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ABSTRACT

Allozyme and PCR-based molecular markers have been widely used to investigate genetic diversity and
population genetic structure in autotetraploid species. However, an empirical but inaccurate approach was
often used to infer marker genotype from the pattern and intensity of gel bands. Obviously, this introduces
serious errors in prediction of the marker genotypes and severely biases the data analysis. This article
developed a theoretical model to characterize genetic segregation of alleles at genetic marker loci in au-
totetraploid populations and a novel likelihood-based method to estimate the model parameters. The
model properly accounts for segregation complexities due to multiple alleles and double reduction at au-
totetrasomic loci in natural populations, and the method takes appropriate account of incomplete marker
phenotype information with respect to genotype due to multiple-dosage allele segregation at marker loci in
tetraploids. The theoretical analyses were validated by making use of a computer simulation study and their
utility is demonstrated by analyzing microsatellite marker data collected from two populations of sycamore
maple (Acer pseudoplatanus L.), an economically important autotetraploid tree species. Numerical analyses
based on simulation data indicate that the model parameters can be adequately estimated and double
reduction is detected with good power using reasonable sample size.

POLYPLOIDY has played an important role in the
evolutionary diversification of up to 80% of angio-

sperm species (Grant 1971; Lewis 1980; Otto and
Whitton 2000; Soltis and Soltis 2000). Two types of
polyploids can be distinguished according to their ge-
nome origin. Allopolyploids are the product of an inter-
specific hybridization event and subsequent chromosome
doubling, while autopolyploids originate from the whole-
genome doubling, likely by fusion of unreduced con-
specific gametes. Because bivalents are always formed
between pairs of chromosomes with the same origin at
meiosis, allopolyploids display disomic inheritance. In
contrast, autopolyploids have more than two sets of ho-
mologous chromosomes, show multivalent chromosome
pairing at meiosis, and display polysomic inheritance.
The complexities in modeling polysomic inheritance
lie in two major aspects: segregation of multiple dosage
alleles at individual loci and the occurrence of double
reduction, the phenomenon by which sister chromatids
enter into the same gamete (Mather 1936). Another
distinct feature in the population genetics of polyploids
is the formation of partial heterozygotes. For example,
when two alleles (A1 and A2) segregate at a locus in an

autotetraploid population, there are three types of par-
tial heterozygotes: A1A1A1A2, A1A1A2A2, and A1A2A2A2.

For their significance in evolutionary biology and
agriculture, autopolyploids have attracted increasing
research efforts at both theoretical and experimental
scales (Ronfort et al. 1998; Luo et al. 2000, 2001, 2004;
Mahy et al. 2000; Lopez-Pujol et al. 2004). Furthermore,
rapid advances in the techniques of molecular biology
and computer technology have made the genetical anal-
ysis of autopolyploids more tractable than ever before
(De Winton and Haldane 1931; Fisher 1947). Allo-
zyme and DNA-based microsatellite markers have been
used to investigate the divergent heterozygosity between
autotetraploids and their parental diploids (Mahy et al.
2000; Hardy and Vekemans 2001), to infer the genetic
mode of autopolyploidy (Lopez-Pujol et al. 2004), and
to assess population structure and gene flow in autotet-
raploid species (Ronfort et al. 1998). Thralland Young
(2000) developed a computer program, AUTOTET, for
calculating allele frequencies of genetic markers in auto-
tetraploid populations. However, it must be pointed out
that to use the program, one has to empirically infer ge-
notypes of the markers from inspecting the pattern and
intensity of electrophoretic gel bands (for example, Lopez-
Pujol et al. 2004). Obviously, diagnosing the intensity of
gel bands could be unreliable or impossible for the marker
data generated, for example, from DNA sequencers.
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In this article, we develop a likelihood-based method
for calculating allele frequencies of genetic markers in
a random-mating autotetraploid population. The method
accounts properly for the problem of missing informa-
tion of marker phenotype in regard to the correspond-
ing genotype and for the presence of double reduction.
It can be used to analyze the genetic structure of auto-
tetraploid populations by making use of allozyme and
PCR-based molecular markers. The method is demon-
strated by analyzing a data set consisting of five mi-
crosatellite markers scored on two populations of Acer
pseudoplatanus L., an autotetraploid tree species.

THEORY AND METHODS

Model and notation: We consider segregation of al-
leles at a locus in a random-mating autotetraploid pop-
ulation. Let L be the number of alleles, A1, A2, . . . , AL,
segregating in the population and the frequencies of
the alleles be p1; p2; . . . ; pL, respectively. The coefficient
of double reduction, which is the probability of sister
chromatids ending up in the same gamete in meiosis
(Mather 1936), at the marker locus is denoted by a.
Geiringer (1949) found that the equilibrium distribu-
tion of zygotic genotypes is given by the expansion of
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After algebraic simplification, Equation 1 becomes
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It can be seen that there are as many as cðL; 4Þ ¼
LðL1 1ÞðL1 2ÞðL1 3Þ=4! distinct genotypes at the
marker locus (Luo and Ma 2004). To ease the following
analysis, we classed the individual genotypes into three
groups according to the number of double-reduction
gametes they carried and illustrated the equilibrium
genotypic distribution in Table 1.

TABLE 1

The genotypic distribution at a single locus with L alleles in a random mating autotetraploid population

Zygotes Genotypes Probabilities No. of terms

Individuals carrying two DR gametes [39a2=ð21aÞ2]
Homozygotes AiAiAiAi (1 # i # L) p2

i L
Heterozygotes AiAiAjAj (1 # i , j # L) 2pipj LðL � 1Þ=2

Individuals carrying one DR gamete [312að1 � aÞ=ð21aÞ2]
Homozygotes AiAiAiAi (1 # i # L) p3

i L
Heterozygotes AiAiAiAj (1 # i , j # L) 2p2

i pj LðL � 1Þ=2
AiAjAjAj (1 # i , j # L) 2pip2

j LðL � 1Þ=2
AiAiAjAj (1 # i , j # L) p2

i pj 1 pip
2
j LðL � 1Þ=2

AiAiAjAk (1 # j , k # L) 2pipjpk LðL � 1ÞðL � 2Þ=6
AiAjAjAk (1 # j , k # L) 2pipjpk LðL � 1ÞðL � 2Þ=6
AiAjAkAk (1 # j , k # L) 2pipjpk LðL � 1ÞðL � 2Þ=6

Individuals carrying no DR gamete [34ð1 � aÞ2=ð21aÞ2]
Homozygotes AiAiAiAi (1 # i # L) p4

i L
Heterozygotes AiAiAiAj (1 # i , j # L) 4ðp3

i pj 1 pip
3
j Þ LðL � 1Þ=2

AiAiAjAj (1 # i , j # L) 6p2
i p

2
j LðL � 1Þ=2

AiAiAjAk (1 # i , j, k # L) 4p2
i pj pk LðL � 1ÞðL � 2Þ=6

AiAjAjAk (1 # i , j, k # L) 4pip2
j pk LðL � 1ÞðL � 2Þ=6

AiAjAkAk (1 # i , j, k # L) 4pipjp2
k LðL � 1ÞðL � 2Þ=6

AiAjAkAl (1 # i , j, k , l # L) 4pipjpkpl LðL � 1ÞðL � 2ÞðL � 3Þ=4
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Analysis and statistical inference: The genotypic dis-
tribution involves L independent unknown parameters:
a; p1; p2; . . . ; pL�1 since

PL
i pi ¼ 1. When the individual

genotypes are distinguishable directly from the pheno-
type data, estimation of the double-reduction and allelic
frequency parameters becomes trivial. However, there
is no one-to-one relationship between genotype and
phenotype at any genetic markers in the autotetraploids
(Luo et al. 2000). To estimate the model parameters,
one has to work with phenotype data. For simplicity
but without loss of generality, we denote the phenotype
of an autotetraploid individual at a marker locus by
the number of distinct gel bands scored at the marker
locus. For a given dominance mode of the markers, it is
easy to convert the marker genotype distribution into
the corresponding phenotype distribution. For exam-
ple, the genotype distribution tabulated in Table 1 can
be transformed into the phenotype distribution that is
summarized in Table 2 when the marker alleles are
assumed to display codominant inheritance. It can be
seen from Table 2 that a phenotype provides full infor-
mation of the corresponding genotype only if the phe-
notype is represented as four distinct bands; i.e., the
presence of four different alleles and, in most cases,
an individual genotype cannot be inferred directly from
the corresponding phenotype. A general form for con-
verting the genotypic distribution (Table 1) into the phe-
notypic distribution (Table 2) is fx ¼

P
h2x gh , where the

summation is over all genotypes that correspond to the
same phenotype, x¼ i (one band), ij (two bands), ijk (three
bands), or ijkl (four bands). gh is the probability of geno-
type h that is compatible with phenotype x. For example,
there are three genotypes (AiAiAiAj, AiAiAjAj, and AiAjAjAj)
that are compatible with phenotype ij; thus fij, the prob-
ability of this phenotype, equals f18a2pipj 136að1�aÞ
½p2
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2
j �14ð1�aÞ2½4p3
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j �g=ð21aÞ2 as
given in Table 2. Let n be the number of individuals
randomly sampled from the population under question
and m be the number of different phenotypes observed in
the sample. The sample can be divided into phenotype
groups for which there are ni, nij, nijk , and nijkl of indi-
viduals with one, two, three, and four bands, accordingly.
The logarithm of the likelihood function of the observed
phenotype data given the model parameters is given by
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Differentiating Equation 4 with respect to a gives
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where
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in which fi, fij, and fijk are given in Table 2. The
maximum-likelihood estimate (MLE) of the unknown
parameter, a, can be solved from setting the derivative
equation to zero as

TABLE 2

The phenotypic distribution at a single locus with L alleles in a random-mating autotetraploid population

Phenotypes
(probability) Form of the probability [3ð21aÞ�2] Observations No. of terms

One band ( fi) 9a2p2
i 1 12að1 � aÞp3

i 1 4ð1 � aÞ2p4
i ni (1# i#L) L

Two bands ( fij) 18a2pipj 1 36að1 � aÞ
�
p2
i pj 1 pip

2
j

�
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�
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i pj 1 6p2
i p
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j

� nij (1# i, j #L) L(L � 1)/2

Three bands ( fijk) 72að1� aÞpipjpk 1 48ð1� aÞ2
3�

p2
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2
j pk 1 pipjp

2
k

� nijk (1# i, j , k#L) L(L � 1)(L � 2)/6

Four bands ( fijkl) 96ð1 � aÞ2pipjpkpl nijkl (1# i, j , k, l #L) L(L � 1)(L � 2)(L � 3)/24
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â ¼ 2c
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in which c ¼
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Setting the derivative Equations 8 to equal zero, we ob-
tain L � 1 linear equations in the form of

AP ¼ B; ð12Þ

where A ¼ ðaijÞL�13L�1 is a square matrix with aii ¼
ciL 1 ci and aij ¼ ciL , B ¼ ðc1L; c2L; . . . ; cL�1LÞT, and P ¼
ðp1; p2; . . . ; pL�1ÞT. Solving Equation 12 yields the MLEs
of allelic frequencies p̂1; p̂2; . . . ; p̂L�1. In fact, Equations
6 and 7 and Equations 11 and 12 represent an EM

algorithm for calculating the maximum-likelihood esti-
mates of the model parameters. The algorithm involves
iterating the two steps: the expectation step that cal-
culates the posterior probabilities according to Equa-
tions 6 and 11 and then the maximization step that
calculates the maximum-likelihood estimates of the model
parameters from Equations 7 and 12 with j’s and h’s
being calculated from the previous expectation step.
These two steps are iterated until the sequence of the
likelihood function (4) converges. In contrast, the MLEs
of marker allele frequencies can be simplified as p̂i ¼
ð2ni 1

P
j 6¼i nijÞ=2n in diploid populations.

It is feasible to create a likelihood-based statistical test
for the presence of double reduction with the MLEs,
â; p̂1; . . . ; p̂L�1. In fact, the test statistic given by

x2
d:f :¼1 ¼ 2 log½‘ðâ; p̂1; . . . ; p̂L�1jni ; nij ; nijk ;nijkl Þ=‘ð0; p̂1; . . . ; p̂L�1jni ; nij ; nijk ;nijkl Þ�

ð13Þ
has an asymptotic chi-square distribution with 1 d.f. and
can be used to test the significance of double reduction
at the locus under question.

Test for Hardy–Weinberg hypothesis: The above
analysis is based on the assumption that segregation of
the marker alleles follows the Hardy–Weinberg equilib-
rium; i.e., frequencies of marker genotypes are deter-
mined by the coefficient of double reduction and the
relevant allele frequencies. With the MLEs of the model
parameters, the expected genotype (or phenotype) fre-
quencies can be calculated and thus a chi-square statistic
with a form of

x2 ¼
XK
i¼1

ðOi � EiÞ2

Ei
ð14Þ

can be constructed to test for significance of the hypo-
thesis. It should be pointed out that the number of seg-
regating alleles in the population might be so large for
the sample size that the numbers of individuals for most
genotype classes are too small for the chi-square test to
be reliable. To avoid this problem, we suggest that the
expected number of the phenotype classes that is .1 be
used to calculate the chi square.

Estimation of genetic heterozygosity: With the MLEs
of the allelic frequencies, one can estimate genetic
heterozygosity at marker loci. The genetic heterozygos-
ity, which accounts for the distinct allelic constitutions
of tetraploid genotypes, was defined as the probability of
any two alleles being not identical in a given genotype
(Bever and Felber 1992; Thrall and Young 2000). In
the present context and notations, the observed genetic
heterozygosity can be calculated from

HO ¼ 1

6n

nX
6nijkl 1

X
5nijk1

X
nij ½3ðhij21hij31hij41hij6Þ

1 4ðhij1 1hij5Þ�
o
; ð15Þ

whose expectation is given by
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When marker data are collected from k subpopula-
tions of a tetraploid species, one can calculate marker
heterozygosity for each of these populations according
to the above analysis. Let Hi be the heterozygosity in the
subpopulation I, and HI ¼

Pk
i¼1 Hi=k. We define forms

of Wright’s F-statistics for autotetraploids by assimilating
that in diploids (Hartl and Clark 1997) as

FIS ¼
�H S �HI

�H S
ð17Þ

and

FST ¼ HT � �H S

HT
; ð18Þ

where HS ¼
Pk

s¼1 HE=k and HT is the expected hetero-
zygosity of an equivalent total population of all the sub-
populations under the Hardy–Weinberg equilibrium.

NUMERICAL ANALYSES

Simulation study: To validate the method presented
above and to investigate its properties, we set up a
simulation study to mimic segregation of alleles at a

single marker locus in autotetraploid populations at
equilibrium. The simulation model allows us to vary
the number and frequencies of marker alleles and to
simulate different values of the coefficient of double
reduction. For any given simulated parameters, individ-
ual genotypes were randomly sampled from the simu-
lated population for which the genotypic distribution
is defined in Table 1. The sampled genotypes were con-
verted into phenotypes according to Luo et al (2000).
The simulation study considered the segregation of five
marker alleles with either an equal frequency or dif-
ferent frequencies in populations of different sample
sizes and two values of the coefficient of double reduc-
tion, a ¼ 0.05 and 0.1, at the marker locus.

Tabulated in Table 3 are the means and standard de-
viations of the MLEs of the coefficient of double reduc-
tion and allelic frequencies over 100 repeated simulations,
together with the simulation parameters. Also, empiri-
cal power, b̂, is listed for detecting significance of double
reduction, which was calculated as the proportion of
significant tests of double reduction in the repeated sim-
ulations. It can be seen from Table 3 that the parameters
are estimated adequately in all cases even with a sample
size as small as n¼ 50. Double reduction can be detected
with fairly good power when the sample size is not ,100
and when a ¼ 0.1. For a given sample size, double re-
duction is tested with larger power when marker alleles
are evenly distributed as compared to noneven distri-
bution of marker alleles. As expected, the standard de-
viation of the estimates decreases and the power of the
double reduction test increases with increasing sample
size.

Analysis of microsatellite data from two sycamore
maple populations: Sycamore maple (A. pseudoplatanus
L.) is a forest tree species native to central Europe and

TABLE 3

Means and corresponding standard deviations (in parentheses) of the maximum-likelihood estimates of simulated coefficient
of double reduction, a ¼ 0.05 or 0.1, and allelic frequencies pi (i ¼ 1, 2, . . . , 5) over 100 repeated simulations of

varying sample sizes, n

n p1 ¼ 0:2 p2 ¼ 0:2 p3 ¼ 0:2 p4 ¼ 0:2 p5 ¼ 0:2 â b̂ (%)

50 0.2014 (0.034) 0.1971 (0.033) 0.1988 (0.032) 0.2035 (0.033) 0.1993 (0.031) 0.0586 (0.053) 14
100 0.2012 (0.025) 0.2005 (0.023) 0.2006 (0.024) 0.1968 (0.023) 0.2009 (0.025) 0.0469 (0.035) 12
200 0.2007 (0.017) 0.1981 (0.016) 0.2008 (0.015) 0.1983 (0.017) 0.2021 (0.015) 0.0466 (0.30) 29
50 0.1980 (0.031) 0.1948 (0.031) 0.1972 (0.032) 0.2051 (0.034) 0.2049 (0.032) 0.0954 (0.062) 31
100 0.1980 (0.024) 0.2020 (0.024) 0.1971 (0.025) 0.1989 (0.020) 0.2042 (0.024) 0.0904 (0.045) 54
200 0.1998 (0.017) 0.1990 (0.017) 0.2005 (0.017) 0.2016 (0.017) 0.1991 (0.017) 0.0943 (0.032) 84

p1 ¼ 0:4 p2 ¼ 0:3 p3 ¼ 0:19 p4 ¼ 0:1 p5 ¼ 0:01
50 0.4011 (0.044) 0.3008 (0.039) 0.1929 (0.030) 0.0955 (0.022) 0.0097 (0.006) 0.0523 (0.051) 4
100 0.3999 (0.030) 0.2996 (0.029) 0.1918 (0.020) 0.0992 (0.016) 0.0095 (0.005) 0.0581 (0.040) 10
200 0.4009 (0.023) 0.3007 (0.020) 0.1894 (0.014) 0.0995 (0.013) 0.0095 (0.003) 0.0514 (0.034) 23
50 0.4043 (0.044) 0.2956 (0.046) 0.1872 (0.030) 0.1027 (0.025) 0.0101 (0.007) 0.0979 (0.069) 22
100 0.4026 (0.030) 0.2973 (0.025) 0.1888 (0.022) 0.1013 (0.016) 0.0100 (0.005) 0.0934 (0.054) 44
200 0.4015 (0.023) 0.3022 (0.019) 0.1872 (0.016) 0.0983 (0.011) 0.0109 (0.004) 0.0912 (0.042) 65

b̂ is the empirical power of the statistical test for double reduction.
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western Asia, growing especially in mountainous re-
gions. The species is an autotetraploid with a chromo-
some number of 2n¼ 4x¼ 52 (Darlington and Wylie

1955). Because of its economic and ecological impor-
tance, numerous plantations were established through-
out Europe during the last century. However, the genetic
structure and its mating system in natural populations
or in plantations remain unclear.

To explore the genetic variation pattern, gene flow,
and mating system of the species, Pandey et al. (2004)
have started developing microsatellite markers in this
species. For a proof-of-principle demonstration pur-
pose, we detailed here analysis of data of a marker, MAP-9,
which was scored for 133 and 80 individuals, respec-
tively, from two populations, Södderich and Weisswas-
sertal, near Göttingen in Germany. The marker data,
which were collected as peak value reads from the ABI
PRISM 3100 genetic analyzer (Applied Biosystems, Foster
City, CA/Hitachi, San Jose, CA), were converted into
gel-band-like phenotypes.

Table 4 summarizes the phenotypic distribution and
analysis of the marker data in the two sycamore maple
populations. It shows that the 133 and 80 individuals
sampled from the two populations can be grouped into
12 and 6 different phenotypic groups, respectively.
From the phenotype, seven distinct marker alleles are
observed in the Södderich population sample but only
five of these are present in the Weisswassertal popula-
tion sample. From the data sets, the maximum-likelihood
estimates are calculated for frequencies of the marker
alleles and the coefficient of double reduction by
making use of the method developed in this study. It
shows that marker alleles 1 and 3 are detected in the two
populations as the most frequently occurring alleles.

There is no evidence of double reduction at this marker
locus. The goodness-of-fit test demonstrates that seg-
regation of the marker alleles in both the popula-
tions agrees well with the Hardy–Weinberg equilibrium
(x2

d:f :¼6¼ 9:86;P . 0:13; x2
d:f :¼3¼ 3:56;P . 0:3). To make

the chi-square-based fitness tests more stable (Kendall
and Stuart 1961, p. 440), the analysis has excluded
those phenotype classes with expected sample observa-
tions ,1.0. In addition, we calculated genetic heterozy-
gosity (HO) at the marker locus using Equation 15 and
observed thatHO ¼ 0.6901 and 0.6833 for the Södderich
and the Weisswassertal populations, respectively. On the
basis of the observed genetic heterozygosity estimates
and their corresponding expected values that can be
calculated from Equation 16, the FST is estimated to be
0.001, suggesting trivial genetic differentiation between
the two populations.

DISCUSSION

There has been increasing interest in investigating
genetic diversity and population genetic structure of
autotetraploid species for understanding evolution-
ary impacts of polyploidy and the conservation biology
of the species (Brown and Young 2000; Mahy et al.
2000; Hardy and Vekemans 2001; Lopez-Pujol et al.
2004). This has been greatly promoted by the increas-
ing availability of allozyme and PCR-based DNA molec-
ular marker data in these populations. However, analysis
of the fast growing data sets of DNA polymorphic mark-
ers raises challenges to the development of appropri-
ate statistical methods and algorithms. The data sets
have been analyzed by empirically inferring individual

TABLE 4

Summary and analysis of microsatellite marker data collected from two Sycamore maple (Acer pseudoplatanus) populations,
Södderich and Weisswassertal

Södderich (n ¼ 133) Weisswassertal (n ¼ 80)

Phenotype Obs. Exp. Allele and p̂i Phenotype Obs. Exp. Allele and p̂i

1 0 1 0 0 0 0 81 67.14 1 0.4390 1 1 0 0 0 49 42.69 1 0.4418
1 0 1 1 0 0 0 27 19.30 2 0.0038 1 1 1 0 0 14 9.20 3 0.4418
1 0 1 0 0 1 0 4 6.72 3 0.4325 1 1 0 1 0 7 6.63 4 0.0525
1 0 1 0 1 0 0 4 5.64 4 0.0678 1 1 0 0 1 5 4.33 5 0.0384
1 1 1 0 0 0 0 2 1.00 5 0.0209 1 1 1 1 0 2 0.76 6 0.0254
1 0 1 0 0 0 1 1 3.02 6 0.0247 1 1 0 1 1 3 0.37
1 0 0 1 0 1 0 1 0.62 7 0.0113
1 0 1 0 1 1 0 6 0.31
1 0 1 1 0 0 1 4 0.46
1 0 1 1 1 0 0 1 0.86
1 0 1 1 0 1 0 1 1.02 â ¼ 0.0000 â ¼ 0.0001
1 0 1 0 0 1 1 1 0.17 x2

d:f :¼6 ¼ 9.86 x2
d:f :¼3 ¼ 3.56

â and p̂i are the maximum-likelihood estimates of the coefficient of double reduction and frequency of the i th marker allele.
The chi-square value, x2

d:f :, was calculated by sorting together those phenotype classes whose expected counts were ,1. Obs., ob-
served; Exp., expected.
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genotype from the intensity of gel bands (Soltis and
Soltis 1989; Wendel and Weeden 1989; Lopez-Pujol
et al. 2004). It is well known that this will be either
inaccurate or unfeasible for most PCR-based DNA mark-
ers. Thus, development of theory and methods for mod-
eling and analyzing these data sets meets the urgent
needs of the research area.

This article developed a theoretical model for char-
acterizing genetic segregation of alleles at genetic marker
loci, an autotetraploid population locus and a novel
maximum-likelihood-based method to estimate the pa-
rameters defining the population genetic model. The
model properly accounts for segregation complexities
due to multiple alleles and double reduction at tetraso-
mic loci in natural populations, and the statistical method
takes appropriate account of incomplete marker phe-
notype information with respect to the genotype due
to multiple dosage allele segregation at marker loci in
tetraploids. The theoretical analysis and methods de-
veloped in this study are validated by making use of a
computer simulation study and their utility is demon-
strated by analyzing microsatellite marker data collected
from two populations of sycamore maple (A. pseudopla-
tanus L.), an economically important autotetraploid
tree species. Numerical analyses based on simulation
data indicate that the model parameters can be ade-
quately estimated and double reduction is detected with
good power with a sample size of �100. Analysis of the
sycamore maple data illustrates the data format re-
quired by the statistical method and demonstrates how
the method can be used to predict various population
genetic parameters by using DNA molecular data in
autotetraploid species. A practical problem in real data
analysis might be that the number of segregating alleles
is too large in relation to reasonable sample sizes. Thus,
the sample size required for accurate parameter esti-
mation and efficient testing of double reduction may
depend largely on the number of segregating alleles;
the sample size considered here may be suitable only
when there are several marker alleles segregating in the
population.

Although the theory and methods developed in this
study were demonstrated for codominant markers, it is
feasible for their extension to dominant markers such
as RAPDs, AFLPs, etc. In fact, there are usually two seg-
regating alleles at these marker loci, i.e., a dominant
and a recessive allele; this greatly reduces the number of
possible genotypes and the number of possible pheno-
types at the locus and thus simplifies the model. In ad-
dition, the recessive allele will be phenotypically present
only when it is present in four copies.

Double reduction is one of the most distinguished
features of tetrasomic inheritance and also one of the
major difficulties in modeling tetrasomic inheritance
when compared to disomic inheritance. Butruille and
Boiteux (2000) exploited the impact of double reduc-
tion on the evolution of deleterious mutants in auto-

tetraploid genomes and found that low frequencies of
double reduction are enough to reduce equilibrium
frequencies, which are maintained at a selection and
mutation balance, by severalfold. This suggests the im-
portant effect of double reduction on the evolution of
the species. However, there are no proposals, either in
their study or in the literature, to address how to test for
the significance of double reduction in natural popula-
tions of the species. This study provides such a test and
thus fills a gap in the evolutionary study of autotetra-
ploid species.

The algorithm developed in this study was pro-
grammed in Fortran-90 computer language. The pro-
gram is available upon request from the corresponding
author.
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