ten multiallelic markers are posi-
tioned at 10-cM intervals. The numbers of sampling rounds at
500 min are 500 for complete genotypic data and 6000 for
incomplete genotypic data. Solid line, complete genotypes;
shaded line, incomplete genotypes.

RAMS is higher than that of MS and much quicker to
converge than that of RA, which is still increasing after
500 min. Overall accuracy is relatively low compared to
that of simpler designs (e.g., Figures 1 and 2). This is
probably because the pedigree structure in the real data
is more complex and larger.

Denser marker spacing: When 10 multiallelic mark-
ers are positioned at 1-cM intervals, similar results are
obtained. RAMS converges more quickly than RA or MS
in data with both complete and incomplete genotypes
(Figure 6). The accuracy of RAMS at 100 sec is very simi-
lar to that with a marker spacing of 10 cM (0.996 with
complete genotypes and 0.951 with incomplete geno-
types). The accuracy of MS and RA at 100 sec is generally
lower than that with a marker spacing of 10 cM (0.953
with complete and 0.895 with incomplete genotypes for
MS and 0.995 with complete and 0.926 with incomplete
genotypes for RA). This indicates that the combined
method is also a suitable tool for denser marker spacing.

When 10 biallelic markers are positioned at 1-cM
intervals, the accuracy of RAMS is slightly lower than

0.81
5 o072
k)
o
‘g 0.63
0.54 1 . . ’ . )
0 100 200 300 400 500
time (min)

Ficure 5.—Correlation between true IBD probabilities and
estimated IBD probabilities between all individuals using
RAMS, MS, and RA with a real pedigree spanning approxi-
mately five generations with simulated genotypes. The num-
ber of pedigree members is 1252 and the offspring (n =
571) in the last generation are genotyped for 13 microsatel-
lites (there are missing genotypes among them). The num-
bers of sampling rounds at 500 min are ~460 for RAMS,
4,600,000 for RA, and 650 for MS. Solid diamond, RAMS;
solid box, MS; shaded triangle, RA.

that with multiallelic markers, yet it is reasonably high
after reaching a stable value (0.981 with complete and
0.932 with incomplete genotypes). Interestingly, the
accuracy of MS with biallelic markers is equivalent to
that with multiallelic markers in spite of a smaller
marker information content (0.95 and 0.892 for com-
plete and incomplete genotypic data). This is probably
due to the fact that with only two alleles for each marker,
reducibility is less of a problem in the meiosis sampler.
The accuracy of RA with biallelic markers is lower than
that with multiallelic markers (Figure 7).

Comparison with a standard linkage software Sim-
Walk2: Table 1 shows the accuracies for the combined
method, SimWalk2, and the meiosis sampler when the
values of IBD probabilities are stabilized. The direct
comparison among the methods in the same time span
was not attempted since it is not feasible to control the
time exactly for estimation in SimWalk2. Instead, we set
a high enough number of sampling rounds for Sim-
Walk2, which could surface all possible states on the
basis of the posterior distribution after such a long
MCMC. This shows that the combined method can give
a reasonably high accuracy compared with that of
SimWalk2 or the meiosis sampler.

Computational efficiency and size of pedigree or
number of markers: The time spent for one sampling
round was measured for different effective population
sizes with a pedigree spanning five generations and 10
multiallelic markers. The time increase with a larger
effective size is not exponential although it is also not
linear. When the effective population sizes are 20, 40,
80, and 160, the times (seconds) are 0.45, 3.33, 26.48,
and 204.07 with complete genotypic data and 0.06, 0.3,
2.05, and 12.68 with incomplete genotypic data. There-
fore, it is possible for the combined method to handle a
relatively large pedigree (7> 1000). The computational
efficiency with incomplete genotypic data is much
better than that with complete genotypic data. This is
because the computation of pr(g|S) in Equation 2 can
deal efficiently with ungenotyped animals without any
extra computation. Note that genotypes are generally
not available for ancestors in real situations for which
the RAMS can be suitable. The time spent for one sam-
pling round increases with a larger number of markers,
but again, it is not exponential. When the numbers of
markers are 10, 20, 40, and 80, the times (seconds) are
0.45,1.52, 5.36, and 20.18 with complete genotypic data
and 0.06, 0.18, 0.72, and 3 with incomplete genotypic
data (effective size is 20). This shows that the combined
method presented here is suitable for analyses of a large
number of markers.

DISCUSSION

The combined method could remedy the reducibility
problems in the meiosis Gibbs sampler and is computa-
tionally more efficient than the random walk approach.
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FIGURE 6.—Accuracy of RAMS, RA, and MS us-
ing a pedigree spanning three generations with
complete genotypic data (A) or incomplete geno-
typic data (B) and with multiallelic markers posi-
tioned at 1-cM intervals. Solid diamond, RAMS;
solid box, MS; shaded triangle, RA.
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Therefore, more reliable estimates can be efficiently
obtained within a shorter time. This makes it possible to
use more abundant resources for QTL mapping such as
back pedigree information, which is often ignored due
to computational complexity. In addition, the com-
bined method is suitable for a larger number of markers
with denser spacing, which are necessary for fine map-
ping of QTL.

A lower accuracy of MS is due to the reducibility
problem. If founder allelic types are constrained in a
Markov chain, reducibility would occur (SOBEL and
LANGE 1996; THOMPSON and HeATH 1999). The pro-
portion of reducible sites is higher for complete geno-
typic data (17 and 22% for three and five generations of
pedigree) because founders are genotyped and there-
fore constrained. With incomplete genotypic data, the
proportion of reducible sites decreases (3 and 1% for
three and five generations of pedigree). This explains
that the accuracy of MS is never higher than that of RA
with complete genotypic data, whereas with incomplete
genotypic data the performance of MS is better than
that of RA initially and converges quickly although the
accuracy of MS is lower than that of RA after more
sampling rounds. The lower accuracy of the meiosis
sampler is due to the fact that the reducible sites never
update new variables; therefore, the Markov chain can
never reach certain inheritance states. Combining it
with the random walk approach makes it possible for the
reducible sites to update new variables, which makes the
Markov chain pass through all inheritance states.

The combined method is much more efficient to
quickly reach a reasonable accuracy compared to the
random walk approach alone, especially with incom-
plete genotypic data where state space is wider than that

time (sec)

of complete genotypic data. This is probably due to the
fact that not all updated variables are accepted in each
sampling round in the random walk approach whereas
updated variables for nonreducible sites are always ac-
cepted in the combined method. If the proportion of
nonreducible sites increases, the computational effi-
ciency for the combined method also increases.

It is shown that the estimated IBD probabilities are
close to the true ones. The two different algorithms
integrate well and help improve mixing in the Markov
chain, which results in reasonably accurate estimates
with general pedigrees. However, there still can be re-
ducibility problems in some cases, e.g., a combination of
complex deep back pedigree and large halfsib fam-
ilies. If information from the back pedigree and from
one of the half-sib families is somehow contradictory,
the Markov chain would stay in a limited state space
for a long period. The current random walk approach
simultaneously considers at most three generations and
is more favorable for full-sib families (see SOBEL and
LANGE 1996) than for halfsib families. This may
partially explain the low accuracy of RA in the real
pedigree (Figure 5). Although RAMS can improve this
situation (the accuracy of RAMS is higher than that of
RA or MS), it is desirable to extend and modify the
random walk to make it suitable for large half-sib
families.

With incomplete genotypes, only the last generation
is genotyped and ancestors are missing. In this situation,
the accuracy of IBD probabilities between animals in
the last generation is reasonably high (>0.9). It is in-
teresting to investigate the accuracy of IBD estimates
with a random pattern and different percentage of
missing information. Table 2 shows the accuracy of IBD

ing a pedigree spanning three generations with
complete genotypic data (A) or incomplete ge-
notypic data (B) and with biallelic markers posi-
tioned at 1-cM intervals. Solid diamond, RAMS;
solid box, MS; shaded triangle, RA.

1 FIGURE 7.—Accuracy of RAMS, RA, and MS us-
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TABLE 2

Accuracy of RAMS for different proportions of
missing genotypes

Proportions of missing genotypes

0.6 0.4 0.2 0

Accuracy of all animals 0.854 0.896 0.938 0.981

SE“ 0.005 0.003 0.006 0.005

Accuracy of genotyped 0948 0949 0.963 0.981
animals

SE 0.006 0.004 0.005 0.005

Data are from a pedigree spanning five generations with ef-
fective size of 20. The combined sampler is used for 100 sec.
“Standard error over 10 replicates.

probabilities between all individuals and those between
only genotyped individuals with different proportions
of missing genotypes (genotyped individuals are ran-
domly selected in the pedigree). When 60% of animals
are not genotyped, the accuracy of estimated IBD
probabilities between all animals is relatively low
(0.85); however, that between genotyped animals is
reasonably high (0.95). When the proportion of missing
genotypes is <40%, the accuracy between all individuals
is >0.9. This shows that the estimated IBD probabilities
between genotyped individuals can give high accuracy
even with a small proportion of known genotypes,
whereas those between all individuals need a relatively
high proportion of known genotypes.

Given reasonably high correlations between true and
predicted IBD estimates, it is expected that the map-
ping resolution with estimated IBD probabilities can be
equivalent to that with true ones. However, the rela-
tionship between the accuracy of IBD estimates and
mapping resolution has not been empirically studied.
Moreover, the usefulness of phenotypes for ungeno-
typed animals was not empirically demonstrated. Fur-
ther study is required to investigate whether phenotypes
of ungenotyped animals help to improve the accuracy of
QTL mapping.

We estimated the correlation between true and
estimated IBD probabilities along with the time spent
for sampling segregation indicators and noted that the
curve reached a stable value (convergence). For exam-
ple, using a pedigree spanning five generations with
effective size of 100, the number of sampling rounds
required for convergence is a few hundred with com-
plete genotypic data and a few thousand with incom-
plete genotypic data. A larger and more complex
pedigree in real situations will require a larger number
of sampling rounds and a diagnostic test for conver-
gence is desirable. Convergence can be assessed by
comparison of mean values between different parts of
the chain (GEwWEkE 1992) or by analysis of variance
between and within the multiple chains with widely
different starting points (GELMAN and RuUBIN 1992).

Further work is warranted to integrate such conver-
gence criteria in the proposed method to automatically
stop the chain when reliable estimates are obtained.

Association studies require reconstructed haplo-
types that utilize linkage disequilibrium information.
Haploytype reconstruction is an analog of finding
inheritance states; therefore, the present method can
be comfortably integrated in association studies (see
LEr and VAN DER WERF 2005). The present method
would not attempt to find the most likely haplotype
configurations, but rather would continuously sample
haplotype configurations on the basis of the posterior
distribution. The MCMC sampling approach that con-
siders all possible sets of haplotypes would be more
accurate than using only one optimal set of haplo-
types based on maximum likelihood (MORRIS et al.
2004).

The locus Gibbs sampler implemented in LOKI
(HeatH 1997) can be an efficient tool to find in-
heritance states and estimate IBD probabilities (only)
if the pedigree can be peeled for at least one locus.
However, it is often impossible to peel even for a single
locus with a complex pedigree with many missing
genotypes (e.g., the real pedigree in this study). The
Elston-Stewart Iterative Peeling (ESIP) (FERNANDEZ
et al. 2001, 2002) is more flexible for this problem
because it uses iterative peeling. However, the ESIP with
multiple markers has not been examined. FERNANDEZ
et al. (2002) reported that the ESIP for sampling
genotypes jointly at multiple loci might be inefficient.
They suggested that sampling genotypes at one locus
conditional on other loci (which is exactly what LOKI
does) could be a better strategy. However, this would
cause a horizontal dependence.

It has been infeasible to use all available information
for alarge complex pedigree with sparse genotypic data,
which is a common case in real populations. For
example, one may not be able to use the relationships
between ungenotyped ancestors due to computational
complexity. Unless LD information is fully utilized from
highly dense markers, these relationships generally
contain useful information (LEE and VAN DER WERF
2005). The meiosis Gibbs sampler is robust to a complex
pedigree with many missing genotypic data; however,
reducibility problems often occur. By applying the ran-
dom walk approach to the reducible sites in the meiosis
sampler, the present method could remedy the re-
ducibility problems. In addition, combining two very
different samplers makes the chain more thoroughly
explore all possible configurations, which always gives
higher accuracy than the use of either method alone.
The proposed method allows use of a wider range of
data for mapping of QTL and can give more reliable
estimates within real time.
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APPENDIX A: FORWARD-BACKWARD ALGORITHM
IN THE MEIOSIS SAMPLER

Joint updates for sampling segregation indicators of
all genes at linked loci in a single meiosis were in-
troduced by THoMPsoN and HeaTH (1999). Following
their method, we describe how to jointly sample the
latent variables at linked loci in a single individual.

Forward working: In forward working, the cumulative
probability (Q) for the segregation indicator §; ; is com-
puted, conditional on inheritance of all individuals at
marker loci up to and including marker locus / except
the ith individual itself, which is updated at the current
stage. The working order is from the first marker to the
last marker (1 — L),

Qi(x) = pr(Si; = x[San—i,;, G, San—iz=, G=),  (Al)

where S,;_;, = all segregation indicators at locus [ ex-
cept the ith individual, G; is the observed marker data at
locus [, Siy_; = is all segregation indicators from locus 1
to locus [ — 1 except the ith individual, and G- is the
observed marker data from locus 1 to [ — 1. For §;; = x,
there are four possible inheritance states. The first is the
paternal and maternal gamete being transmitted from
the paternal allele of the father and the mother (x = 1),
the second is the paternal gamete being the paternal gene
of the father and the maternal gamete being the maternal
gene of the mother (x = 2), the third is the paternal
gamete being the maternal gene of the father and the
maternal gamete being the paternal gene of the mother
(x=3), and the last is the paternal and maternal gamete
being the maternal gene of the fatherand mother (x=4).

The right-hand side in (Al) can be divided into two
parts as

Q(x) = pr(Siy = x|San—is, G) - pr(Siy = x

San—i,i+, Grx).
(A2)

The first part in the right-hand side in (A2) can be ob-

tained, using Bayes’ theorem:

pr(Gi|Sii = x, San—i)pr(Si; = x)

L pr(GISiy = x, Saui—i)pr(Sis = x)’

(A3)
pr(S;; = x) is a prior probability with a value of 0.25;
therefore, (A3) can be simplified as

pr(Sii = x[Sa—is, Gi) *pr(Gi|Sii = x, Su—ig).  (A4)

pr(Siy = x[Sa—iys, Gi) =

The second part of the right-hand side in (A2) can
be computed using the cumulative probability of the
previous locus and recombination rate between locus /
and the previous locus [ — 1:

4
pr(Sis = xSz, Gi) = Z Qi-1(/)9;. (Ab)
=

Ifx=jthen®, = (1 -0, ,)*. Ifx=1andj=20r3, x=2
andj=1lor4,x=3andj=1or4,orx=4andj=2or3,
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then®; = (1 —-6,,)0,;.Ifx=1and j=4,x=2and j=
3,x=38and j=2,or x=4and j= 1, then O; = 67 ,
where 0,_, is the recombination rate between the locus
land [ — 1. Note that the right-hand side in (Ab) for the
first marker locus is negligible (= 1) without previous
marker information.

From (Al), (A4), and (Ab),

4

Qu(x) < pr(GlSi; = x, San—i) Z Qi-1(5)0;.  (A6)

J=1

The estimation of the term pr(GS;; = x, Su—;;) is
explained in SOBEL and LANGE (1996) or in BUREAU
(2001). When forward working is completed, we have
the cumulative probability of the segregation indicator
for the last locus (L), which takes into account all pos-
sible segregation states for the ith individual at locus /,
conditional on all observed marker data and segrega-
tion states for all other members and other loci; that is,

Qr(x) = pr(Sir = %|San—ir, Gr, San—ir*, Grx). (A7)

Therefore, S;; can be sampled from this posterior
distribution.

Backward sampling: In backward sampling, the seg-
regation indicator S;, is sampled conditional on the
already sampled marker locus (S;;+1 ~ S;;) and using
the cumulative probability for locus /that was computed
in the forward working. The sampling order is the se-
cond last locus to the first locus [(L — 1) — 1]

pr(Si: = x|Sa—iz, Gy San—iz=, Gi, Sii+1,---,8i1) < Qi(%)0O.
(A8)

If S;;11 =xthen ® =(1—-0,)% IfS;;»; =1 and x = 2
or3,S; ;41 =2andx=1o0r4,S,;-1=3and x=1or4, or
Siiv1=4andx=2o0r3,then ® =0,(1 — 0,).If S; ;1 =1
andx=4, S;;s1 =2and x=3, §;;41 =3and x=2, or
Sii+1 =4and x=1, then O = 67,

APPENDIX B: TRANSITION RULE FOR A
RANDOM WALK

Following SoBEL and LANGE (1996), we describe how
to integrate a random walk to segregation indicators.

Basic transition rule (7)): An arbitrary single meiosis
atasingle locus is randomly chosen and the segregation
indicator for the site is switched.

The first composite transition rule (77): An arbitrary
single individual at a locus is randomly chosen and 7 is
applied to the meioses of all progeny descended from
the chosen individual.

The second composite transition rules (T3, and Ty}):
An arbitrary couple at alocus is randomly chosen and 7

is applied to the meioses for each progeny of the couple
if the meioses (for progeny) have different segregation
indicators (which is for 75,) or if the meioses have the
same segregation indicator (which is for 75,). And then
Ty is applied to the meioses of all grand progeny de-
scended from the chosen couple.

The number of transitions per sampling round is ran-
domly determined with a geometric distribution with
mean of 2 (i.e., n, with probability 1/2™, where n, is the
number of transitions). For each transition in a sam-
pling round, one of the transition rules is randomly
chosen and carried out. Therefore, multiple moves of
the random walk in each sampling round are carried
out. Note that the symmetry of the proposal transition
matrix and the reversibility of the Markov chain were
already proven by SOBEL and LANGE (1996).

In the combined method, the situation is slightly dif-
ferent in that the random walk approach is applied only
to the reducible sites (in the meiosis sampler). In this
case, the proposal distribution is also symmetrical. The
number of transitions & of a step is chosen with prob-
ability pr(k) and a particular transition rule (7) and
pivots (p) are chosen with probability pr(s p). The transi-
tions generate the transformation group, that is,

step (S, Sj): T(1 oT<2 o...oT(kr

r.p) ) )

When one of the transitions includes a reducible site,
the proposal probability of the step (S;, S;) is pr(S;, S;) =
pr(k)pr(r, p)'pr(r,p)*, ..., pr(r, p)".

When none of the transitions includes a reducible
site, the proposal probability of the step (S;,S;) is
pr(S; ;) =0.

Consider the inverse process,

step (85, 8): T Thpyo o Ty
The number of transitions k of a step is chosen with the
same probability pr(k) in the step (S;,S;) and a par-
ticular transition rule and pivots are also chosen with the
same probability pr(% p) in the step (S;, S;) (SOBEL and
LANGE 1996).

When one of the transitions includes a reducible site,
the proposal probability of the step (S;, S;) is pr(S;, S;) =
pr(k)pr(r, p)pr(r,p)" ", ..., pr(r,p)'. When none of
the transitions includes a reducible site, the proposal
probability of the step (S;,S;) is pr(S;,S;) = 0. There-
fore, whether areducible site is included or not, the pro-
posal distribution is always symmetrical; i.e., pr(S;, S;) =
pr(S;, S:).

The nonreducible sites that are not proposed and not
updated in the process of the random walk approach are
always updated in the meiosis Gibbs sampler according
to the posterior distribution.



