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ABSTRACT

In recent years, the number of studies focusing on the genetic basis of common disorders with a complex
mode of inheritance, in which multiple genes of small effect are involved, has been steadily increasing. An
improved methodology to identify the cumulative contribution of several polymorphous genes would
accelerate our understanding of their importance in disease susceptibility and our ability to develop new
treatments. A critical bottleneck is the inability of standard statistical approaches, developed for relatively
modest predictor sets, to achieve power in the face of the enormous growth in our knowledge of genomics.
The inability is due to the combinatorial complexity arising in searches for multiple interacting genes.
Similar ‘‘curse of dimensionality’’ problems have arisen in other fields, and Bayesian statistical approaches
coupled to Markov chain Monte Carlo (MCMC) techniques have led to significant improvements in under-
standing. We present here an algorithm, APSampler, for the exploration of potential combinations of allelic
variations positively or negatively associated with a disease or with a phenotype. The algorithm relies on the
rank comparison of phenotype for individuals with and without specific patterns (i.e., combinations of allelic
variants) isolated in genetic backgrounds matched for the remaining significant patterns. It constructs a
Markov chain to sample only potentially significant variants, minimizing the potential of large data sets to
overwhelm the search. We tested APSampler on a simulated data set and on a case-control MS (multiple
sclerosis) study for ethnic Russians. For the simulated data, the algorithm identified all the phenotype-
associated allele combinations coded into the data and, for the MS data, it replicated the previously known
findings.

IT is generally accepted now that genetic susceptibility
to diseases with a complex mode of inheritance is ex-

plained by the presence of multiple genes, each con-
ferring a small to moderate contribution to the overall
risk (Tabor et al. 2002). The complexity increases be-
cause similar disease-prone phenotypes may be pro-
duced by different genes in the same pathways as well as
by alternative sets of genes providing disease hetero-
geneity. Due to the success of the human genome proj-
ect (McPherson et al. 2001; Venter et al. 2001) and the
development of high-throughput sequencing and geno-
typing technologies (Sherry et al. 2001; International
HapMap Consortium 2003), there has been a rapid
increase in the availability of genetic data for numerous
polymorphous loci, including SNPs, repeat polymor-
phisms, and insertions/deletions. This allows the
collection of large sets of genetic data, which could
be key in the dissection of the genetic basis of complex
diseases.

Standard analytical approaches developed for simple
etiologies present problems when dealing with complex
etiologies involving multiple genes (Thornton-Wells

et al. 2004). An approach that has shown great promise
in areas with similar dimensionality problems is Markov
chain Monte Carlo (MCMC) exploration using a Bayes-
ian statistical basis (Gilks et al. 1996). Bayesian methods
use the MCMC technique to make inferences that
take into account a study’s data, as well as additional
independent information. For instance, if genes were
known to be in linkage disequilibrium, a measurement
on the variant of one would provide information on the
second, whether it was measured or not. Such informa-
tion could be included through a prior probability dis-
tribution. In general, the final inference is represented
by a posterior probability distribution, which includes
information from the likelihood, derived from the fit of
a model to the data, and prior knowledge of the subject
encoded in the prior distribution.

In statistical genetics, Bayesian approaches have be-
come popular in recent years as computational power
has increased to a point where these methods can be
fully utilized. In addition, the completion of the human

1Corresponding author: Bioinformatics Laboratory, GosNIIGenetika,
Fersmana St., 3-1-31, Moscow 117312, Russia. E-mail: favorov@sensi.org

Genetics 171: 2113–2121 (December 2005)



genome project has provided a substantial body of in-
formation on gene locations, potential linkages, and
SNPs, which are often best incorporated in an analysis
by Bayesian approaches (Rannala 2001). Numerous re-
cent examples of the application of Bayesian methods
in genetics include population studies, quantitative
trait loci mapping, and family-based studies (reviewed
in Beaumont and Rannala 2004).

While the analysis of models with potentially complex
interaction is not new to statistics and artificial intelli-
gence, the complexity and size of the data analyses we
currently face cannot be efficiently tackled with existing
methods. In special settings, such as case-control and
discordant sib-pair studies with a moderate number of
alleles, exhaustive pattern searches can be conducted
using multifactor dimensionality reduction (Hahn et al.
2003). This method has been effective in identifying a
four-way interaction among alleles, but the method is
not highly scalable, and one can consider only one pat-
tern, albeit complex, at any given time. Larger model
spaces can be explored using statistical model search
procedures such as stochastic search variable selection
(George and McCulloch 1993). These require a sub-
stantial computational effort and often rely on model
assumptions that are difficult to test. Recursive parti-
tioning methods are also commonly used to investigate
complex interactions. One example is logic regression
(Kooperberg et al. 2001; Kooperberg and Ruczinski
2005), which can search for multiple patterns, each
including interactions. However, most recursive parti-
tioning approaches have a difficult time identifying com-
plex interactions between predictors, when those are
not showing significant main effects, a critical feature of
epistasis.

Our approach to surmount these obstacles can be
outlined as follows. We are interested in searching over a
space of candidate pattern sets, in which each pattern
can be a complex genotypic pattern with multiple alleles
involved. Evaluation of each of the possible candidates is
not feasible for realistic problems because of the num-
ber of alleles typed. This suggests a stochastic search
approach using MCMC technologies (Gilks et al. 1996;
Robert and Casella 1999; Liu 2001). Implementation
requires an a posteriori distribution, reflecting the strength
of the evidence provided by the data in favor of an
association between each pattern included in the pat-
tern set and the phenotype. Our approach is based on a
practical approximation to such a posterior, built upon
the distribution of a statistic for the nonparametric eval-
uation of the null hypothesis of no association between
the patterns and phenotype. We deal with the con-
founding of the patterns by a procedure that is the
equivalent of a statistical adjustment and that we term
‘‘pattern isolation.’’ We say that a pattern is considered
isolated from some other patterns if we remove the
influence of all these other patterns on the trait level
before we consider its association with the level. The

algorithm is intended to identify sets of patterns that are
associated with the trait when considered in mutual
isolation.

METHODS

Overview: The type of allelic patterns we seek are of
interest in complex genetic diseases and include multi-
ple alleles that are associated with a trait in combination
rather than individually. We consider the general sit-
uation in which we have, for each individual, both a list
of typed alleles at a fixed set of candidate loci and the
phenotype of interest. Our method is based on ranks, so
the phenotype can be measured as a continuous vari-
able or as an ordinal categorical variable. While quan-
titative phenotypic measurements are powerful when
available, it is useful in many applications to have a more
general methodology that requires comparing individ-
uals only to each other, as is the case with ranks.

Our approach is designed to search for correla-
tions between complex genetic patterns and phenotype.
These correlations are captured via differences in the
distributions of phenotype across two subsets of the
population, defined by whether a certain allelic pattern
is present or not. We consider a broad range of possible
genetic models by allowing every allele to potentially
affect the phenotype irrespective of its counterpart on
the other chromosome. For example, our approach
covers dominant and recessive models, as well as their
combinations. When looking for polygenic disease pat-
terns, an important challenge arises from the fact that it
is not sufficient to consider candidate patterns one by
one, because one pattern may confound the measure-
ment of association for another. Thus, we seek a set of
patterns. While we do not consider explicitly the issue of
removing the possible influence of environmental fac-
tors on the phenotype, such a generalization is possible
by modifying the test statistic used to construct the
likelihood.
Data structure: The typical raw data structure to

which our algorithm applies is represented in Table 1,
where each row corresponds to an individual. Measure-
ments include a phenotypic variable and the results of

TABLE 1

Raw data structure

Individual Phenotype Locus 1 Locus 2 Locus G

1 0.1 a, c d, d f, s
2 0.4 c, f a, b 0, a
— — —, — —, — —, —
i 0.7 a, a c, b a, c

Rows correspond to individuals. Columns include a phe-
notype and a pair of alleles typed on two chromosomes at a
given locus. A value of 0 (e.g., locus G, individual 2) indicates
that information about the corresponding allele is missing.
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genotyping a set of loci on the genome. While these
would generally be SNPs, genotypes arising from the
sequencing of genes or chromosomal regions would
produce appropriate data as well. We set no limit to the
number of different alleles that can be observed at a
locus in the data set and assume that data are available
for the two chromosomes at each locus, although we do
not distinguish the two chromosomes presently. If we do
not have information about an allele, we denote this with
a zero in one of the two locations defining the locus.

Allelic patterns: An allelic pattern is defined here as
follows. If there are L loci, a pattern is a 2L-dimensional
vector. Each entry corresponds to a locus-chromosome
combination. Each value is either a label for a specific
allele or a 0, if the variant is irrelevant for the phenotype.
Patterns are illustrated in Table 2. We set no limit to the
number of loci that can be involved in a pattern. Pat-
terns in a set can be independently contributing to the
phenotype or may act in concert. To account for this
possibility we consider pattern sets, which are collec-
tions of patterns. Patterns are indexed by n and pattern
sets by s. The total numbers of patterns is N and the total
number of pattern sets is therefore S ¼ 2N : To keep the
computation manageable, we restrict the search to pat-
tern sets with a fixed number of patterns.

The number of loci involved in a single pattern con-
trols the order of interaction among loci. The number
of patterns in a set controls the number of genetic ef-

fects that need to be simultaneously considered to avoid
masking and confounding effects. To search for pattern
sets it is useful to define a data structure, called the
pattern presence matrix, indicating whether a certain
pattern is present or absent in each individual. This is
illustrated in Table 3 and is the basic data structure used
in the algorithm. We use the notation yi for the phe-
notype of individual i and xin for entry i, n of the pattern
presence matrix, indicating whether pattern n is present
in individual i. The symbols y and xn without further
subscripts represent the corresponding random varia-
bles. If we do not know the value of xin ; because we do
not obtain the necessary genotypic information con-
cerning the individual i, we omit this individual and the
corresponding row in the presence matrix when con-
sidering that pattern. Such an individual is included
in calculations for other patterns if the genotyping
information allows the determination of whether the
individual carries that pattern.

Pattern level comparisons: In our approach, the fun-
damental comparison (henceforth the ‘‘atomic’’ com-
parison) is between two groups of individuals whose
presence matrix rows differ only in one column, i.e.,
differ only by the presence or absence of a single pat-
tern. This comparison brings about the concept of mu-
tual isolation of the patterns. Geometrically, we could
represent all the 2N pattern configurations in which an
individual may fall by vertices of a unitary hypercube of
dimension N (see Figure 1). Any pair of vertices that
differ only by the presence of a single pattern is con-
nected by an edge. All parallel edges of the hypercube
correspond to the same pattern difference between sets.
An atomic comparison is a comparison of two adjacent
configurations on the same edge of the hypercube. The
generic edge is denoted by e and the pattern that is
different between the nodes connected by the edge by
n(e). The set of all edges associated with pattern n is
denoted by En; and it includes 2N�1 elements, each
corresponding to a configuration of all patterns other
than n. Statistically, an atomic comparison is a condi-
tional comparison, while a comparison of all parallel
edges at once would be a marginal comparison.

TABLE 2

Examples of patterns

Pattern Locus 1 Locus 2 Locus G

1 0, 0 d, 0 0, 0
2 0, 0 a, 0 0, 0
3 0, f 0, 0 b, 0
4 0, b 0, 0 0, 0
— —, — —, — —, —

A pattern is a set of allelic variants at multiple loci. Each row
illustrates a possible pattern. The chromosomal order is not
used in the present implementation of our algorithm.

TABLE 3

Phenotype and pattern presence matrix

Pattern presence matrix

Individual Phenotype Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

1 0.1 1 0 0 0 0 —
2 0.4 0 1 1 0 0 —
— — — — — — — —
i 0.7 0 0 0 0 0 —

Each column in the pattern presence matrix corresponds to a pattern, with each entry i, n indicating whether
pattern n is present in individual i. For example, pattern 3 (see Table 2) consists of an f allele on chromosome 2
at locus 1 and a b allele on chromosome 1 at locus G.
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Pattern n(e) is associated to the phenotype, condi-
tional on the particular configuration implied by e, if the
two probability distributions, pðyjx1; . . . ; xn ¼ 0; . . . ; xN Þ
and pðyjx1; . . . ; xn ¼ 1; . . . ; xN Þ; differ. In particular, we
say that the pattern is conditionally positively (nega-
tively) associated with the phenotype if the distribu-
tion pðyjx1; . . . ; xn ¼ 1; . . . ; xN Þ is stochastically larger
(smaller) (Pratt and Gibbons 1981) than pðyjx1; . . . ;
xn ¼ 0; . . . ; xN Þ; and we say that the pattern is not as-
sociated if the two distributions are the same. To rep-
resent this association, we define ae as follows:

ae ¼

1 1 if ne is conditionally positively
associated to the phenotype

�1 if ne is conditionally negatively
associated to the phenotype

0 if ne is not conditionally
associated to the phenotype: ð1Þ

8>>>>>><
>>>>>>:

While this representation does not cover every possible
departure from no association, it covers the interesting
cases in a parsimonious and nonparametric way. The
ae ’s are unknown random variables in our analysis.
Pattern set comparison: For pattern n we then define

the random variable

bn ¼
11 if ae ¼11 for"e 2 En

�1 if ae ¼ �1 for"e 2 En

0 otherwise; ð2Þ

8<
:

so that jbnj is 1 if the pattern is an independent pre-
dictor of phenotype independent of the configuration
of other patterns and 0 otherwise. Finally, for a given
pattern set s, we define

gs ¼
Y
n2s

jbnj; ð3Þ

so that gs is 1 if all the patterns in the set are associated
with the phenotype, irrespective of the type of associa-
tion, and 0 otherwise.

If the b’s were known, we could simply form a pat-
tern set by including all patterns such that bn 6¼ 0: In
practice, b’s can be inferred only statistically. Therefore,
discovering associations is tantamount to making statis-
tical inferences about which pattern sets yield gs ¼ 1: A
Bayesian analysis of this inference problem would pos-
tulate a complete probabilistic model for the data and
derive a posterior probability pðgs ¼ 1jdataÞ for every
s. Bayesian approaches have been successful in similar
subset selection problems (George and McCulloch
1993; Clyde et al. 1998) and have good properties in
terms of protection from overfitting the data and con-
trolling false discovery rates (Benjamini and Hochberg

1995; Efron and Tibshirani 2002; Müller et al. 2004).
There are two practical obstacles to the implementation
of a full Bayesian model in this setting. First, the pattern
sets cannot be fully enumerated in realistic settings.
Second, it would be challenging to find distributional
assumptions that are sufficiently flexible to model
pðyjxnÞ accurately for every n.

To address the first problem we construct our likeli-
hood function by building upon the atomic compar-
isons and by using the distribution of the rank sum
statistic, which is a conservative nonparametric ap-
proach. We then develop an approximate posterior dis-
tribution and use it to drive a Markov chain Monte
Carlo algorithm to sample pattern sets that have high
pðgs ¼ 1jdataÞ:
Edge-level likelihood: To construct the likelihood,

consider edge e. Along this edge we compare the two
groups of individuals that differ only by whether
xnðeÞ ¼ 0 or xnðeÞ ¼ 1; while all other x’s are the same.
These two groups include ge and he individuals, re-
spectively. Looking at all pairwise comparisons of ranks
across groups, we use the term inversion to refer to a
case in which the rank of an individual from the xnðeÞ ¼ 0
group is larger than that of an individual from the
xnðeÞ ¼ 1 group. The number of inversions associated
with edge e is ze : The distribution pðze jae ¼ 0Þ of this
number, conditional on ae ¼ 0; is the Wilcoxon distri-
bution (Wilcoxon 1945; Mann and Whitney 1947), a
well-studied distribution that can be evaluated exactly
using recursive formulas (Dinneen and Blakesley
1973; Pratt and Gibbons 1981; Di Bucchianico
1996; Priebe and Cowen 1999). The Wilcoxon distri-
bution depends only on ge and he and is thus robust to
changes in the shape of the distribution of the pheno-
type y within the two groups. It is symmetrical and is
bounded between 0 and gehe ; with mean gehe=2: When
ge ¼ 1; it is flat between 0 and he ; and vice versa. As ge
and he get larger, the distribution becomes closer to a
Gaussian, although it is always flatter than the binomial
distribution with success probability 1

2 and gehe indepen-
dent outcomes.

Next we turn to the distribution of ze when a 6¼ 0;
i.e., when the pattern is conditionally associated with
the phenotype. To simplify the specification of the

Figure 1.—A representation of a hypercube and compari-
sons between individuals who carry a pattern and those who
do not. Each binary number indicates the presence (1) or ab-
sence (0) of a specific pattern in the set of patterns. This
three-dimensional version represents the case of three pat-
terns in the set.
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likelihood, we chose to specify this distribution directly,
on the basis of a set of conditions that we wish the
likelihood to meet:

The two distributions conditional on a positive and a
negative effect should satisfy the symmetry property

pðze ¼ zja ¼ 1Þ ¼ pðze ¼ gehe � zja ¼ �1Þ;

reflecting the requirement that a given distance from
the center gehe=2 should provide the same evidence
against a ¼ 0 irrespective of the side.

pðze ja ¼ 1Þ [or pðze ja ¼ �1Þ] should be nonincreasing
(or nondecreasing) as the number of inversions ze
increases (decreases).

The sum of the two distributions should be a constant,
that is,

pðze ¼ zja ¼ 1Þ1 pðze ¼ zja ¼ �1Þ ¼ c:

This is an effective approach that can flexibly capture
complex departures from null distributions in other
genomics applications even when it does not model
the data well (Parmigiani et al. 2002).

Both distributions should have flat tails.
The less populated the smaller of the two groups is,

the flatter the likelihoods should be, similar to the
Wilcoxon distribution.

Both distributions should be flat if ge ¼ 1 or he ¼ 1:

Among the many possible distributions that meet these
requirements, for simplicity, we chose to use the following
three-line combination for pðze ¼ zja ¼ 1Þ: The likeli-
hood has a uniform tail of height 2 � ð1 � 2�minðhe ;ge ÞÞ=
ðhe � ge11Þ on the left outside the interval where
pðze jae ¼ 0Þ. 1=ðhege 1 1Þ and a uniform tail of height
2 � 2�minðhe ;ge Þ=ðhe � ge 1 1Þ on the right outside the in-
terval. A straight line connects these two tails. The likeli-
hood term pðze ¼ zja ¼ �1Þ is determined by symmetry.

Pattern-level likelihood: At this level we need to
specify a joint probability distribution for the collection
of inversion statistics for pattern n;

zn ¼ fzege2En ;

conditional on the pattern indicators bn: Theoretically,
these could be computed from the specification in
the previous section. However, this computation is not
feasible in practice. To obtain a practical approximation
that still preserves the important feature of being based
entirely on the conditional comparisons rather than on
the marginal comparisons, we set

pðznjbn ¼ 0Þ ffi
Y
e2En

pðze jae ¼ 0Þ ð4Þ

pðznjbn ¼ 1Þ ffi
Y
e2En

pðze jae ¼ 1Þ ð5Þ

pðznjbn ¼ �1Þ ffi
Y
e2En

pðze jae ¼ �1Þ: ð6Þ

Exact evaluation of the left-hand side of Equation 4
would require a sum over the set of all 2N possible
combinations of a’s for which b is zero. However, the
formulation above is sufficiently sensitive to permit
identifying patterns that are likely to have nonzero b’s.

A large fraction of possible patterns do not occur in
any of the observed genomes, while others occur in all.
The data provide no information about these patterns.
For brevity, we refer to these as ‘‘uninformative pat-
terns.’’ To improve sampling efficiency, our proposal
distribution can be set to ignore these patterns during
the sampling.

Posterior probabilities: We specify a prior distribu-
tion directly on the b’s by assuming that pðbn ¼ 0Þ ¼ p0

for every n and that

pðbn ¼ 1Þ ¼ pðbn ¼ �1Þ ¼ ð1 � p0Þ=2:

We also assume that the bn’s are a priori independent.
Our approach here is to derive posterior probabili-

ties and use them to develop a Metropolis algorithm,
described in the next section. For each pattern, the
posterior probabilities are calculated as

pðbn ¼ j jznÞ ¼
pðznjbn ¼ jÞpðbn ¼ jÞP

j2f�1;0;1g pðznjbn ¼ jÞpðbn ¼ jÞ
for j ¼ �1; 0; 1: ð7Þ

From these probabilities we derive, with a further
independence approximation, the posterior probabili-
ties at the level of the set, that is,

pðgs ¼ 1jdataÞ ¼
Y
n2s

½1 � pðbn ¼ 0jznÞ�: ð8Þ

Because the likelihood function is based on conditional
comparisons that evaluate a pattern after removing the
effect of other patterns, this independence approxima-
tion is plausible in our setting.

Markov chain Monte Carlo sampling and validation:
Sampling from the posterior distribution: Our algorithm to
search for pattern sets that have high pðgs ¼ 1jdataÞ
is an adaptation of the Metropolis-Hastings algorithm
(Metropolis et al. 1953; Robert and Casella 1999).
We search pattern sets of a preset size, which is not a
serious restriction. In particular, if the number of pat-
terns in the set is overestimated, the posterior probabil-
ity of all pattern sets will be diluted by the need to
include an irrelevant pattern, but the ranking of pattern
sets is unlikely to be profoundly altered.

At each step the sampler proposes a new pattern set by
one of two alterations of the current pattern set: (1) a
change in one allele in one pattern or (2) a recombi-
nation of patterns. The choice between these two is
random. For case 1, the position of the change is gen-
erated randomly from a uniform distribution; then the
new allele is generated randomly. The proposal proba-
bility of an allele having no influence, the ‘‘zero’’ allele
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(see above), is a user-specified input to the sampler.
Nonzero allele values are drawn from either a uniform
distribution or a Dirichlet distribution on the basis of
results of monoallelic pattern tests. For case 2, two
patterns are chosen at random, cut at random at either
one or two randomly chosen points, and recombined as
in genetic recombination.

The proposed pattern sets are accepted or rejected in
accordance with the Metropolis-Hastings scheme: the
current and proposed states are compared by their
sampled posterior values, weighted with the proposal
distribution. If the proposed value is higher, the pro-
posed change is accepted. Otherwise, it is accepted with
a probability equal to the ratio of the proposed and
current pattern set. If the proposed value is not ac-
cepted the chain remains at the old pattern set. The
resulting sequence of sets forms a Markov chain, whose
ergodic distribution is the posterior distribution we are
exploring.

Informative patterns form only a small subset of all
possible patterns. Hence sets made only of informative
patterns are very rare. All other pattern sets, which con-
tain at least one uninformative pattern, are ignored by
the proposal distribution. Therefore starting at a ran-
dom pattern set is impractical, and we choose an in-
formative initial pattern set. We achieve this by selecting
a set of patterns, each of which carries one allele that is
correlated with trait level.

Initial iterations of the sample are discarded during
the burn-in phase, which is terminated after the sam-
pling of a set with posterior greater than a prefixed value
(say 0.01). After that we store the posterior probabilities
of the best B pattern sets sampled. At each step, we
compare the sampled set to the sets in the list of the B
best and update the list if appropriate. We also count
how often the sampler visits each pattern set in the list.
Simulated data: The sampler was tested on simulated

data designed to incorporate the main complexity of
allelic interaction while also permitting specific variants
at a locus to affect the propensity to disease in different
ways. This maximized the genetic overlap to be sepa-
rated by the algorithm. Three patterns were created,
one with three alleles and two with two alleles involving
three genetic loci. Each pattern’s influence on the
target phenotypic feature was characterized by a real
number (‘‘role’’). The first and third patterns predis-
posed individuals to the phenotype, while the second
was protective. For every pattern, patterns differing
only in one allele (shadows) were created. Then, two
copies of every pattern and three shadows were distrib-
uted randomly among the genotypes for 50 individuals.
The patterns and examples of shadows are shown in
Table 4.

All empty positions in the genotypes were filled with
randomly generated alleles from a collection of alleles
for each locus. The only restriction placed on the
distribution was that each locus could contain at most

two alleles. Then, a trait level was generated for each set,
with a level equal to the sum of roles of all patterns
contained in the gene set.

Tests were made for five different data sets con-
structed as described above. Five runs of the sampler
were made for each set, with different random seeds
and starting points. The results were compared to each
other and to the input patterns. In addition, noise was
added to the phenotypic measure to reflect errors in
the estimation of disease level or complexities due to
environmental factors. This noise was added to all
individuals’ level of disease.
Experimental data: We also illustrate our approach on a

case-control study. The data consist of genotypes and
personal data for 286 unrelated patients with clinically
definite multiple sclerosis (MS) and 362 healthy un-
related controls, all of Russian descent. The data
included results of genomic typing at polymorphic
loci at or near genes of the autoimmune inflamma-
tory response. At chromosome 6p21 there were the
DRB1 gene, repeat polymorphisms of (AC)n and (TC)n
microsatellites, designated as TNFa and TNFb; SNPs
�376A / G, �308G / A, and �238A / G in the TNF
gene; and SNPs 1252G / A and 1319C / G in the
LT gene. At the TGFb1 gene (19q13) there were SNPs
�509C / T, 172 wild-type / C insertion, 1869T /
C (10Leu / Pro), 1915G / C (25Arg / Pro), and
11632C / T (263Thr / Ile); at the CTLA4 gene
(2q33), �SNP 149A / G (17Thr / Ala); and at the
CCR5 gene (3p21), �wild-type/32-bp deletion. The
genotypic data were partially missing; i.e., data on
distinct gene polymorphisms for some cases and con-
trols were unknown.

RESULTS

The results of the simulations are summarized in
Table 5. The sampler’s output reflected the input in
terms of matching the pattern, the relative rank of each
pattern in terms of its association with the phenotype,
and whether the pattern is protective or predisposing, in

TABLE 4

The simulated patterns and examples of shadows used to
generate the simulated data for the method test

Patterns Role Notation

0 0, d 0, c 0 1.2 D
0 e, 0 c, 0 0 �4 E
f 0, 0 a, b 0 5 F
Shadows Role
0 0, c 0, c 0 0
0 e, 0 d, 0 0 0
f 0, 0 a, a 0 0

The strength of their impact for the phenotypic trait level
in the data and their notations in Table 5 representing the test
results are shown as well.
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24 of 25 runs. The first four test data sets gave 18 cases
where the three original patterns were ranked as the top
three and 2 cases where three patterns appeared as the
first, second, and fourth. In both of the latter cases, the
third most common pattern was the original predispos-
ing pattern with an additional allele, which appeared
slightly more often than the original protective pattern.
The fifth data set gave poorer results, with two fake
predisposing patterns being more common than the
original protective one. The two patterns may have ap-
peared in the simulated data because of a random
duplication of one of original patterns. Of significance,
however, is the reliability of the full pattern set, which is
always identified as the most significant. This reflects the
importance of the conditional comparisons shown in
Figure 1.

When the samplers were started from different initial
points and with different random number seeds for the
same data, the same results were obtained, indicating

that the sampler appears to be relatively insensitive to
starting values. This is especially important in this case
given the complexity of the posterior distribution and
the steps taken to improve the efficiency of the Markov
chain exploration.

Additional experiments were performed to test the
stability of the algorithm for noisy trait level informa-
tion. A line of data sets with the levels mixed with
normally distributed random noise was generated and
investigated with the sampler. The results are shown in
Table 6. We see patterns shifting away one by one from
the list of the best patterns as the noise is increased. It is
interesting to note that the identification of the best
pattern set failed after the first pattern fails to be found,
in keeping with Equation 8, while the description
generated solely from patterns still identifies some real
features. However, this suggests that for reliable appli-
cation of the algorithm in real data sets, the pattern set
level statistics will provide the most reliable estimate of
genetic factors underlying disease.

The algorithm was also applied to the MS case-control
study performed on Russian patients with definite MS
and healthy unrelated controls of the same ethnicity.
The prior probability that a locus has no effect on the
phenotype was set to 0.99. We were looking for sets of
two or three patterns. The algorithm identified patterns
that have a high probability of being associated with
MS. All the patterns identified deal with carriership of
alleles, without distinguishing homozygotes from het-
erozygotes. Two of the patterns are the single predis-
posing alleles HLA class II DRB1*15(2) and TNFa9
microsatellite. These data represent a validation of

TABLE 5

Summary of the results

Position in statistics

Of the
pattern set

Of the pattern (with its role sign)

D E F

1 21 3� 11
1 21 3� 11
1 21 3� 11
1 21 3� 11
1 21 4� 11
1 21 3� 11
1 21 3� 11
1 21 4� 11
1 21 3� 11
1 21 3� 11
1 21 3� 11
1 21 3� 11
1 21 3� 11
1 21 3� 11
1 21 3� 11
1 11 3� 21
1 11 3� 21
1 11 3� 21
1 11 3� 21
1 11 3� 21
1 21 4� 11
1 21 5� 11
1 21 5� 11
1 21 5� 11
1 21 5� 11

The experiment number is combined from the data set
number and starting point number. The numbers represent
the position of the original pattern set in the pattern set sta-
tistics and the positions of original patterns in pattern statis-
tics with the sign of their influence. In all cases, the pattern set
reflecting the true underlying patterns (i.e., Equation 3) is the
dominant result. Each pattern has the correct influence as
well, with D and F from Table 4 predisposing and E protective.

TABLE 6

The results for the case with addition of phenotypic noise

s of
Gaussian
noise

Position in statistics

Of the
pattern set

Of the pattern (with its role sign)

D E F

0 1 11 3� 21
0.1 1 11 3� 21
0.2 1 11 3� 21
0.3 3 11 2� 31
0.4 4 11 3� 21
0.5 7 21 4� 11
0.75 1 41 2� 11
1 .25 .25 3� 11
1.5 14� 11
2 3� 21
2.5 13� 11
3 15� 11
3.5 .25 21
4 .25

As can be seen, as the noise level rises, the identification of
the pattern set fails, reflecting the necessity of identifying all
patterns simultaneously in Equation 3. The statistics gathered
on patterns alone still show some recovery of information.
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MS associations with DRB1*15(2) (Boiko et al. 2002)
and TNFa9 (Gusev et al. 1997), which we previously
identified in an independent cohort of ethnic Russians.
The third pattern identified by the algorithm is a
predisposing biallelic combination of CCR5D32 with
DRB1*04, which was recently described for this data
set (Favorova et al. 2002).

DISCUSSION

Over the last century, statistical genetics has created
powerful tools for the identification of genetic variants
leading to disease. The emergence in the last decade of
technologies capable of sequencing entire genomes in
moderate time frames and of technologies that permit
rapid high-throughput measurement of genetic poly-
morphisms such as SNPs is leading to large data sets that
have the potential to unlock the bases of many complex,
polygenic diseases. However, the methods developed
for small data sets are not easily adapted to the problems
that arise with high-dimensionality data. Here we dem-
onstrate a new approach based on two key features: (1)
the efficient sampling of the space of all possible genetic
pattern sets tied to a phenotypic trait and (2) the use of
the Wilcoxon-Mann-Whitney nonparametric statistics to
provide a measure of association with phenotype. At this
stage, we do not classify all identified patterns by
haplotypes, because every pattern regardless of haplo-
type is a valid pattern.

The consideration above focuses solely on genetic
variations and does not consider environmental influ-
ences and other possible factors. However, the method
can include such variables where appropriate, since the
search algorithm is generic and does not rely on any
fundamental genetic structures. For instance, environ-
mental factors could be encoded in the same manner as
genetic loci without effect on the mathematical struc-
ture of the search. Such an approach would need to be
carefully constructed to ensure the logical structure of
patterns; however, this should not be an insurmount-
able problem. In addition, phenotypic levels could be
modified to adjust for expected environmental or other
effects.

While we present our method in the context of a case-
control design, adaptation to family data is possible
upon selection of the appropriate nonparametric sta-
tistics. Extension to any rank-based statistic with finite
range is straightforward. The MS test showed that the
method is good for partially missing data; e.g., alleles
CCR5 and DRB1 that form the combination are geno-
typed altogether only for 212 patients and 312 controls.

While progress continues to be made in identifying
key genetic variants associated with diseases, the ex-
plosion of data brought about by rapid changes in
technology and the human genome project will over-
whelm classical analysis methods. We have presented
here a novel approach that has the potential to scale to

the problems generated by high-dimensionality data.
Linking this work to progress in the definition of bio-
chemical mechanisms, to deep understanding of cellu-
lar biology, and to modeling of targets and development
of therapeutics can lead to progress against complex
genetic diseases.
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