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ABSTRACT

In finite populations, linkage disequilibria generated by the interaction of drift and directional se-
lection (Hill-Robertson effect) can select for sex and recombination, even in the absence of epistasis.
Previous models of this process predict very little advantage to recombination in large panmictic popula-
tions. In this article we demonstrate that substantial levels of linkage disequilibria can accumulate by drift
in the presence of selection in populations of any size, provided that the population is subdivided. We
quantify (i) the linkage disequilibrium produced by the interaction of drift and selection during the
selective sweep of beneficial alleles at two loci in a subdivided population and (ii) the selection for
recombination generated by these disequilibria. We show that, in a population subdivided into » demes of
large size N, both the disequilibrium and the selection for recombination are equivalent to that expected
in a single population of a size intermediate between the size of each deme (V) and the total size (nN),
depending on the rate of migration among demes, m. We also show by simulations that, with small demes,
the selection for recombination is stronger than both that expected in an unstructured population (m =
1 — 1/7n) and that expected in a set of isolated demes (m = 0). Indeed, migration maintains poly-
morphisms that would otherwise be lost rapidly from small demes, while population structure maintains
enough local stochasticity to generate linkage disequilibria. These effects are also strong enough to
overcome the twofold cost of sex under strong selection when sex is initially rare. Overall, our results show
that the stochastic theories of the evolution of sex apply to a much broader range of conditions than

previously expected.

WHV sex and recombination are so widespread in
nature is an age-old debate in evolutionary biol-
ogy. While some theories invoke mechanistic advan-
tages for sex (e.g., DNA repair), most theories account
for sex on the basis of its effects on multilocus allelic
combinations (KoNDRASHOV 1993). These hypotheses
can be termed generative hypotheses, because they focus
on the effects of sex and recombination on the array of
genotypes generated within a population. According
to several generative hypotheses, sex and recombination
are advantageous because they facilitate the response to
selection by reducing negative linkage disequilibria,
whereby beneficial alleles are found on low-fitness ge-
netic backgrounds, thereby increasing the genetic vari-
ance in fitness (MAYNARD SMITH 1971; FELSENSTEIN
1974). This class of explanations is consistent with ex-
periments showing that higher rates of recombination
often evolve as a pleiotropic response to artificial selec-
tion for other traits (see OTTO and BarTON 2001 for a
review).

Generative hypotheses can be classified according to
the force generating linkage disequilibria (LD) within a
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population (KoNpRrRAsHOV 1993; BARTON 1995a; OTTO
and LENORMAND 2002). LD can be produced by selec-
tion involving epistasis (FELDMAN et al. 1980) or can
result from the interaction of drift with directional
selection (HiLL and ROBERTSON 1966). In this article we
focus on drift-based explanations for LD. Because drift
in the presence of selection causes an accumulation of
negative linkage disequilibria, linkage imposes a limit
on the efficacy of natural selection in finite populations
(HiLL and ROBERTSON 1966; FELSENSTEIN 1974; BARTON
1995b). Sex and recombination release populations
from this limit, by allowing beneficial alleles within
different individuals to come together, as recognized
early on by both FisHErR (1930) and MULLER (1932).
The accumulation of negative disequilibria due to drift
in the presence of selection on linked loci is often
referred to as the Hill-Robertson effect (HRE). The
HRE results in selective interference among loci, which
reduces the probability of fixation of beneficial alleles as
the population size gets smaller or as linkage among loci
tightens (HiLL and ROBERTSON 1966; BARTON 1995Db).
In the extreme case of an asexual population, the HRE
affects the entire genome and is then referred to as
“clonal interference” (GERRISH and LENSKI 1998).
The HRE imposes an important limit on the response
to selection on linked sets of loci in sexual species
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and on the whole genome of asexuals (BARTON 1995b;
BarTON and PARTRIDGE 2000). The HRE operates when-
ever several alleles are segregating simultaneously within
a population, regardless of whether these alleles are fa-
vorable and spreading [as in the Fisher-Muller model
(FisHER 1930; MULLER 1932)], deleterious mutations
[as in Muller’s ratchet (MULLER 1932)], or both (PECK
1994). Under all of these scenarios, the HRE selects for
sex and recombination to reduce negative associations
among the most fit alleles generated by drift in the pres-
ence of selection (FELSENSTEIN and Yokovama 1976;
OT110 and BArTON 2001; OTTO and LENORMAND 2002).

This “stochastic theory” (KoNpDrRasHOV 1993) for the
advantage of sex has the seductive property of being
widely applicable because all populations are finite.
Moreover, it does not require any particular form of
epistasis, provided that epistasis is typically small (OTTO
and BarTon 1997,2001). The LD produced by the HRE
is, however, inversely proportional to the size of the
population and can be very small in a large sexual
population, except when many loci undergo selection
simultaneously (ILES et al. 2003). Thus, it would appear
at first that the HRE cannot provide a compelling ex-
planation for the maintenance of sex in large popula-
tions. At the other extreme, the HRE can also fail as
an explanation in very small populations (OTTO and
BarToN 2001) or in very stable environments because
too few beneficial alleles will segregate simultaneously.
Indeed, areduction of the advantage of sex in small pop-
ulations has been confirmed experimentally (COLEGRAVE
2002), although it is not clear whether the advantage for
sex observed in the larger populations was due to the
HRE or to weak synergistic epistasis. Therefore, the gen-
erality of the HRE as an explanation for the ubiquity of
sex among eukaryotes is not straightforward; its main
restrictive requirement is that populations must be of
intermediate size—large enough for several mutations to
segregate and yet small enough for significant linkage
disequilibria to develop.

The theory above assumes, however, that populations
are unstructured. With the discovery of genetic markers,
a considerable amount of data have accumulated, show-
ing that most populations exhibit spatial structure, at
least through isolation by distance. However, the effect
of spatial structure on multilocus adaptation and on the
evolution of recombination has received relatively little
attention. The effect of population subdivision on the
maintenance of sex has been examined in a few studies.
In particular, it has been shown that population struc-
ture can enhance the advantage of sexual over asexual
lineages under Muller’s ratchet (PECK et al. 1999). Fur-
thermore, by increasing the frequency of homozygotes,
population structure can impart an advantage to sex in
diploids by reducing the mutation load (AGRAWAL and
CuasNov 2001) and improving the efficacy of selection
(OrTo 2003), although these advantages arise from
segregation rather than from recombination and are

not directly related to the HRE. These models show that
sex can be maintained without the need for synergistic
epistasis, provided that the population is subdivided.
Nevertheless, we lack a general analytical framework
in which to understand the role of drift on linkage dis-
equilibrium and on the evolution of sex and recombi-
nation in structured populations.

In this article, we explore the interaction of drift and
selection in subdivided populations. Using an island
model of selection in the absence of epistasis, we de-
velop an analytical model to quantify the average LD
generated during the selective sweep of beneficial
alleles at two linked loci. The analytical model assumes
that drift is weak within each deme, and we use sim-
ulations for the case of smaller deme sizes (for both a sex
and a recombination modifier). We demonstrate that
negative associations develop among selected alleles in
subdivided populations of any size. We also show that
these associations reduce the rate of spread of favorable
alleles, although this effect is substantial only when
selection is strong relative to recombination. These neg-
ative associations select for increased rates of sex and
recombination, even in very large populations to a level
that can overcome the twofold cost of sex under strong
selection. Rates of migration and deme size are shown to
play a critical role in determining the strength of se-
lection for sex and recombination.

In the first part of this article, we summarize, in com-
pact vector notation, the model introduced by BARTON
and OTTO (2005) to predict the expected linkage dis-
equilibrium generated between two linked loci exposed
to directional selection and drift in a single large pop-
ulation. In the second part, we extend this model to a
population subdivided into a number of large demes.
We derive recursion equations for the expectation and
variance of the mean linkage disequilibrium generated
between selected loci by the HRE. We also give a sim-
plified approximate expression for the LD under weak
selection and loose linkage (quasi-linkage equilibrium).
We then give the expected frequency change at a mod-
ifier locus, changing the recombination rate between
the selected loci. We supplement this analysis with sim-
ulation results for the case of smaller demes. We also
give simulation results for the case of a modifier of sex
arising in an asexual population (with or without a
twofold cost). The reader should keep in mind that our
analytical model is intended to quantify the LD gener-
ated in a metapopulation and the subsequent selection
for recombination and that it does not fully capture the
limits to adaptation imposed by the HRE. Indeed, the
analysis assumes that beneficial alleles are sufficiently
common in the whole population that they always fix,
which ignores the influence of the HRE on the fixation
probability of beneficial alleles. We end by discussing
the implications of our findings for the validity of the
stochastic theory for the evolution of sex and its em-
pirical tests.
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MODEL

Our model builds on the single-population analysis of
BarTON and OTTO (2005), describing the dynamics of
linkage disequilibria in a single finite population. We
analyze an island model with an arbitrary number of
demes for the development of disequilibria among se-
lected loci. We assume that selection is multiplicative
and homogeneous over space, so that random genetic
drift is the ultimate source of disequilibria among loci.
To extend the method to subdivided populations, we
introduce a compact vector notation. We begin with a
general description of this model. We then summarize
the results for a single population and finally turn to the
case of a structured population.

Genetic setting: We model a population consisting of
ndemes, each containing 2N chromosomes. Initially, we
keep track of two alleles at each of two loci, j and &,
separated by 7, units of recombination. Later, we add a
third locus that modifies the rate of recombination. We
assume multiplicative viability selection, so thatno LD is
generated by epistasis. Because of our assumption that
selection is multiplicative both within and among loci,
this model describes a population of either 2Nn hap-
loid individuals or Nn diploid individuals. We follow the
frequency x; (x;) of a beneficial allele with selective
advantage s; (s;) at locus j (k), as well as the linkage dis-
equilibrium x;. The three variables characterizing a
given population {x; x, x;} at time ¢ are written as
elements of a vector x, where we use the set of subscripts
U= {j, k jk} to denote the elements in x. In the fol-
lowing analysis, it is useful to refer to one of these sub-
scripts without specifying which one, which we do by
using the subscripts a, b, or ¢. For instance, the definition
of x is x={x,} .. To distinguish among demes when
there is more than one deme, we add [{] to denote the
value of a variable or of a vector in deme 4.

Life cycle: The life cycle consists of either selection in
the haploid phase followed by random mating or ran-
dom mating followed by selection in the diploid phase,
after which meiosis occurs to produce an effectively in-
finite population of haploid juveniles. At this stage,
population regulation occurs, such that a finite popula-
tion of individuals is sampled in each deme, followed by
migration in the haploid phase. We chose this life cycle
because it allows direct comparison with an infinite un-
structured population in the limit as migration rates
increase. An alternative life cycle in which haploid mi-
gration was followed by syngamy and then by random
sampling of diploid individuals was also studied. The
results were qualitatively similar but do not reduce to the
case of a single unstructured population as migration
rates increase because there is always one generation of
drift followed by selection within each deme, causing a
small Hill-Robertson effect. At each locus, beneficial
alleles start in linkage equilibrium (x3 = 0 at ¢ = 0) and
sweep from a low initial frequency toward fixation.

Stochastic fluctuations around the deterministic
trajectory: Because of drift, allele frequencies at both
loci and linkage disequilibrium deviate from the trajec-
tory they would follow in an infinite population (or
deterministic trajectory). We denote this deterministic
trajectory at time ¢ by the vector x* = {x]*, X, xf;’j}.
Following BaArRTON and OtTO (2005), we focus on the
deviations from x*, which occur in the presence of drift.
We let dx = {dx;, dxy, dx;} describe the vector of these
deviations. Thus, at any time ¢, the vector of allele
frequencies and LD can be written as the sum of their
deterministic values and the stochastic deviations, x =
x* + dx. We begin by deriving a recursion for dx from
one generation to the next along a given stochastic
trajectory. We then compute the recursions for the ex-
pected deviations over all possible trajectories, E[dx]. It
is this expected deviation that is of greatest interest to
us, as it describes the expected effect, over all possible
stochastic outcomes, of drift and selection on allele
frequencies and LD during selective sweeps.

Single population: To begin, we describe the case of a
single deme (n = 1), where the deterministic trajectory
is determined only by recombination and selection. For
given values of parameters s;, 53, and 7, let us write the
vector of recursions as £ ={f.} ..., = {/;, fi» fi}, which
are three functions that determine the values of the
allele frequencies (x;, x;) and linkage disequilibrium
(%) after selection and recombination (expressions for
Jp» Jro and fj, are given in Equation Al in APPENDIX A).
After one generation, the deterministic trajectory vector
becomes f(x*). In an infinite population with no initial
LD and no epistasis (as assumed here), x;, remains zero,
and each locus evolves independently. Consequently,
the deterministic trajectory is described by the recur-
sions obtained by setting x;, to zero in f,

X = (%) = x5+ 5i%(1 — ;)
;i
- 1
P = i) =+ =) B

’
xﬂ_;k = 07

where &; = 1+s5;(x — ) and &, = 1+s.(x, — ).

For a given trajectory of allele frequency and LD in
a finite population, drift creates deviations from the
deterministic trajectory that accumulate over time. At a
given time ¢, the finite population is characterized by
the vector x = x* + dx, where x* is given by (1). The
recursion for the stochastic trajectory x is similar to that
for x* except that drift occurs each generation. After
selection and recombination, x becomes f(x) = f(x* +
dx). Drift then occurs, which corresponds to multino-
mial sampling from the pool of four haplotypes after
selection (this is true even in the diploid case under
strict multiplicative selection). Sampling adds a random
vector of perturbations { = {{;,{;,{;} to f(x). These
perturbations are small as long as the population size is
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large, and their moments can be found from the multi-
nomial distribution.

After one generation in a finite population (i.e., re-
combination, selection, and drift), the vector x becomes

x' = f(x* + dx) + { = f(x*) + dx/, (2)

where f(x*) is the value of the deterministic trajectory
and dx’ = {dx,} ., is the deviation from the determin-
istic trajectory in the next generation. From (2), we can
write the recursion for deviations from the deterministic
trajectory as

dx’ = f(x* + dx) — f(x*) + { = dx, + {, (3)

where dx; = f(x* + dx) — f(x*) represents the value
of the vector of deviations after selection and meiosis
(before drift).

Approximation in a large population: Assuming that pop-
ulations are large enough that all deviations dx remain
small (say, of order dx), we can obtain an approximate
expression for dx’ by performing a Taylor series ex-
pansion of (3) of f(x* + dx) — f(x*) around the deter-
ministic trajectory x* for each of the three recursions f;
Jfi and Jix in f. Because the main effect of drift is to
introduce variance around the deterministic trajectory,
we must keep terms to second order in the deviations in
the Taylor Series (see BARTON and OTTO0 2005), yielding

Zafa x*)dx, +f Z afa (x*) dxydx,

iAY OeuU Ixy0x,

+§a+o(dx ). (4)

Because we need a compact notation before analyzing
the case of multiple demes, we introduce a vector nota-
tion describing each of the deviation terms in (4). We
have already described the vector dx, whose terms occur
in the first sum of (4). In addition, we require a vector
describing the products of deviations, dx,dx,, which are
O(dx*) terms. Ignoring the order in which the product is
taken, there are six elements of this vector, correspond-
ing to the deviations of a pair of variables (x,, x,) with b=
c€ U? (ordering the set Uby j < k< jk). For convenience
we refer to each of the six pairs of subscripts (b, ¢) as
elements of the set
k), (j, k), (k, k), (k, jk), (jk, jk) }-
(5)

The 1 X 6 vector of the products of deviations is thus
defined by

V={(0,)}=crr = {(:1), (U,

dx?={dx, dxﬂ}< b=oer? = {dx;-z , dxjdx, dx;dx, dx;f, dxy dxg, dx’?k}.

(6)

We can then rewrite recursion (4) for the whole system
using only matrix notation as

dx’ = Dydx + Dadx® + { + o(dx?), (7)

where D; is the 3 X 3 matrix containing the partial
derivatives for the first-order terms in the Taylor series
(D represents the gradient of f at point x*), and where
D, is the 3 X 6 matrix containing the different coef-
ficients of the second-order terms in the series. Matrices
D; and Dy are given explicitly in APPENDIX A.

Because the recursions for the deviations dx depend
on dx?, we must also describe recursions for dx2. These
recursions are obtained by taking the expectation of the
products of deviations after one generation, dx,dx), (a,
b) € V, and approximating the result to second order in
the deviations as in (4). The recursion for the expected
value of dx? after one generation (recombination, se-
lection, and drift) can then be written as

dx* = Dsdx? + (% + o(dx?), (8)

where {* = {Castanev = {8als}u=per is defined in the
same manner as dx® in (6) but with the corresponding
stochastic perturbation terms, and where D3 is the 6 X 6
matrix containing products of first partial derivatives of
fatpointx* and is obtained by identification in a similar
way as Dy and Dy (Dj3 is also given in APPENDIX A).

Next, we give the distribution of the multinomial
perturbation vector { under the assumption of a large
population size. In the following, we refer to dx and dx*
as first- and second-order moments of deviations.

Moments of the multinomial distribution: The exact ex-
pectations of the perturbations introduced by sampling,
E[{,] and E[{.{,], are computed from the multinomial
distribution and are given in APPENDIX B. To order 1/2N,
the effect of sampling on first-order moments simplifies
to E[{] ~ns1 0 (one round of drift produces negligible
deviation). However, drift does produce variance in
the deviations: the effect of sampling on second-order
moments is, to order 1/2N,

1
2] ~

E[ ] N>l QWC’ (9)
where ¢ = {x*(1 — x¥), 0, 0, xi(1 — xi¥), 0, x#*(1 — x*)-
% (1 — x,*)}is a 1 X 6 vector with nonzero terms equal
to the genetic variances of xj, x;, and xy, evaluated along
the deterministic trajectory. We use the same vector
notation as the one defined for dx? in (6).

Because we are interested in evaluating the expected
trajectory for the different possible stochastic outcomes,
we want to compute the expectations of dx’ and dx*,
which are obtained by taking the expectations of re-
cursions (7) and (8). Note that the elements in the three
matrices Dy, Dy, and Dg are partial derivatives of f
evaluated along the deterministic trajectory x*; conse-
quently, theyare independent of dx and are not random
variables. Thus, the recursion for the expected devia-
tions and product of deviations over one generation is
given by
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E[dx'] = D, E[dx] + Do E[dx?] + o(1/2N) (10a)

E[dx*'] = D3E[dx?] + 9N + 0o(1/2N). (10b)

Recursion (10a) summarizes recursions (4a) and (4b)
in BARTON and O1TO (2005), while recursion (10b) sum-
marizes recursions (5a), (bb), and (5c) in BARTON and
OT1To (2005).

As driftis the initial source of variation and introduces
variances of order 1/2N, recursions (10a) and (10b) are
of order 1/2N. As long as the stochastic perturbations in
dx are small relative to the allele frequencies (i.e., as
long as alleles are not close to fixation), they can be
approximated by a Gaussian distribution with mean and
variance given by recursions (10a) and (10b), respec-
tively (BARTON and OtTO 2005). These approximate
recursions are valid for large populations (i.e., for 1/2N
small) and are not valid if the selective sweeps start from
a very low allele frequency.

Production of negative linkage disequilibrium: Here we
describe the development of the elements of E[dx],
namely the expected deviation from the deterministic
trajectory for allele frequencies (E[dx;] and E[dx;]) and
for the LD (E[dx;z]). These are the quantities of greatest
evolutionary relevance, because they describe the ef-
fects of drift on the spread of beneficial alleles and on
linkage disequilibria. In particular, E[dxjk] determines
the amount and sign of linkage disequilibrium within
the population, because no LD is generated along the
deterministic trajectory under multiplicative selection
(¢ = 0, see Equation 1).

By inspecting Equation 10, note that random genetic
drift generates variance around the trajectory [the term
¢/2Nin (10b)], but it does not directly bias the allele
frequencies or LD [.e., drift does not contribute directly
to (10a)]. Because D3 in (10b) contains only zero or
positive terms, this variance is converted into positive
covariances between deviations in allele frequencies
and in LD by the action of selection. Because Dg in (10a)
contains only zero or negative terms, however, this posi-
tive covariance between deviations causes, on average,
negative deviations in the allele frequency trajectory as
well as negative LD. A more detailed interpretation of
this process can be found in BARTON and OTTO (2005).

In short, the interaction of drift and selection gen-
erates negative deviations, on average, for both the
allele frequencies and LD, relative to their expected
values in the absence of drift (deterministic trajectory).
In other words, negative genetic associations build up
among selected loci (E[dx;] < 0) and the selective
sweep of beneficial alleles is delayed relative to the time
course of selection in an infinite population (E[dx;] <
0). Because the ultimate source of negative deviations is
the variance introduced by drift, the expected devia-
tions are inversely proportional to the population size
N and become exceedingly small in very large popula-

tions. We now focus on how this process is modified in a
subdivided population.

Subdivided population: Fluctuations within demes
around the deterministic trajectory: We make the key as-
sumption thatselection is homogeneous in space so that
no linkage disequilibria can be produced deterministi-
cally, as would be the case if selection coefficients at the
selected loci covaried across demes (LENORMAND and
OT1T10 2000). We further assume that all demes start at
linkage equilibrium and at the same allele frequencies.
Consequently, the initial conditions and deterministic
forces are homogeneous, so the deterministic trajectory
x* is the same for all demes at any time, and the only
difference among demes is due to the stochastic devia-
tions that build up during the selective sweeps occurring
in different demes. This homogeneous deterministic
trajectory x* equals that of a single population, given by
(1). Deviations will differ, however, from one deme to
another. We denote dx[i| = {dx,[i]} ., as the vector of
deviations from x*, along a given stochastic trajectory in
deme 7. Our aim is to compute the expected value of the
vector of average deviations across all demes, which we
denote as

— — I .
dx = {dx,} ey, wheredxa:z;dxa[z]. (11)

For any variable or vector, we denote the mean taken
across all demes with a bar.

As in the single-population model, we also need to
compute the recursion for the mean of second-order
moments taken across all demes. Using the notation
introduced in (5) and (6), we define the vector of the
second-order moments, averaged across demes, as

dx® = {dx,dx;} ye e (12)

where, for any couple of variables (x, x;), (a, b)) € V]
dx,dx, = (1/n) Y " dx,[i]dx,[i]. In our calculations, we
also need the product of the average deviations,

&2 = {%a%b}aSbGL” (13)

where dx,dx, = (1/n%) (37 dx,[1]) (31 1dx,[i]). Forsim-
plicity, we describe the three moments defined in (11),
(12), and (13) as the first moment, the within-deme
second moment, and the among-deme second moment,
respectively.

As in the single-population model, we must compute
the recursion over one generation for the expectation
of the three moments (dx, dx?, and &2) taken across
all the possible stochastic trajectories in each deme. To
calculate these recursions, we first compute the joint
effect of recombination, selection, and drift on the
moments, using the results of the single-population
model, and then we add the effect of migration. Finally,
taking the expectation over all possible trajectories,
we derive the recursion for the expected value of the
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moments over a complete generation in a subdivided
population.

Effect of recombination, selection, and drift on the
moments in a subdivided population: Because meiosis,
selection, and drift occur independently in each deme,
the recursion for the deviation vector dx[¢] in any deme
i before migration occurs is similar to that given in the
single-population model. Consequently, assuming that
all demes are large enough, the recursion (7) describes
the value of dx[i] along a given stochastic trajectory
before migration,

dx[i]’ = Dydx[i] + Dodx?[i] + {[i] + o(dx?),  (14)
where dx*[7] is the vector of products of deviations in
deme i defined as in (6) and {[¢] is the perturbation
introduced by sampling in deme 7 on the local vector of
allele frequencies and LD. The coefficients in matrices
D; and Dq in (14) are evaluated along the deterministic
trajectory, common to all demes. As a consequence,
the recursion is the same for all demes. Using this fact,
it is easy to deduce from (14) the value of the three
moments after recombination, selection, and drift, fol-
lowing their definitions given in (11), (12), and (13).
Taking the expectation over all possible trajectories, we
obtain the expected value of the three moments before
migration,

Eldx'] = Dy E[dx] + DgF[dx ]+ E[C] + o(dx?)
Eldx?] = D?,E[dXQ] + E[C?] + o(dx?) (15)
E[dx*'] = D3E[dx?] + E[C?] + o(dx?),

where {={C,},., is the average across all demes, of the
stochastic perturbations {[7] that are introduced by drift
in each deme 4, £ ={{,0,} (. c0n 15 the average of the
products of these perturbations, and U= {88} apyer
is the product of average perturbations.

Moments of the perturbation vectors: We now compute
the expectations for the effect of n independent multi-
nomial samplings i in the ndemes on the three moments:

E[C], E[¢?], and E[§ ]. The expectations of the sampling
vectors {[i] in a given deme i are computed from the
position along the deterministic trajectory (common to
all demes) and from the deme size 2N. Because deme
sizes are assumed to be large, we deduce from (9) that,
to order 1/2N, E[C] = 0 + o(1/2N), and

Lc-i- o(1/2N). (16)

EIE) = BT 2 5y

The effect of drift on the within-deme second moment
is thus inversely proportional to the local deme size 2N,
whether the demes are isolated or connected by migra-
tion. This point is important; it ensures that some
stochasticity is present even in an infinite population,
provided that the population is subdivided into demes

of finite size. The among-deme second moments are the
products of average deviations by themselves. As drift
occurs independently in each deme, each random vec-
tor {[#] is independent of {[is] when 4 # 4. Using this
independence and the fact that for any 4, E[{[4]] =
0 + o(1/2N), we obtain, to order 1/2N,

1
2;’22:E Z] lg QZ Qn—NC.
(17)

Sampling has an equivalent effect on the among-deme
second moments as it would have on the second mo-
ments of a single population of the same total size (i.e.,
of size 2nN). Consequently, the among-deme second
moments will be much smaller than the within-deme
second moments in a population composed of a large
number of demes (n>1).

Effect of migration on allele frequencies and linkage
disequilibrium in the nisland model: We next give an
exact recursion for the effect of migration on allele
frequencies and linkage disequilibrium in an #-island
model and the change by migration of the three mo-
ments defined in (11), (12), and (13). Details of the
derivation are given in APPENDIX B.

We first note that the n-island model can be reduced
to a two-island model. Indeed, migration changes hap-
lotype frequencies within a deme, as if this focal deme
exchanged migrants with a migrant pool at a rate m. =
mn/(n — 1). Consequently, the effect of migration on
allelic frequencies and LD can be derived for any deme,
using a two-demes recursion (see, e.g., BARTON and
GALE 1993) and the values of allele frequencies and LD
in the migrant pool (see APPENDIX B). The recursion for
the change in allele frequencies and LD averaged across
demes (i.e., on X = {X;, X}, X; }) is given by

0
dn[X] = 0

= me(Q - me)A]‘Ak u]'k7
me(Q - me)A]-Ak

(18)

where uj, = {0, 0, 1} is the unit vector representing the
linkage disequilibrium, and where A;A, = X%, — %% is
the covariance between allele frequencies atloci jand &,
taken across demes, i.e., the spatial covariance between
allele frequencies in the whole population. Equation 18
shows that migration (i) does not affect the metapopu-
lation allele frequencies, as expected, and (ii) increases
the average linkage disequilibrium per deme by a quan-
tity me.(2 — me)A;A, each generation. Thus, migration
transforms a proportion m.(2 — m.) of the spatial co-
variance between allele frequencies at loci jand k into
local linkage disequilibrium between these loci.

We now use recursions for the effect of migration on
local (B5) and average (18) allele frequencies and LD
to compute the effect of migration on the deviation
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moments given by (11), (12), and (13). Under homo-
geneous selection, the effect of selection and recombi-
nation on the deterministic trajectory is identical in all
demes (differences between demes are only due to sto-
chastic deviations). As a consequence, migration does
not affect the deterministic trajectory and changes
only the deviations dx[¢] in each deme ¢ (8,,[x,[i]] =
9,,[ dx,[7]] for any variable a). Using this fact we directly
obtain the effect of migration on the first moments dx,

du[dx] = me(2 — me)AjA, ug, (19)

where m = dx;dx;, — %j%k. The effect of migration
on each product of local deviations dx,[i]dx;[i] in deme i
is also computed from (B5). We then take the average of
these products across demes to obtain the effect of mi-
gration on the within-deme second moments, dx”. The
resulting expression is simplified by dropping O(dx")
terms (large deme approximation). We then obtain

S uldx?] = —me(2 — me)A2 + o(dx?), (20)

where A% = dx? — dx_ can be interpreted as the vector
of spatial variances and covariances between all varia-
bles. Finally, we similarly compute the effect of migration
on the among-deme second moments, using the prod-
uct of migration effects on average deviations dx, dx,,
which is given in (18). Migration has no or negligible
effect, o(dx*), on this moment, for allele frequency and
LD, respectively: 3, [&2] =0+ o(dx?).

Recursions over one generation: We can now compute the
recursion for the expected value of the three moments
describing deviations in a population with a life cycle
where migration occurs after selection, recombination,
and drift. We obtain the overall changes by combining
the changes on the three moments due to recombination
and selection (15), drift [(16) and (17)], and migration
[(19) and (20)]. We obtain a closed recursion system for
the expected value of the three moments over one
generation [dropping the o(1/2N) for simplicity]:

E[dx"] = D, E[dx] + Do E[dx?] + ME[A;’ A7 g
e ;
(21a)
E[dx] = DsE[dx?] + - — Me(2 = me) b (21b)
2N (1- me)2
21 — AP s +
E[dx""] = D3 E[dx"] N’ (21c)

In (21b), the vector of spatial variances and covariances
E[A?] = E[dx?] — E[dx] follows the recursion

HE = (o (DB + S0 - Um)) )

over one generation. E[A7A}] in (21a) is the second ele-
ment in this vector. Because selection occurs indepen-

dently in each deme, the evolution of recombination
depends on local LD between the selected loci. The
expectation of this local LD is given by the third element
of E[dx] and its variance across demes is given by the
sixth element in E[A?]. System (21) extends the single-
population model (10) to a subdivided population for
any migration rate, number of demes, recombination
rate, and selection coefficients, provided that the demes
remain large and alleles are not close to fixation.

Selection for recombination: To quantify how recombi-
nation evolves in response to the disequilibria gener-
ated by the Hill-Robertson effect, we introduce a third
locus i modifying % the recombination rate between the
selected loci. As in BARTON and OT1TO (2005), allele 1
at locus ¢ corresponds to a higher recombination rate
between loci j and k than allele 0. More precisely,
genotypes {0, 0},{1, 0}, and {1, 1} atlocus i correspond
to recombination rates r — d, 1, and r + dr, respectively.
We assume that the three loci are in the order i, j, kand
that the recombination rate between i and jis R. We
study the change in the frequency x; at the modifier
locus. To include this third locus, we have to keep track
of four new variables in our vector recursions: the mod-
ifier allele frequency (x;), the two-locus linkage disequi-
libria x; and xy, and the three-locus LD x;. The
recursions for the effect of recombination and selection
on the seven variables (deterministic function f) are
given by Equations A2 in BARTON and OTTO (2005), for
a weak modifier (dr<r).

Extending the method described above for a subdi-
vided population to three loci and computing the effect
of migration on the four new variables (see APPENDIX B),
we compute a new system of vector recursions that
is similar to system (21) but with vectors and matrices
of higher dimension (see APPENDIX A), with qualitatively
similar effects of migration (described in APPENDIX B).

Comparison with exact simulations: Simulations were
performed to check the analysis and to obtain results for
small deme sizes. The simulations followed the same life
cycle, using exact recursions for the effects of selection,
random mating, meiosis, and migration on haplotype
frequencies. Drift was simulated by multinomial sam-
pling within each deme. To study the evolution of re-
combination, a recombination modifier (third locus)
was included with the same effect as described above.
We also performed simulations with a sex modifier, in
which case individuals {0, 0},{1, 0}, and {1, 1} atlocus i
were supposed to have sex with probability o,, o9, and
o3, respectively. We also introduced the possibility that
individuals reproducing sexually produced, e.g., half as
many daughters as individuals reproducing asexually
(i.e., a twofold cost).

RESULTS

General effect of population subdivision: We now
give a general interpretation of the effect of structure on
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the system compared to the extreme cases: m. = 0 (iso-
lated demes) and m. = 1 (panmictic population). The
among-deme second moments [see (21c)] are equiva-
lent to the second moments of deviations in a single
population (10b) of size 2nN (the total size of the pop-
ulation); these moments can be interpreted as the var-
iances and covariances of deviations in the migrant
pool. The within-deme second moments [see (21b)] are
also closely related to the second moments of deviations
of a single population. Indeed, using (22), (21b) can be
written

E[ax?] = & <D3E[dx2] + Tv) +(1- )<D3E dx’] + ﬁ)

(23)
where a,, = 1 — m. ranges between 0 and 1 as m,. ranges
between 0 and 1. Consequently, migration tends to
buffer the variances and covariances of deviations pro-
duced locally [first term in (23)], bringing them closer
to the lower variance produced in a population of total
size 2nN [second term in (23)]. Consequently, E[dx?]
ranges between the value expected for a single popula-
tion of size 2N and that for a population of size 2nN.
Finally, the first moments (21a) are produced by local
variances and covariances, E[dx”], in the same way as in a
single population (see 10a), except that migration also
directly favors positive linkage disequilibrium by the
admixture of populations with different allele frequen-
cies [contributing the term m.(2 — m.)E[A;A,]. Indeed,
recursion (22) indicates that any element in E[A?] (in-
cluding E[A;A;]) is always positive (all the elements in
Djs are positive). This is true when demes are large (z.e.,
under our model’s assumptions) because the selected
alleles spread faster in those demes in which, by chance,
positive disequilibrium arises. We see below that this
result does not hold for small demes.

As a check, the results for a subdivided population
converge upon the results for a single population for
extreme values of the migration rate. When m = m, =0,
recursions (21a) and (21b) reduce to recursions (10a)
and (10b) for a single population of size 2N. Conversely,
whenm=1-1/n(m.=1), recursions (21a) and (21b)
reduce to recursions (10a) and (10b) for a single pop-
ulation of size 2Nn.

Overall, in a subdivided population of any total size,
but with large demes, migration always opposes the
creation of negative linkage disequilibrium by drift in
the presence of selection. This occurs because (i) the
effect of drift is buffered locally by migration and
(i1) migration is a direct source of positive LD by ad-
mixture. Nevertheless, neither of these effects tends to
be large enough to alter the expectation that LD
becomes negative.

Infinite subdivided population: Interestingly, the
effects of drift do not disappear even in a population
with infinite total size as long as the size of each deme
(2N) is finite. Indeed, in the limit as n increases to

Migration rate
0.0001 0.001 0.01 0.1 1

deme size 2N =10 000
total size 2nN ~ e

0.01

= 0.001

0.0001 §
1E-06 A
1E-08 -

1E-10 A

Average linkage disequilibrium per deme

1E-12 -

F1Gure 1.—Log-log plot of the maximum absolute value of
the average LD between the selected loci, that is reached dur-
ing the sweeps, for varying migration rate (x-axis) and for
three recombination rates (indicated on the graph). The val-
ues were obtained from iteration of recursion (21) (lines),
from simulations (squares), or from the weak selection ap-
proximation (28) (shaded circles). Dashed curves indicate
the two limits for the recombination rates r = 0 (top line)
and r= % (bottom line). For each value of mand 7 the number
of demes n was chosen large enough (always >500) that fur-
ther increasing n had very little effect on the result (infinite
population limit). Simulation results were averaged over 1800
(m = 0.0002 and 0.002) and 10,000 (m = 0.02) sweeps. Other
parameters are s; = s, = 0.005, with an initial beneficial allele

g
frequency of 0.1 at both loci and deme size 2N = 10,000.

infinity, the among-deme second moments, scaled to
1/2nN (see 21c), become negligible, so that E[dx*] =
E[A?] and recursion (21) simplifies to

E[dx"] = D, E[dx] + Dy E[dx?] + (1(2_7”’)”) [dax] do Tug
(24a)
Bfa"] = (1 - ) (Do)« 5 ). (21)

Thus, even in an infinite metapopulation, some vari-
ance in deviations is produced by drift within each
deme, which causes the expected average disequilib-
rium across demes to become negative [because of the
negative elements of Dy in (21b)].

We illustrate this result in Figure 1, where we give the
maximum absolute value of the average LD per deme in
a very large population (2nN = 5 X 10°) under weak
selection, for various migration and recombination
rates. Figure 1 shows that even in a weakly structured
population (Nm = 1), a substantial LD can build up in a
very large population to alevel similar to that expected if
the demes were completely isolated as long as gene flow
is not too strong (note the steep decrease for large m).
Figure 1 also illustrates that, as in a panmictic popula-
tion, the LD is very low when linkage is loose. Note also
that results illustrated in Figure 1 are a lower bound for
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the LD produced when the number of demes is smaller
or when selection is stronger.

LD under weak selection: Loose linkage: When the
processes that reduce linkage disequilibrium are large
relative to the processes generating disequilibrium, it is
possible to derive an analytical solution for the steady-
state level of linkage disequilibrium. This steady-state
level depends on the current allele frequencies and is
known as a “quasi-linkage equilibrium” (QLE) (BARTON
and TureLLI 1991). When recombination rates are large
relative to selection and drift [r> 1/(2N), s;, s3], QLE
values can be determined, from (21b) and (21c), for the
variance in LD within demes, E[dxﬁ], and among demes,
E[%jk}, as well as for the covariances between LD and
allele frequencies within demes, E[dx; dx;], and among
demes, E[dx;,dx;] (details not shown). For the spatial
variances and covariances between allele frequencies,
E[A;A;], to reach a steady state, however, it is also
required that the migration rate be large relative to
selection and drift [m. > 1/(2N), s, s¢], as appears from
recursion (22). All spatial covariances in E[A®] are
produced by drift and selection within demes and are
reduced by migration. Assuming that the migration rate
is large enough, the equilibrium value of these covari-
ances, noted E[AQ],_Can be_obtained by solving
the matrix equation E[A*"] = E[A%] and using recursion
(22).

Once the QLE values have been calculated for the
second moments, the steady-state level of linkage dis-
equilibrium can be determined from (21a) by setting

E[dx}] = E[dx;). To denote this QLE approximation in
a population subdivided into » demes of size 2N, we use
a hat, E[&;cjk]QN_n. For a single unstructured population
of size 2N, BarTON and Otro (2005) found that
Eldxp)on = —2si50(1 — x;)2,(1 — %) (1 — ) /(2Nr®). In
a structured population, we find that the linkage dis-
equilibrium falls between the expected LD in a single
population of size 2N (the size of the deme) and of size
2nN (the total size of the population) and can be written
as

Eldxjlay., = (aB[dxploy + (1 — o) E[dxaly,y),  (25)

where

r=qm 2@ (@ —1/2)(1+aqa)
" a(l-da)(1-aa)

mr

<1, (26)

where a,, =1 — m. as in (23) and a,=1 — r As the
migration rate increases, o decreases, and the link-
age disequilibrium becomes increasingly similar to that
expected in a single unstructured population of size
2nN.

Using (26), we can define a QLE population size,
NoLE, according to the population size of an unstruc-
tured population that leads to the same expected amount

of linkage disequilibrium as that in a structured pop-
ulation. From (25), this equivalent population size is

nN N
e = T~ T a 27

Infinite population: In a population with a very large
number of demes, the within-demes and between-
demes variances and covariances are equal, E[dx*]=
E[A?] [see (24b)]. Assuming that migration is strong
enough, these variances and covariances reach an
equilibrium E[A]. It is then possible, for any recombi-
nation rate 7 to solve the differential equation for E[dx;]
by a continuous time approximation (i.e., under weak
selection), using the method presented in BARTON and
OtTo (2005, Equations B4a and B4b). We obtain the
average LD per deme after ¢ generations of the selective
sweep,

Eldxjloy .. = O‘E[Cz;cjk}m(l —e"), (28)

where a is defined above in (26) and E[dX;],, is defined
above as the QLE for a panmictic population of the size
of the deme (2N). This approximation makes no as-
sumptions on the recombination rate provided that the
population has a very large number of demes. As with
the QLE approximation in an infinite population (27),
this approximation corresponds to the LD produced in
asingle panmictic population of a finite size 2N /a. The
agreement between this approximation and both sim-
ulations and recursion (21) is illustrated in Figure 1.
The approximation is less accurate with very low mig-
ration (m = 0.0001) when the weak structure assump-
tion is no longer met.

QLE for the modifier frequency: Using the three-
locus version of recursion (21), we can compute the
expected change in the frequency of a modifier at QLE,
assuming that migration and recombination rates are
large relative to selection and drift (Figure 2). The result
is a complicated function of the parameters describing
the population (m, n, 2N) and the genetic map (rand R).

When there is no migration among demes, the pre-
dicted change in the modifier collapses down to the
results presented in BARTON and OtTOo (2005) for a
single unstructured population. With migration, we
present results for the special case in which the loci
are equidistant (R = r). When migration is weak [but
still assuming that m, r < 1, r > 1/(2N), s;, 5], the pre-
dicted change in the modifier at QLE is to leading order
in mand 7

drsfs}fx,(l — %)% (1 — %)% (1 — x)
P (r+ me)(r + 2me)* (8r + 2me)?
% ((1 — me)*(48m? + 264m3r + 534m*1® + 455m.r + 184r)
16N (r + me)
+ ?)Om(7 + l49m§r + 281m372 + 240mfrg + 87mer* + 87°

2

Nnr®

Eldx;] ~

(29)
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FIGURE 2.—Value of the average modifier frequency
change over time Ax; scaled to the modifier effect (dr =
0.03) for three values of the migration rate m indicated on
the graph. Lines indicate the values obtained from recursion
(21) for three loci and dots indicate the results of simulations
with 95% confidence intervals averaged over 107 sweeps.
Other parameters are n = 5, 2N = 10,000, r; = r; = 5; =
s = 0.1, an initial beneficial allele frequency of 0.01, and
an initial modifier frequency x; = 0.5.

At the other extreme, in an unstructured population
(me. = 1) with equidistant loci, we retrieve the result
presented in Equation 7a of BARTON and OTTO (2005)
for a population of total size 2Nn:

1.868dr 753 (1 — x;:)x;(1 — ) (1 — )
Eldx)] ~ J s . (30)

Integrating the QLE frequency change over the se-
lective sweeps yields the cumulative frequency change
and the average per-generation selection coefficient at
the modifier locus. Indeed, because the beneficial
alleles rise from an initial frequency p, to fixation, the
cumulative frequency change is obtained by integrat-
ing x;(1 — x;) x,(1 — x;) over time, yielding (1 — )*(1 +
2?0)/65

Figure 3 shows that in a subdivided population with
large demes, the frequency change at the modifier lo-
cus can be orders of magnitude larger than that in the
corresponding panmictic population even for Nm val-
ues >1. Figure 3 also illustrates that the QLE approx-
imation captures this behavior under weak selection. As
might be expected intuitively, Equation 30 with Nn
replaced by Norg (27) also provides a reasonable ap-
proximation for the frequency change at the modifier
locus, although it is less accurate than (29) (see Figure
3). However, these approximations work best in a
parameter range where the selection for recombination
is weak (for instance, the maximum selection illustrated
in Figure 3 is 0.0014dyr).

Overall, we observe similar properties for the rate of
change of an allele modifying recombination rates and
for the linkage disequilibrium in a subdivided popula-
tion. In both cases, the predictions fall between those
expected in an undivided population whose size is that
of the deme (2N) and those in a panmictic population
of size 2nN. Furthermore, both the change in the

100 e—

deme size 2N =5 000"
deme number n = 100

deme size 2N =50 ()[)l).-" .
deme number 1 = 10

Ax;(m) ! Ax, (m,=1)

0.0001 0.001 0.01 0.1 1
Migration rate

FIGURE 3.—Ratio between the cumulative modifier fre-
quency change, over the selective sweeps, in a structured pop-
ulation, Ax;(m), and the same frequency change in the
absence of structure, Ax;(m. = 1), for different values of
the migration rate m (x-axis, on log scale). The total popula-
tion size is kept constant 2nN = 500,000 with either 100 demes
of size 2N = 5000 (top curve) or 10 demes of size 2N = 50,000
(bottom curve). The values are obtained with iteration of re-
cursion (21) (solid lines), with the QLE approximation (29)
(dashed lines), or with the single-population QLE approxima-
tion (29) with a population size 2Ny g given in (27) (shaded
circles). Simulation results averaged over 10,000 sweeps are
indicated for the case 2N = 5000 (solid squares). Other pa-
rameters are s; = s, = 1;; = 7 = 0.01, with an initial beneficial
allele frequency of 0.1, and a modifier effect dr = 0.005 with
initial frequency x; = 0.5.

modifier and the linkage disequilibria can be substantial
in large, even infinitely large, populations, as long as the
population is sufficiently structured.

Smaller deme sizes: For smaller deme sizes, the
deviations from the deterministic trajectory can no
longer be assumed small, and our analysis breaks down.
We thus turned to simulations to study the development
of LD and selection for recombination. We used the
same simulations as presented above and each simula-
tion was run until the polymorphism was lost at both
selected loci or at the modifier locus (so that no further
change in the frequency of the modifier could be
expected). For a large population (2rN = 100,000),
the effect of deme size on the average per-generation
selection coefficient for recombination (scaled to the
modifier effect) is illustrated in Figure 4. With real-
istic values of selection coefficients (s = 0.1) and tight
linkage (r = 0.01), the selection coefficient for re-
combination can be substantial (of the order of 0.1dr).
It also shows that our model is a good approximation
as long as the deme size 2N is not less than a few thou-
sand. Indeed with smaller demes, the beneficial alleles
are often lost temporarily from a deme due to drift,
which reduces the amount of local LLD. In this context,
a small amount of migration favors negative linkage
disequilibria directly by admixture (as appeared in
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Ficure 4.—Effect of population structure on the per gen-
eration selection coefficient on the recombination modifier,
Smod,» averaged over the ¢ generations of the selective sweep
and scaled by the modifier effect dr smoa = Ax;i(2)/ (x(1 —
x;)), where Ax;(f) is the average cumulative modifier fre-
quency change over the selective sweep. The value is given
for different deme sizes 2N (x-axis) and migration rates (indi-
cated). Lines show simulation results and dots indicate the
prediction from recursion (21) iterated over ¢ = 100 genera-
tions (the expected time taken by the selective sweep along
the deterministic trajectory). Other parameters are s; = s, =
0.1, r; = 73, = 0.01, with an initial beneficial allele frequency
of 0.02, and a modifier effect dr= 0.005 with initial frequency

simulations, not shown), because it restores polymor-
phism to individual demes. This can be interpreted
more precisely using recursion (18) because this re-
cursion makes no assumption on the deme size so that
the average amount of LD per deme produced by
admixture is always m.(2 — m.)E[A;A;], even in small
demes. When migration is infrequent and demes are
small enough that alleles can be locally lost, the Hill-
Robertson effect within each deme makes it more likely
that the beneficial allele at one locus is lost while the
beneficial allele at the other remains, particularly when
the selection coefficients at each locus are of the same
order. This generates a negative E[A;A,], so that contrary
to the large demes case, the effect of admixture, when
the population structure is substantial, is to favor
negative LD. Overall, the LD produced in a population
subdivided into small demes is maximum for an in-
termediate rate of migration, whereas it is maximum for
m=0when demes are large. These results are illustrated
in Figure 4 (compare deme size above or <1000). When
considering small demes, selection for recombination is
more efficient in a subdivided population than it would
be if demes were either isolated or completely connected.

Sex modifiers: We also performed simulations in
which the locus ¢ was a sex modifier. Figure 5 illustrates
the effect of population structure as above but with
strong selection. Figure 5 also shows that a sex or a
recombination modifier has the same behavior. In
Figure 6, we also show how the LD generated by the
Hill-Robertson effect in a subdivided population selects
for increased sex/recombination at a level sufficient to
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Ficure 5b.—Effect of population structure on modifier final
frequency at the end of the sweeps (the initial frequency is
0.5) for different deme sizes 2N (x-axis) and migration rates
(indicated) under strong selection (s;= s, = 1). The total pop-
ulation size is kept constant, 2nN = 10,000. Lines correspond
to a sex modifier with the probability to reproduce sexually
(with recombination rate set to %) o = 0.02, oo = 0.03,
and o = 0.04 for individuals carrying zero, one, or two copies
of the modifier, respectively. Dots correspond to a recombina-
tion modifier with dr = 0.005 and r; = 73 = 0.015. Initial fre-

quency of selected alleles is 0.01.

overcome the twofold cost of sex. Note in Figure 6 that
increased sex would not be favored in the absence of
structure (m. = 1). These conclusions hold only
for a weak modifier effect under very strong selection

0557 2N = 500
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F1cure 6.—Effect of population structure on a sex modifier
final frequency at the end of the sweeps (the initial frequency
is 0.5) for different deme sizes 2N (indicated) and migration
rates (x-axis, note the log-scale and the value for m = 0) under
strong selection (s;= s, = 1). The total population size is kept
constant, 2nN = 10,000. As in Figure 5, the probability to re-
produce sexually (with recombination rate set to %) is 0] =
0.02, o9 = 0.03, and o3 = 0.04 for individuals carrying zero,
one, or two copies of the modifier, respectively. In a, there
is no cost of sex whereas in b individuals who reproduce sex-
ually produce half as many daughters compared to individuals
reproducing asexually (twofold cost). Initial frequency of se-
lected alleles is 0.01.
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F1curEe 7.—Effect of population structure on a sex modifier
final frequency at the end of the sweeps. The same as that in
Figure 6b is shown (with a twofold cost of sex) but for asexuals
vs. weakly sexual organisms (o7 =0, 09 = 0.01, and o3 = 0.02),
weaker selection (s; = s, = 0.1), and larger total population
size (2nN = 100,000).

(s; = sp = 1). Indeed, with s; = 5, = 0.1 and the same
parameters as those in Figure 6, a modifier increasing
sex does not invade but is less disfavored for interme-
diate levels of population structure (not shown). How-
ever, a weak sex modifier can overcome the twofold cost
and invade a structured asexual population of large
total size (2nN = 100,000) under weaker selection (for
instance, with s = 0.1, see Figure 7) under a wide range
of population structures.

DISCUSSION

Drift influences the response to selection of a set of
linked loci in a way that is not predicted by the dynamics
of each locus considered separately. The interaction of
drift and selection tends to build up negative associa-
tions between favorable alleles at linked loci (i.e.,
negative linkage disequilibria), a process known as the
HRE. This process generates negative LD in the absence
of epistasis, but the latter will also contribute to the
development of LD. The negative linkage disequilib-
rium created by drift in the presence of selection causes
beneficial alleles to be associated with deleterious alleles
at other loci. Metaphorically, negative LD stores genetic
variance in fitness by “hiding” good alleles on bad
genetic backgrounds. This variance is restored by the
action of recombination. Consequently, modifiers of
recombination increase in frequency because they help
regenerate good combinations of alleles and rise in
frequency along with these combinations.

This stochastic advantage to recombination works in a
single population but its magnitude decreases with
population size and vanishes when population size
tends toward infinity (BARTON and OTT0 2005). Thus,
the stochastic theory for the evolution of sex provides a
poor explanation for the maintenance of sex in species
with large and unstructured populations. The stochastic
theory for sex also fails at the other extreme, in very

small populations, because several mutations are un-
likely to segregate simultaneously in small populations.
Of course, real populations are spatially structured to
some extent, and thus we set out to determine the effect
of population structure on the stochastic theory for sex.
We reached two main conclusions: (i) substantial link-
age disequilibrium and selection for recombination can
occur in a large—even infinite—population provided
that it is subdivided, and (ii) substantial linkage dis-
equilibrium and selection for recombination can also
occur in very small demes that are connected by
migration, because the polymorphism at the selected
loci is maintained at the metapopulation level.
Linkage disequilibria generated by drift with large
demes: When the subpopulations (demes) are large,
the LD generated by drift with selection in a subdivided
population falls between the LD expected in an isolated
deme of size 2N (when m = 0) and that in a single deme
of size 2nN (when m=1). More precisely, when selection
is weak relative to migration and recombination, the
average LD per deme equals that expected in an
unstructured population of size Ny g, with

nN N

-

Note = 14+ (n—1Dan-ea’

where a varies between 0 and 1 [see (26)]. This result
holds for any recombination rate in a very large meta-
population [see (28)] and remains accurate for small
mvalues (see Figure 1).

This apparently simple result summarizes a complex
underlying process. In a subdivided population, we can
distinguish two sources of LD. The first source of LD is
drift with selection, which produces a negative LD on
average, as in a single population of size 2N. This process
relies upon the creation of variance in LD, which is
produced within each deme by drift but is destroyed by
migration among demes (see Equation 21b). These an-
tagonistic effects imply that a subdivided population
exhibits an intermediate level of variance in LD between
a completely structured (m. = 0) and an unstructured
population (m. = 1). The second source of disequilib-
rium is migration (admixture), which favors positive LD
whenever allele frequencies covary positively across
demes (Equation 21a). Indeed, with large demes, we
expect this spatial covariance to be positive, because
both alleles sweep faster than average in those demes
with a positive LD and both alleles sweep slower than
average in those demes with a negative LD. Conse-
quently, allele frequencies covary positively across demes,
and admixture generates a small amount of positive
disequilibrium. However, when selection is homoge-
neous over space, the effect of admixture is small be-
cause it relies on the variance among demes in LD.
Indeed, our results indicate that when migration is
weak, the variance among demes in LD may be large but
a small proportion is converted into positive LD, while
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when migration is strong, this variance is reduced. Over-
all, for any level of structure, admixture never over-
whelms the Hill-Robertson effect, so that the linkage
disequilibrium remains negative, on average.

Overall, the net effect of these two sources of linkage
disequilibrium (z.e., drift with selection and admixture) is
a negative linkage disequilibrium with a value interme-
diate between that expected in an unstructured popula-
tion of size 2N and that of size 2nN. With large demes,
gene flow limits the production of negative disequilib-
rium (i) because the effect of drift is buffered locally by
migration and (ii) because migration is a direct source of
positive LD through admixture. As in a single popula-
tion, the resulting LD is larger when selection is strong
and equal at both loci and when linkage is tight [in an
infinite metapopulation (see 28) or at QLE (see 25) in a
finite metapopulation, x;, is proportional to s;s, / 7).

Linkage disequilibria generated by drift with small
demes: In a structured population with small demes, the
simultaneous fixation of beneficial alleles at both loci is
impeded by drift, and one of the beneficial alleles is
often lost locally, at least transiently. Therefore, in small
isolated populations, there is less scope for the Hill-
Robertson effect because of a lack of polymorphism.
However, our simulations revealed that a small amount
of gene flow among subpopulations is enough to restore
the polymorphism at selected loci and allow the Hill-
Robertson effect to occur. Indeed, the amount of link-
age disequilibrium generated is much higher when
small demes are connected by migration than when they
are not (see Figure 6, left side). In contrast to the case of
large demes, allele frequencies often covary negatively
across demes, because the spread of beneficial alleles
interferes with the local fixation of other beneficial
alleles (HIiLL and RoBERTSON 1966). Consequently, ad-
mixture can itself generate negative disequilibrium,
causing the average LD per deme to be larger than that
expected either for a set of isolated populations of small
size or for a large unstructured population.

Evolution of recombination in a subdivided popula-
tion: In the absence of epistasis, increased recombination
is favored only if selected loci are negatively associated.
Our model shows that, as in a single population, a Hill-
Robertson effect occurs in subdivided populations, which
generates negative LD and therefore selects for higher
rates of recombination. Our results show that population
structure has qualitatively similar effects on the frequency
of alleles that increase sex or recombination and on the
LD between selected loci. When demes are large, the
frequency change at the modifier locus is intermediate
between the value expected in a single population of size
2N and that in an unstructured population of size 2nN;
whereas when demes are small (simulation results), the
frequency change at the sex or recombination modifier
locus is larger than expected for both migration limits.
Unlike a single unstructured population, the genetic
associations generated by drift with selection do not

vanish when the total population size gets very large or
when local deme size gets very small. As a consequence,
selection for sex and recombination is effective in a
structured population under a broad range of conditions.
Limits of the approach and perspective: The analytic
model developed by BARTON and OTTO (2005) and ex-
tended here to structured populations assumes that
within-deme drift is weak enough that beneficial alleles
sweep at both loci (i.e., that Ns > 1). Furthermore, both
our simulations and analysis assume that initial benefi-
cial allele frequencies are relatively high (py = 1%) and
do not vary substantially among demes. These condi-
tions might be met in a weakly structured population
undergoing an environmental change with selection on
standing variation. In addition, our approximations as-
sume that (i) selection is not too strong relative to mi-
gration (and relative to recombination in the case of the
QLE approximation) and that (ii) the effect of the
modifier on the recombination rate is weak. More theo-
retical work is needed to relax these assumptions and de-
scribe the full spectrum of effects that population structure
can have on the development of disequilibria, the spread
and fixation of beneficial alleles, and the evolution of
recombination. In addition to being often subdivided,
natural populations may also experience heterogeneous
selection across habitats or epistatic selection across
loci. Both factors can generate LD and influence the
evolution of recombination (LENORMAND and OTTO
2000). Including weak epistasis in our model should be
possible [by modifying function fin (1)], but modeling
heterogeneous selection might be complicated by the
fact that we consider constant deterministic trajectories
across demes. In any case, the interaction of these factors
with population structure remains to be fully explored.
Implications for the theories of the evolution of sex
and empirical tests: Our results suggest that drift could
be an important factor favoring sexual reproduction,
even in infinite populations, provided that these pop-
ulations are subdivided into demes of finite size. This
could be relatively common in natural populations, which
almost always exhibit some level of structure. However,
the advantage of sex or recombination due to the HRE
can be weak if selection is too weak and the linkage is not
tight enough. Consequently, particularly when some
cost of sex is included (e.g., increased duration of cell
division in isogamous species or twofold cost in anisog-
amous species), sex/recombination may evolve only in
populations of intermediate size and under rapid envi-
ronmental change with strong selection (OTTO and
BarToN 2001; OTTO and LENORMAND 2002). We showed
that in a metapopulation, a weak sex modifier can over-
come the twofold cost over a much broader range of
population size and for weaker—but still substantial—
selection. Similarly, population structure can increase
the advantage of segregation (AGRAWAL and CHASNOV
2001; OtTo 2003) and contribute to the maintenance of
sexual reproduction. Whether the rate of environmental
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change and the strength of selection are sufficient
in nature for beneficial mutations to drive the evolution
of sex remains, however, an open question. Nevertheless,
all experimental evidence demonstrating an advantage
to recombination relied on either strong artificial selec-
tion (see OTTO and LENORMAND 2002) or abrupt envi-
ronmental change (COLEGRAVE 2002; GODDARD el al.
2005).

Most of the benefit of recombination is gained by a
modest amount of sex whereas the twofold cost of sex is
proportional to the rate of sex. As a consequence, the
evolution of high rates of sex remains difficult to explain.
Our results show that given substantial directional multi-
plicative selection and population structure, a low rate of
sex (with the twofold cost) is stable against complete
asexuality even in very large populations. The evolution
of higher rates of sex seems unlikely in our two-locus
study. However, when considering the evolution of sex vs.
asex instead of recombination (i.e., when a twofold cost
applies), modeling many loci is particularly important as
a sex modifier changes recombination rates over the
whole genome. As suggested by BARTON and OT1TO (2005),
our model could be extended to several loci by sum-
ming over pairwise LD. The general matrix recursions
[(21) and (24)] that describe the interplay of drift and
migration on metapopulation moments should remain
unchanged in this context. Although they did not con-
sider a twofold cost, simulations by ILES et al. (2003)
showed that adding more loci for a given additive fitness
variance resulted in a greater advantage to recombina-
tion in a panmictic finite population and in a larger
range of population sizes where this advantage is sub-
stantial. More work is needed to determine quantitatively
the magnitude of the HRE in structured populations with
numerous loci and to determine the amount of sex and
recombination that is ultimately favored.

An empirical prediction from our analysis is that there
should be a positive correlation between levels of pop-
ulation structure and recombination rates. However, us-
ing the usual F;, to measure population structure may be
misleading. As shown in our model, the effect of structure
on linkage disequilibria and on selection for recombina-
tion is not simply determined by £, [see (26), (27), and
(29)] but depends in a complicated way on recombina-
tion rates, migration rates, and the number and size of
demes. Moreover, the power of this approach is weakened
by the fact that species will differ in their genomic maps,
their history of selection, and their total population size.

Our analysis also predicts how linkage disequilibria
should vary across a genome in the presence of selection
and drift but in the absence of epistasis. In a weakly
structured population, with weak multiplicative selec-
tion and loose linkage, using the QLE approximations
(26), we can find a simple relationship between I,
average LD, and the spatial covariance between allele
frequencies m for any pair of genes separated by r
recombination units:

_ A]Ak 1—-2r
X - — .
n—« F;[ 2N1"

Keeping in mind the various assumptions made in the
QLE analysis, there should be a linear relationship be-
tween LD and A;A(3 — r)/r measured for different
pairs of loci if the Hill-Robertson effect is an important
mechanism shaping the disequilibria. This prediction
has the nice property that it does not depend on the
strength of selection, because AjAkis measured, not
estimated. However, this spatial covariance might often
be too small (€F) to be correctly measured and one
needs to know which allele is favored at each locus. This
prediction illustrates that the effect of the HRE on LD
may be more readily detected in a structured than in a
panmictic population.

Summary: In this article we develop explicit recur-
sions for the effect of drift, selection, and migration in a
three-locus system under the island model. These re-
cursions allow us to quantify the effect of structure on
the production of linkage disequilibrium between two
selected loci by drift in the presence of selection (the
Hill-Robertson effect) when deme size is large. We find
that, on average, negative disequilibria develop among
selected loci. Because of these negative associations
among favored alleles, modifier alleles that increase the
rate of recombination spread. The rate of this spread
is much more substantial in a structured population,
contributing to a plausible explanation for why sex and
recombination are so ubiquitous.
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APPENDIX A: MATRIX NOTATIONS

Explicit expression of the vector function f: The
deterministic changes in allele frequencies and link-
age disequilibrium after multiplicative selection and
recombination are given by the vector function f =
{fis Ju> Jir}> from BarTON and OTTO (2005),
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where &; = 1+s;(x — 1/2), b, = 1+s5(x — 1/2), and
W = ;b +s;5,x; are the mean fitnesses of the popula-
tion, and x = {xj, X x]k} is the vector of allele frequencies
and LD at the previous generation. (Alc) shows that mul-
tiplicative selection alone cannot produce but may change
the linkage disequilibrium (xj is proportional to x;).

Exact expressions for the matrices Dy, Dy, and Dj:
The first and second partial derivatives of the vector
function f with respect to the three variables x;, x;, and x;,
evaluated along the deterministic trajectory x*, are the
elements in matrices Dy, Dy, and D3. These derivatives can
be computed directly from (Al) and are also given in
APPENDIX B of BARTON and OT1TO (2005). For each vari-
able in dx (resp. dx?), the corresponding row in matrix Dy
(resp. Dy) is directly computed by identification to the
coefficients of the first- (resp. second-) order Taylor series
expansion of dx, = f(x + dx) — f(x), the difference
between the stochastic and deterministic trajectories
after selection [see (3)]. The 3 X 3 matrix D; contains
the first partial derivatives of f, which multiply the
elements of dx in (4), and equals the gradient of f
at point x*,

(Alc)
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where a;=1 — sj2/4 and @, =1 — s;/4. Similarly, the 3 X 6
matrix Dy contains the second partial derivatives of f,
which multiply the elements of dx* in (4), as well as the
coefficient %
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Note that each term in Dy is negative, which demon-
strates that all variances and covariances of deviations
will tend to favor negative deviations with the term
Dodx*. Similarly, for each variable in dx?, i.e., for each
{dx,,dx,,}(a‘b)ev, the corresponding row in the 6 X 6
matrix D3 is obtained by identification to the coeffi-
cients of the Taylor series expansion of the products of
deviations after selection and recombination (f,(x +
dx) — f,(x)) (fp(x + dx) — f,(x)). We then obtain, for the

two-locus system:
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Matrices D;, Dy, and D3 were computed using Mathe-
matica (WOLFRAM 1991) and are available upon request.
The values of xjand x; in ¢, and &;, are evaluated along
the deterministic trajectory (x; = x, x;, = x¥, and x, =
xf = 0).

Exact moments introduced by the multinomial
sampling: The adult population is sampled from the
surviving juveniles according to a multinomial distribu-
tion, as in the standard Wright-Fisher model. Following
BarTON and OT1TO (2005), the moments of the multi-
nomial distribution are used to determine the expected
values of the perturbations:

& 0
Efj=1¢8& ;= 0 . (A5)
g —xr/2N

The variances and covariances of perturbations are
given by

b[gf] x(1 — %)
E[L;L) i
o JEGG [ _ 1 —xi (2% — 1)
e = E[G]] TN x(1 = %)
E[Cr8u) —xj(2x, — 1) (
E[g] x(1 = ) (1 = ) + (205 = 1)(2x — D —

(A6)

Large deme size approximation: The sources of neg-
ative deviations E[ dx,] are the variances and covariances
of deviations, which are of order O(dx*). Consequently,
in our approximation for large population size, terms
in dx,/2N are o(dx’) and are negligible. Therefore,
although the actual sampling is made from populations
following stochastic trajectories (x, = xi + dx,), the
values of E[{,] and E[{,{;] are approximately indepen-
dent of the actual values of the deviations, dx,. Thus, the
perturbations caused by drift within a generation are
determined by the population size and the allele fre-
quencies on the deterministic trajectory. Note that this
result explains why terms in E[{ ,dx,] were dropped from
(8). The approximation for large population size of the
exact expressions of E[{] and E[{?] is thus obtained by
replacing any x, by x¥ in (A5) and (A6), so that

E[E?) = QLN +0o(N"') and E[f=0+0o(N"'), (A7)
where ¢ = {x(1 — x),0,0, x7(1 — x%), 0, x*(1— x)
xi(1— xj)} is a 1 X 6 vector with the nonzero terms
equal to the genetic variances of x;, x;, and x;, evaluated
along the deterministic trajectory.

Three-locus recursions: When including a modifier
locus, 7, that modifies the recombination rate between
loci j and k, four additional variables are needed to
describe the system: the allele frequency at the modifier
locus (x;) and the three additional LD that are defined
when including locus @ (x;;, xz, and x;,). We define new
deviation vectors including these variables: the 1 X 7
vector dx of first-order deviations, the 1 X 28 vector dx>

of second-order deviations, excluding the repeated
products, and the three corresponding metapopulation
moments dx, dx?, and dx’. We then follow the same
method as that described for the two-locus model. The
recursions for the deterministic change, after one round
of recombination and selection, for the four additional
variables can be found in (A2c¢)-(A2e) of BARTON and
OT110 (2005). From these recursions, and in the same
way as that for the two-locus model, we generate the 7 X 7
matrix Dy, the 7 X 28 matrix Dy, and the 28 X 28 matrix
D3 (available upon request). As in the two-locus model,
the multinomial sampling effect is negligible on the
vector E[dx], while it introduces variance in the vectors
E[dx?] and E[dx"]. Finally, the effect of migration on the
moments in a subdivided population is exactly the same
as that for the two-locus model except for the three-locus
linkage disequilibrium dx;;, (see APPENDIX B).

APPENDIX B: EFFECT OF MIGRATION ON ALLELE
FREQUENCIES AND LINKAGE DISEQUILIBRIA
IN THE »ISLAND MODEL

Letus consider a focal deme 7, from which a fraction m
of individuals emigrate, and into which a comparable
number of individuals immigrate from all other demes.
Let v[i] be the vector containing the frequencies of
multilocus haplotypes in deme i After migration, the
new genotype frequency vector is given by

vii]" = (1 — m)v[i] + m ! 1 i vii], (B1)

which can also be written
v[i]' = (1 — me)v[i] + mev, (B2)

where me = mn/(n — 1) and v = (1/n) > ", v[{] is the
vector giving the haplotype frequencies in the whole
population (or equivalently in the migrant pool). This is
exactly the recursion for a two-island system where one
deme is the focal deme i and the other is the migrant
pool (with haplotype frequency vector v).

This result is valid for any number of loci, but let us
first consider the two-locus case. For any variable {x,} .
ata given time, let us denote the difference between the
value of x,in deme ¢ and the mean of x, over all demes
by A,[i] = x,[i] — %,. The allele frequencies and linkage
disequilibrium in the migrant pool (denoted by the in-
dex i = mp) are given by

xi[mp] = ;
xk[mp] =X (BS)
x]k[mp] = R]‘k + A]Ak,

where
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is the covariance between allele frequencies at loci jand
k, taken across demes, i.e., the spatial covariance be-
tween allele frequencies in the whole population (cf.
also NEr and L1 1973). The recursion for the effect of
migration on allele frequencies and LD in the focal
deme i is the same as that for the two-island system
(given, e.g., in BARTON and GaLE 1993), where we use
the values of x,[mp] given in (B3) for the other deme
(migrant pool). The change due to migration 3,,[x[Z]]
on the vector x[¢] of allele frequencies and LD in the
focal deme ¢is thus given by

Bm[xjm] 7m€Ajm
ulxli] = {smmw} - {  —mi }
B 25 [d]] —me(Ajild] — AjAg)+me(1— me)Aj[d] Ag[d]
(B5)

Taking the average across demes of 8,,[x[¢]] in (B5), the
effect of migration on the average allele frequencies and
LD in the whole population (i.e, on X = {X;, %, X })
gives recursion (18). For the three-locus system, re-
cursion (18) has to be changed to include the effect of
migration on the other two-locus linkage disequilibria
(x; and x;), which is obtained simply by switching in-
dexes: for example, the change in the linkage disequi-
librium dx;; is m.(2 — m.)A;A;. However, the effect of
migration on the three-locus linkage disequilibrium x;;,
has to be computed. Following BARTON and TURELLI
(1991) we define the three-locus linkage disequilibrium

X = cov(X;, Xj, Xp) = > vx(X; — E[Xi])(X; — E[X}]) (X, — E[Xi]),

* (B6)
where, for any diallelic locus /, X;is a binary variable with
value 1 for one of the alleles and 0 for the other, and vyis
the frequency of a given three-locus haplotype {X; X
X} in the population considered (i.e., either the focal
deme 7or the migrant pool mp). The change in x;; for a
given deme in the n-island model can be computed as in
a two-island system with migration between the deme
considered and the migrant pool (deme mp). The value
of x;[mp], the three-locus LD in the migrant pool
relative to its average across demes x;;, is

xijk [rnp] = %Uk — (A,A]Ak + A,A]k + Aink + AkAz]) (B7)

Then, from (B2), the change in the average x;; by mi-
gration is

S n[Fijn] = me (2 — me) (Al + Ay + AjAy)

- (B8)

— Me (3 —2me (3 — me) ) AiAjA.
Taking into account the fact that any A= dx,, — dx, is of
the order of deviations dx,, and removing O(dx’) terms,
we finally obtain the large-deme approximation

S, [qu] = me(Q — me)(A,A]k + AkAI] + A]Azk) + o(de).
(B9)



