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ABSTRACT

I show that Tajima’s D, a commonly used summary of the site-frequency spectrum for single-nucleotide
polymorphism data, is a biased summary of the site-frequency spectrum. Under neutral models, this bias
depends on the population recombination rate. This bias of D in summarizing the data makes inference
of demographic parameters sensitive to assumptions about recombination rates.

THE complexity of population-genetic data provides
serious challenges when making statistical infer-

ences about the demographic and selective histories of
populations. Because full-likelihood methods are either
intractable or overly computationally intensive for many
models of interest, inferences tend to be obtained on the
basis of summaries of the data, rather than on the full
data themselves. Broadly speaking, there are two types
of summaries of single-nucleotide polymorphism (SNP)
data. The first is summaries of the site-frequency spec-
trum (i.e., the distribution of SNP frequencies in the
sample), of which Tajima’s D (Tajima 1989) is the best
known. The second class is summaries of the associations
between SNPs in the sample (linkage disequilibrium)
(e.g., Wall 1999).

Recently, several authors have turned to summary
statistic likelihood (SSL) methods for making infer-
ences about population parameters (Wall 2000) or
demographic processes (Glinka et al. 2003; Akey et al.
2004; Tenaillon et al. 2004). This approach has been
employed in both likelihood (Wall 2000; Glinka et al.
2003; Akey et al. 2004; Tenaillon et al. 2004) and
Bayesian (Pritchard et al. 1999; Beaumont et al. 2002;
Marjoram et al. 2003; Przeworski 2003) contexts. Spe-
cifically, the observed data, D, are assumed to come
from a model specified by a set of parameters Q. When
D can be reduced to a summary statistic (or set of sta-
tistics) Sobs and data are simulated from the model for a
particular Q, then

PðDjQÞ}PðjSobs � Ssimj#eÞ

¼ No:of replicates wherejSobs � Ssimj#e

Total no:of replicates
:

ð1Þ

In Equation 1, e is a tolerance (or set of tolerances)
that represents a trade-off between accuracy and re-
quired computational time. As e decreases, Equation 1
converges to a more precise estimate the likelihood
of the data, at the cost of having to simulate more rep-
licates to accurately estimate PðDjQÞ (see Beaumont
et al. 2002 for a detailed discussion). Simulating over
a grid of Q provides an estimate of the likelihood
surface.

While the use of summary statistics results in a loss of
information, it is possible to develop inference proce-
dures that perform well (e.g., Wall 2000; Beaumont
et al. 2002; Przeworski 2003). The performance of es-
timators depends in part on the choice of both which
summary statistic to use and how many different sum-
maries to use (Beaumont et al. 2002). This note em-
phasizes a third point that affects accuracy of inference,
namely how accurately the summary statistic summa-
rizes the data. Several recent articles have applied the
SSL approach in an attempt to distinguish the effects of
demography from natural selection in natural or do-
mesticated populations (Glinka et al. 2003; Akey et al.
2004; Tenaillon et al. 2004). In general, the idea is to
find a demographic model that fits the data and then
identify outlier loci that are putative targets of recent
selection. When the interest is in using the SSL ap-
proach to make inference about demographic models,
it is common to conduct the coalescent simulations with-
out recombination (Glinka et al. 2003; Akey et al. 2004)
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(see Tenaillon et al. 2004 for an exception). The ra-
tionale for this is twofold. First, the appropriate value of
the population recombination rate to use in the simu-
lations is often unclear, and both genetic map-based and
population genetic-based estimates have their draw-
backs. Second, it is generally argued that the expectation
of many summary statistics does not depend on the
recombination rate, but rather the variance decreases
as r increases. These arguments appear to have been in-
terpreted to imply that point estimates obtained via sim-
ulation without recombination will be correct, but that the
size of confidence intervals will be overestimated.

Here I focus on a widely used summary of the site-
frequency spectrum, Tajima’s (1989) D. D is defined as
the standardized difference between two estimators of u,
the population mutation rate. The numerator of the
statistic is ûp � ûW, where ûp is the mean number of
pairwise differences between individuals in the sample
(Tajima 1983), and ûW is Watterson’s (1975) moment
estimator. The denominator of D, which we label here
as k, is an estimate of V ðûp � ûWÞ and is calculated as a
function of the number of segregating sites in the sam-
ple (Equation 38 in Tajima 1989). First, I show that the
expectation of Tajima’s D is a biased summary of the
expected site-frequency spectrum. Second, the discrep-
ancy between D and the true site-frequency spectrum
can lead to substantial biases in estimates of bottleneck
parameters obtained from single loci. This bias is par-
tially mitigated by a simple change in how the likelihood
of the data is estimated, although the accuracy of esti-
mates of PðDjQÞ still depends on the assumed popu-
lation recombination rate. For the parameter values of
the bottleneck model examined here, these results hold
for data sets composed of multiple independent loci.

I consider the case of a simple stepwise bottleneck
model, constraining the bottleneck to the case where
the effective population size recovers to the prebottle-
neck size (N0) and model changes in effective size as
occurring instantaneously. The model then has six pa-
rameters, the sample size (n), the coalescent mutation
rate (u¼ 4N0m, where N0 is the effective population size
and m is the neutral mutation rate per generation), the
coalescent recombination rate (r ¼ 4N0r), the time of
recovery from the bottleneck (tr), the duration of the
bottleneck (d), and the severity of the bottleneck ( f ). All
times in the simulation are measured in units of 4N0

generations, and f ¼ Nb=N0, the ratio of the effective
size during the bottleneck to before the bottleneck.
ScalingN0¼ 1 constrains 0, f# 1 and puts uon the scale
of N0.

We first consider the effect that a population bottle-
neck has on the expectation of Tajima’s D, estimating
E(D) by simulation under the infinite-sites model.
Figure 1a plots ÊðDÞ for a short (d ¼ 0.05), severe ( f ¼
0.1) bottleneck, as a function of the recovery time of the
bottleneck. Clearly, ÊðDÞ depends both on the value of
r and on the bottleneck parameters. However, there is

good reason to suspect that the curves in Figure 1a do
not accurately represent the average site-frequency spec-
trum. Figure 1a implies that the effects of a bottleneck,
such as the degree to which the site-frequency spectrum
is skewed toward rare alleles, will depend on the recom-
bination rate in a manner similar to the effect of natural
selection on linked neutral sites (e.g., Braverman et al.
1995). However, a correlation of recombination rate and
diversity is not expected under any neutral mutation
model, suggesting that Figure 1a is an incorrect picture
of the average effect that a bottleneck has on the site-
frequency spectrum.

The conjecture that the expectation of Tajima’s D
does not accurately represent the average site-frequency
spectrum is confirmed in Figure 1b, which shows the
expectation of the full site-frequency spectrum for four
of the values of tr in Figure 1a. For each value of tr, the
plots of the expected site-frequency spectrum are in-
distinguishable for all values of r.

The reason why ÊðDÞ depends on r is thatD is defined
as the ratio of two random variables (both the numer-
ator and the denominator are functions of the number
of segregating sites in the sample), and the expecta-
tion of a ratio of random variables is not equal to the
ratio of expectations in general. To illustrate this point,
Êðûp � ûWÞ=ÊðkÞ, the ratio of the expectation of the
numerator and denominator of D, is plotted as a func-
tion of tr in Figure 1c. The ratio of expectations depends
only on time of recovery from the bottleneck and not on
r. For comparison, ÊðDÞ for the case of free recombi-
nation is also plotted in Figure 1c (solid line), and the
curve is not distinguishable from Êðûp � ûWÞ=ÊðkÞ.

While the results here are presented for Tajima’s D
in the context of a bottleneck model, they also hold
for other normalized summaries of the site-frequency
spectrum, such as Fu and Li’s (1993) statistics, and for a
model of exponential population growth (data not
shown). For the growth model, the differences in ÊðDÞ
for different values of r for a particular growth rate are
not as large as those for very recent, severe bottlenecks
(Figure 1a) and are almost negligible for high growth
rates. Under the standard coalescent model of a large,
panmictic population with mutations occurring un-
der the infinite-sites model (e.g., Hudson 1983; Tajima
1983), the expectation of the full site-frequency spec-
trum does not depend on recombination (since the
history of the sample is the average of many correlated
histories, all of which have the same expectation), but
the expectation of Tajima’s D does (Table 1). These re-
sults imply that, under neutral models, the average
observed value of Tajima’s D in a region of low recom-
bination can be different from that observed in a region
of high recombination, simply because r differs, and not
because of a difference in the site-frequency spectrum between
regions, and that caution should be taken in interpreting
a correlation of D with recombination rate as evidence
for selection (e.g., Stajich and Hahn 2005).
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The observation that Tajima’s D is a biased summary
of the site-frequency spectrum suggests that using Dmay
lead to biased inference of model parameters. Specifi-
cally, given that the bias in D as a summary of the data
depends on r, we may expect parameter estimates to be
biased when data from recombining regions are ana-
lyzed assuming no recombination (e.g., Glinka et al.
2003; Akey et al. 2004), because the simulated data and

observed data will have different biases. We now inves-
tigate the properties of estimating PðDjQÞ, using Tajima’s
D as the sole summary of the data. Ten thousand data
sets were simulated under each of five bottleneck models.
For each bottleneck, n¼ 30; u¼ 20; d¼ 0.05; f¼ 0.1; and
tr ¼ 0.05, 0.15, 0.25, 0.35, or 0.45. The true r ¼ 4N0r ¼
50. Inference was made only on tr using the SSL pro-
cedure, assuming that d, f, and u are known precisely.
I generated tables of summary statistics by simulating
106 replicates of the stepwise bottleneck model with
parameters r ¼ 50 (the true value), n ¼ 30, u ¼ 20, d ¼
0.05, f ¼ 0.1 for values of tr ranging from 0 to 2 in steps
of 0.01.

These tables of summary statistics allow the condi-
tional likelihood curve, PðDjtr; d ¼ 0:05; f ¼ 0:1; u¼ 20;
r ¼ 50 or 0Þ, to be estimated for samples of size 30.

Figure 1.—The site-frequency spectrum under a severe
bottleneck model. (a) The expectation of Tajima’s D was es-
timated from 104 coalescent simulations of a stepwise bot-
tleneck. The bottleneck duration (d) was 0.05, on the scale
of 4N0 generations, and the reduction in effective size was
90% ( f¼ 0.1). All simulation results shown here from the bot-
tleneck model are for sample size n ¼ 30, u ¼ 20, r ¼ 50 or 0,
d ¼ 0.05, and f ¼ 0.1 with mutations occurring according to
the infinitely many sites model (Hudson 2002), and summary
statistics were calculated as previously described (Thornton
2003). The recovery time (tr) was varied from 0.05 to 1 in steps
of 0.05. For small tr, this bottleneck model approximates the
reduction in diversity observed when comparing non-African
samples of Drosophila melanogaster to African samples (e.g.,
Glinka et al. 2003; Haddrill et al. 2005). Four different re-
combination rates were simulated, 4N0r ¼ 0, 10, 20, and 50,
as well as free recombination (solid line). (b) The full site-
frequency spectrum for 5 of the recovery times plotted in a
and all four values of r. The different values of r are not dis-
tinguished, as they are all superimposed for any particular
value of tr. (c) The quantity Êðûp � ûWÞ=ÊðkÞ, where k is the
denominator of Tajima’s D, was estimated from 105 coalescent
simulations for the same bottleneck models as those in a. The
solid line is ÊðDÞ under the free recombination model, just as
that in a. Simulations of a region of L independent sites (i.e.,
free recombination) with total mutation rate u were per-
formed by pooling the results of L simulations runs, each with
mutation rate u=L, into a single sample.

TABLE 1

Estimated expectation of Tajima’s D and Êðûp � ûWÞ=ÊðkÞ
under the standard neutral model

r ÊðDÞ Êðûp � ûWÞ=ÊðkÞ

0 �0.104 �0.0016
10 �0.041 �0.0014
50 �0.011 �0.0008
‘ �0.001 �0.0006

Calculations are based on 105 coalescent simulations per
value of r with n ¼ 30, u ¼ 20, and 1-kb regions. r ¼ ‘ refers
to the case of independent sites.
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Estimating these curves with r¼ 0 mimics the procedures
of Glinka et al. (2003) and Akey et al. (2004). When
analyzing data sets of multiple independent loci, the like-
lihood curves were summed in log scale, and cases where
the probability of the data was estimated to be zero were
considered to be 10�6. I estimated these conditional-
likelihood curves using two different estimates of the
likelihood of the data (in the following Q is the set
ftr, d ¼ 0.05, f ¼ 0.1, u ¼ 20, r ¼ 50 or 0g),

PðDjQÞ � P ½jDobs � Dsimj#e�; ð2Þ

PðDjQÞ � P ½ðjûp;obs � ûp;simj#eÞ ^ ðjSobs � Ssimj#eÞ�;
ð3Þ

where S is the number of segregating sites in the data,
and ^ denotes ‘‘logical and.’’ Equation 2 estimates the
likelihood of the data by estimated the likelihood
of Tajima’s D. Equation 3 estimates the likelihood using
just the components of the numerator of D. Equa-
tion 3 is also appealing because it is equivalent to

P ½ðjûp;obs � ûp;simj#eÞ ^ ðSobs ¼ SsimÞ� for all 0 # e , 1.
For all estimation using the above equations, an e¼ 0.05
was used, although the results described here do not
depend strongly on e.

Figure 2 plots the median bias in t̂r as a function of
the true value for both single- and multilocus data
sets. The median bias is plotted because the distribution
of the estimator tended to have a long tail to the right.
Note that the bias is relative to the true value, such that
a bias of 1 corresponds to a twofold overestimate, etc.
There are two points to make regarding Figure 2. The
first is the bias that results from different estimates of
PðDjQÞ. In Figure 2, a–f, the solid line corresponds to
the bias when estimating PðDjQÞ using Tajima’s D as the
sole summary of the data (Equation 2). The dashed line
corresponds to the bias when estimating PðDjQÞ using
Equation 3. For a single locus (Figure 2a), estimating
PðDjQÞ using Equation 2 results in a larger median up-
ward bias than using Equation 3. For data sets consisting
of 10 or 20 independent loci (Figure 2, b and c, re-
spectively), the median bias is quite low.

Figure 2.—Bias of point estimates of tr
obtained by summary statistic likelihood.
(a–c) Data sets consisting of 1, 10, and 20
independent loci, respectively, were simu-
lated with r ¼ 50 and tr estimated, assum-
ing r and all other model parameters are
known precisely. (d–f) The same data sets
are reanalyzed, assuming no recombina-
tion. As the distributions of t̂r tended to
be right skewed (i.e., biased toward over-
estimating), the median bias is plotted,
rather than the mean. The estimate t̂r was
obtained for data simulated under a bottle-
neck mode by summary statistic likelihood,
using two different ways of estimating the
probability of the data (Equations 2 and 3).
Equation 2 corresponds to estimating the
likelihood of the data by estimating the like-
lihood of the observed value of Tajima’s
D. The bias is standardized to the true value
of tr.

2146 K. Thornton



The second point to make concerns the effect that the
recombination rate used in simulations to estimate
PðDjQÞ has on the parameter estimation procedure.
Figure 2, a–c, is the bias in t̂r when the recombination
rate used in the simulations to estimate PðDjQÞ was
equal to the true value (r¼ 50). When using Equation 3,
the bias in t̂r is reasonably small, even for single-locus
data sets. For multilocus data sets, estimates obtained
using Equation 2 (i.e., using Tajima’sD to summarize the
data) are not seriously biased when the true tr is re-
latively large, and the bias is within a factor of 3 when
the bottleneck is more recent (i.e., Figure 2b). However,
when the model is misspecified and simulations to
estimate PðDjQÞ are performed with no recombination,
there is a severe upward bias in t̂r when the bottleneck
is recent and Equation 2 was used to estimate PðDjQÞ.
Using Equation 3 and simulating with r ¼ 0 resulted in
much less bias in t̂r, although a nearly threefold median
upward bias was still observed for single-locus data sets
when the true tr ¼ 0.05 (Figure 2d).

The above results emphasize that the choice of sum-
mary statistic is important when implementing approxi-
mate inference methods. The fact that bottlenecks
result in skewed site-frequency spectra means that
Tajima’s D is a natural summary statistic to use when
inferring bottleneck parameters, but the results here
suggest that biases in parameter estimates can be large if
simulations are conducted with no recombination and
data are sampled from recombining regions of the ge-
nome. Figure 2, d–f, suggests that this effect of r can be
partially mitigated by replacing D with ûp and S as the
summaries of the data when estimating PðDjQÞ (i.e.,
Equation 3).

All the examples of inference described here were
performed assuming that all other model parameters
were known precisely (except for r, to explore the effect
of recombination on inference). The bottleneck model
considered here has a total of five parameters (u, r, tr, d,
and f ). In practice, a grid would need to be simulated
over all five parameters, and the tables of summary sta-
tistics stored, for each parameter combination, requir-
ing a potentially impractical amount of storage. An
additional complication of the likelihood approach
arises when one desires to obtain P-values for individual
loci under the demographic model, as done in Akey
et al. (2004). These authors obtained P-values for in-
dividual summaries for each locus at the most likely
parameter values for a bottleneck. However, it is desir-
able to take into account uncertainty in the estimates
of demographic parameters. In a Bayesian context (e.g.,
Beaumont et al. 2002; Przeworski 2003) such sim-
ulations are straightforward as posterior densities are
proper probability distributions and are used easily in
model validation (e.g., Gelman et al. 2003, p. 159).

The number of summary statistics used is also relevant
to the accuracy of inference. Here, either one statistic
(Tajima’s D) or two statistics (ûp and S, which are com-

ponents of D) were used, with the intention of illustrat-
ing that biases in how D summarizes the site frequency
spectrum have an effect on parameter inference. In
practice, combining statistics that summarize different
features of the data should improve estimates of the
likelihood of the data [although examples exist of where
adding more summary statistics increases the error of
estimates (Beaumont et al. 2002)]. However, other sum-
maries of the site-frequency spectrum (e.g., Fu and Li
1993) are strongly correlated with Tajima’s D and may
or may not yield additional information about param-
eter values. Summaries of the linkage disequilibrium in
the data summarize information not captured in Tajima’s
D, but the distributions of these statistics clearly depend
on r.
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