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ABSTRACT

In this article, population-based regression models are proposed for high-resolution linkage disequi-
librium mapping of quantitative traitloci (QTL). Two regression models, the “genotype effect model” and the
“additive effect model,” are proposed to model the association between the markers and the traitlocus. The
marker can be either diallelic or multiallelic. If only one marker is used, the method is similar to a classical
setting by Nielsen and Weir, and the additive effect model is equivalent to the haplotype trend regression
(HTR) method by Zaykin et al. If two/multiple marker data with phase ambiguity are used in the analysis, the
proposed models can be used to analyze the data directly. By analytical formulas, we show that the genotype
effect model can be used to model the additive and dominance effects simultaneously; the additive effect
model takes care of the additive effect only. On the basis of the two models, F-test statistics are proposed to
test association between the QTL and markers. By a simulation study, we show that the two models have
reasonable type I error rates for a data set of moderate sample size. The noncentrality parameter ap-
proximations of -test statistics are derived to make power calculation and comparison. By a simulation study,
it is found that the noncentrality parameter approximations of [test statistics work very well. Using the
noncentrality parameter approximations, we compare the power of the two models with that of the HTR. In
addition, a simulation study is performed to make a comparison on the basis of the haplotype frequencies of

10 SNPs of angiotensin-1 converting enzyme (ACE) genes.

N genetics research, one important goal is to locate
and identify important genetic variants that are re-
lated to complex traits. With the development of dense
maps such as single-nucleotide polymorphisms (SNPs)
and high-resolution microsatellites in the human ge-
nome, enormous amounts of genetic data on human chro-
mosomes are becoming available (INTERNATIONAL SNP
Mapr WORKING GroOUP 2001; KONG et al. 2002; INTERNA-
TIONAL HAPMAP ConsorTIUM 2003; HapMap project,
http:/www.hapmap.org). The opportunities for a ge-
nomewide scan to map complex disease genes are tre-
mendous. It is important to build appropriate models
and useful algorithms in association mapping of com-
plex diseases to identify important genetic variants of
complex traits, for human, animal, or plant study.

In recentyears, there has been great interest in linkage
disequilibrium (LD) mapping (or association study) of
quantitative traits of complex diseases. One way is to use
diallelic markers such as SNPs in analysis. This approach
has been receiving much attention and there are quite
a lot of references to it in the literature (FULKER et al.
1999; GEORGE et al. 1999; ABECASIS et al. 2000a,b, 2001;
SnaMm et al. 2000; FAN et al. 2005). Another approach is
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to use haplotype data that may consist of a set of SNPs
(SCHAID et al. 2002; ZAYKIN et al. 2002; ScHATID 2004). The
haplotype data may provide more information on the
relation between DNA variants and complex traits than
that of any single SNP. Hence, it is important to in-
vestigate models and algorithms that are based on hap-
lotype data. In ScHAID et al. (2002) and ZAYKIN et al.
(2002), score tests are proposed for association between
complex traits and haplotypes, which can be ambiguous
owing to the unknown linkage phase of different hap-
lotypes. In ZAYKIN et al. (2002), the method is called hap-
lotype trend regression (HTR), which is very close to the
method of SCHAID et al. (2002) (see ScHAID 2004, p. 355,
for further explanation). HTR does not assume that
haplotype phases are known. MEUWISSEN and GODDARD
(2000) introduced a haplotype-based approach, which
assumes that haplotype phases are known. In addition,
mixed models are used to model the haplotype effectin
MEUwIsSEN and GODDARD (2000). Morris et al. (2004)
used a Markov chain Monte Carlo algorithm based on
the shattered coalescent model for fine mapping.

On the other hand, the direct available information is
genotypes by current genotyping technology, instead
of haplotypes. Hence, it is interesting to build models
by directly using genotype information; under these
models, the main effects of each marker are modeled,
which does not require phase information across the
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markers. If phase is unknown, presumably the haplotypes
would need to be estimated first, using a reconstruction
algorithm such as PHASE or EM algorithms (DEMPSTER
et al. 1977; M. STEPHENS el al. 2001; STEPHENS and
DonNELLY 2003). This may introduce bias into the sub-
sequent analysis, which would need to be investigated. It
is of real interest in making comparison of the genotype-
based models and the haplotype-based models. Inter-
estingly, MORRIS et al. (2004) and CLAYTON et al. (2004)
have observed that the haplotypes at SNPs may be only
slightly more advantageous or even less powerful for fine
mapping than the corresponding unphased genotypes.

Suppose that a quantitative trait locus (QTL) is located
in a chromosome region. In the region, a marker (or
two/multiple markers) is (or are) typed. In our previous
research, the markers are assumed to be diallelic (FaNn
and X10NG 2002). In the current article, the markers
can be either diallelic or multiallelic. Suppose thata pop-
ulation sample is available. For each individual in the
sample, both trait value and genotypes at the markers
are observed. We propose two regression models in as-
sociation mapping of QTL based on population genetic
data. One model is the “genotype effect model,” and
the other is the “additive effect model.” These two
models extend our previous research of high-resolution
LD mapping of QTL using diallelic markers (FAN and
XI10NG 2002). The model can be very easily performed
by using any statistical software in data analysis, or it can
be easily implemented by widely used language such as
C+ +. By analytical formulas, we show that the genotype
effect model can be used to model the additive and
dominance effects simultaneously; the additive effect
model takes care of additive effect only. On the basis
of the two models, [~test statistics are proposed to test
association between the QTL and markers. To investi-
gate the robustness of the proposed models and the
related F-test statistics, simulation studies are performed
to calculate the type I error rates. The noncentrality
parameters of [-test statistics are derived to make power
calculation and comparison. Moreover, the proposed
models are compared with the haplotype trend regres-
sion method by simulation study and type I error rate
analysis when two diallelic markers are used in the anal-
ysis (ZAYKIN et al. 2002). On the basis of the haplotype fre-
quencies of 10 SNPs of angiotensin-1 converting enzyme
(ACE) genes, a simulation study is performed to make
power comparison of the proposed models with the hap-
lotype trend regression method (KEAVNEY et al. 1998).

A software, CLAM_QTL, is written in C++ to im-
plement the proposed models and methods, which can
be downloaded from http: /www.stat.tamu.edu/~rfan/
software.html/.

METHODS

As the first step, we present models and methods by
using one marker. Here the marker can be either bi-

allelic or multiallelic. This article extends our previous
work (FAN and X10NG 2002). Similar results were worked
outindependently by colleagues at North Carolina State
University, although their language and notations are
slightly different (WEIR and COCKERHAM 1977; NIELSEN
and WEIR 1999, 2001). Then, the models and methods
are extended to use two/multiple markers in analysis.
On the basis of the models, F-test statistics are proposed,
and the related noncentrality parameter approxima-
tions of the Ftests are derived.

Analysis by one marker: Population models: Consider a
quantitative trait locus Q, which is located at an auto-
some. Suppose that there are two alleles Q; and Qs at the
trait locus with frequencies ¢ and ¢, respectively. In
a region of the QTL @, suppose that one marker A is
typed, which may be diallelic such as a single-nucleotide
polymorphism or may be multiallelic such as a micro-
satellite marker. Let us denote the alleles of marker A by
Ay, ..., A,, where m is the number of alleles. Suppose
that the marker A is in Hardy-Weinberg equilibrium
(HWE). Let the frequency of A; be Py,i=1,2,...,m.
There are J4 = m(m + 1)/2 possible genotypes, which
can be listed as A1Aq, ..., AyA,, AjAs, ..., A4A,, ...,
A1 Ay Accordingly, let By, ..., By Brgs <o 5 Bims -+ 5
B—1,m be the corresponding effects of the listed geno-
types on the quantitative trait. Let y be the trait value of an
individual with genotype G, = A;A;. Under an assumption
of normality, the trait value can be modeled as

y=wy+B;te (1)

where wis a row vector of covariates such as sex and age,
v is a column vector of regression coefficients of w, and e
is the error term. Assume that ¢ is normal N(0, o2). In
addition to the covariate effects, there are J, = m(m +
1) /2 parameters 3;;in model (1), where B;;= ;. Model
(1) treats each genotype effect as one parameter. Hence,
we callita genotype effect model. In practice, model (1)
may lead to large number of parameters.

Now let us denote the effect of allele A; as ay, i =
1, ..., m. Suppose the genetic effect is additive in a
sense of B;;=a; + @, 3, j=1, ..., m. Ifan individual has
quantitative trait value yand genotype G4 = A;A;, model
(1) can be modified as

y=wytao;to;te (2)

In addition to the covariate effects, there are m param-
eters a; ¢ = 1, ..., m, in model (2). Compared with
model (1), model (2) may significantly reduce the
number of parameters. Since it models only the additive
effect, we call it the additive effect model.

Property of model coefficients and association tests: As in
the traditional quantitative genetics, let abe the effect of
genotype Q; 0y, dbe the effect of genotype Q) Qs, and —a
be the effect of genotype Qo Qs (FALCONER and MACKAY
1996). Let ag = a + (g2 — q1)d be the average effect
of gene substitution and 8, = 2d be the dominance
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deviation. In addition, let . = a(q; — ¢) + 2dq; g2 be the
aggregate effect of the QTL on the trait mean in the
population. For i =1, 2, ..., m, let us denote Dy, =
P(Q1A;) — i Py, which are measures of LD between
QTL Qand marker A. Here P(Q,4;) is the frequency of
haplotype Q;A;. In APPENDIX A, we show that the regres-
sion coefficients of model (1) are given by

Bi]‘:M+OLQ[DA,Q/PA[+DA]Q/PA]}_SQDA,QDAjQ/[PA;PAf]-
(3)

In APPENDIX B, we show that the regression coefficients
of model (2) are given by

=p/2+agDsq/Pa, (4)

From Equations 3 and 4, itis clear that Bii =o;tay when
8p = 0, i.e, no dominance effect. Suppose that the
marker A and the QTL Qare in linkage equilibrium; i.e.,
Dso=0,i=1,2,...,m Then Equation 3 implies B;; =
w; Equation 4 implies that o; = p./2. Hence, models (1)
and (2) are reduced to

y=wy+pnte. (5)

Assume that the additive genetic effect is significantly
present, but the dominance genetic effect is not sig-
nificantly present; i.e., ap # 0 but 8o = 0. To test
association between the marker A and the QTL Q,
one may test hypotheses Hyo: o = -+ - = o, vs. Hyp: at
least two a;’s are not equal. To see this, note that the
hypotheses H,o: o = -+ = a,, is equivalent to H,:
Dp,g/Pa, =~ = Da,o/Ps,, since ag is significantly
different from 0. Thus, 0 = >~" | Dy,o = Da, o[l + Py, /
Py + .-+ Py /Py implies Dyo=0 and so
Dy, 0 =+ =D, 0 = Ounder Hy,. Hence, the hypotheses
H,p: 01 = - - - = a,,, vs. Hyp: atleast two o/’s are not equal to
each other are equivalent to Hyo: Dy, o =+ = Da, 0 =
0 vs. Ha1: atleast one Dy, is not equal to 0. Model (2) can
be used to map the QTL by an association analysis.

On the other hand, assume that both additive and
dominance genetic effects are significantly present at
the putative QTL @ i.e., ag # 0 and 85 # 0. To test
association between the marker A and the QTL Q, one
may test hypotheses Haqo: B11 =" =Bum=B12=---=
Bim="""=Bm-1,mvs. Haq1: atleast two B;/s are not equal.

Relation to our previous work: If the marker A has only
two alleles A; and Ay, FAN and X10NG (2002) proposed the
following model in association mapping of the QTL Q,

y=wy+ L+ xa04 T 2494 e, (6)
where x4 and z, are dummy random variables defined by

9Py,  ifGy=A1A

x4 =13 Py, — Py, if Gy = A1 Ag,

—2Py,  if Gy =AsAs

—P;,  ifGy=AlA @)
=1 PPy if Gy = A Ay,

—P;  if Gy=AgAy

and a4 and 84 are regression coefficients of the dummy
variables x4 and z4. The regression coefﬁcients are given
by OLA—DAIQOLQ/(PAIPA) and 8A— SQ/ P2
(FaN and Xi1onG 2002). It can be shown tha model
(6) is equivalent to model (1). Actually, the following
relations of the regression coefficients of the two models
can be shown: B, = p + 2Py,a4 — P{ 34, By = p +
(PA2 _PAI)G‘A+PA1PA28A) and 822 = Mn — 2PA10LA— P§18A
Similarly, model (2) is equivalent to y= wy + W + xgos +
¢, and we have the following relations 20,; = . + 2P4,004
and 209 = . — 2P4,04. The advantage of model (6) is
that the association effect is decomposed into summa-
tions of additive and dominance effects if Ais diallelic. If A
has more than two alleles, model (1) extends model (6),
and model (2) extends model y= wy + w + xgoy + e

Regression models: Assume that N individuals from a
population are available for study. Let us list their trait
values as y,, ... , yyand their genotypes as Gy, ... , Gan
For individual %, let x{ be the indicator function of ge-
notype A;A;and x;” be the indicator function of genotype
A;A; That is, they are dummy variables defined by

(@{1ﬁq%:mm (M{lﬁaﬂzm4
“ 70 else, %790 else,

where 4, j =1, 2,...,m i # j. Let X} = (xi’f e
x| xlﬁ), Cam f:zlym)T, k=1,2,..., N ie, X,
is a column vector of genotype indicator functions of
individual k. Here the superscript T denotes a vector/
matrix transpose. Denote M = (Biy,- -+, Boums Bros-- s
Bims---sBum_1.m)- The corresponding regression of
model (1) can be written as

w=wy+ X+ e, (8)

where subscript k indicates the corresponding quanti-
ties of indiVidual k

Similarly, let z ) be the number of alleles A; of ge-
notype Gy, i=1,2, ..., m, forindividual k. That is, 2

is a dummy variable deﬁned by

2 if G = AjA;
2N =i Gy = A4y, A
0 else.
Denote 7, = (" ..., 20 and s = (..., a,,)". Touse

model (2) for data analysis, the corresponding regression
model is

yk:wk'y-l-Z,:dJ%-ek. (9)

F-tests and noncentrality parameter appmximations It is
well known that the additive variance Gfp = 2q1 qga(, and
the dominance variance o2 e = =(qg) 8 .Leto® =02 T

2 + o2 be the total variance. Assume that there are no
covanates Let us denote X = (Xi,..., Xn) y= (31y .-+
yn)", and e = (ey,...,ey)". Then model (8) can be ex-
pressed as y = Xn + e By standard regression theory, the
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coefficients can be estimated by 1) = (X*X) ' X"Y. Let H
bea (J4 — 1) X J4 matrix defined by

1 -1 0 O0..0 O O
1 0-1 0..0 O
1 0 0-1..0 O O

(=

1 0 0 O0..0 -1 0
1 0 0 0..0 0 -1
Then, (H"ﬂ)T: (Bll - [3225 e Bll - Bmmr Bll - BI‘Z, e
Bi1 — Bim --- > B11 — Bm_1.m)- Hence, the hypothesis
H., 40 is equivalent to Hn = (0, ..., 0)". From GRAYBILL

(1976), Chap. 6, the test statistic of a hypothesis H,qq is
noncentral F( /4 — 1, N— J,) defined by

(Ja=1) X Ja

(HA)'[H(X™X) "H"] {(HA) N — ]

Y[y - X(X"X)'X Y  Ja—1’
where Iyis the N X Nidentity matrix. The noncentrality
parameter of the above Fstatistic iS N,,,qa = (HM)[H
(X*X)"'H"]"'(Hn)/0® Under the assumption of large
sample sizes N, we show in APPENDIX C the approximation

En,ad =

N
Mnaa &3 |02, B + 02 Rl . (10)

where Rj, is a general measure of the degree of link-
age disequilibrium between marker A and the QTL Q
defined by R2, =" 3% [P(QA;) — Pag)*/[Ps g
(Crow and Kimura 1970; Heprick 1987; MORTON
and Wu 1988; SHAM et al. 2000). Note that RXQ is the
x*-statistic of the m X 2 table of haplotype frequencies of
the marker A and trait locus Q. Approximation (10)
shows that the noncentrality parameter of test statistics
of the null hypothesis of no genetic effects of model (1)
is reduced by a factor of R:iQ for additive variance and by
a factor of RjQ for dominance variance.

Similarly, let us denote Z = (7, ..., Zy)". Then model
(9) can be expressed as y = Ziy + e. The coefficients can
be estimated by s = (Z72) ' Z"Y. Let Kbea (m— 1) X m
matrix defined by

1 -1 0 0..0 0 O
1 0-1 0...0 O O

1 0 0 -1 ...

S
)
S

1 0 0 O0..0 -1 0

1 0 0 O0..0 0 -1
Then, (Kb)™ = (o; — ag, ..., a; — a,,). Hence, the hypo-
thesis H,o is equivalent to Ky = (0, ..., 0)". From
GrAYBILL (1976), Chap. 6, the test statistic of the hypo-
thesis H, is noncentral F{m — 1, N — m) defined by

(m—1)Xm

(K$)"[K(2°2)"'K*)" (K§) N —m
Y[y —Z(Z°2)' 7Y

Fm,a: m_1~

The noncentrality parameter of the above Fstatistic is

Na = (KU)[K(Z°Z) "' K] ' (K) /0®. Under an assump-

tion of large sample sizes N, we show in APPENDIX D the
following approximation:

1 T T 7\—1 r11—1 NU; 2
)\m.a:?(KqJ) [K(Z°2) " K'](K{) ~ P Rip- (11)

This approximation (11) shows that the noncentrality
parameter \,, , is reduced by a factor of REQ for additive
variance. The dominance variance is not presentin A, ,.

Analysis by two/multiple markers: Population models
and association tests: If genetic data of two/multiple
markers are available, models (1) and (2) can be ex-
tended for association study of QTL. Most importantly,
the data of two/multiple markers may contain phase
ambiguity, i.e., phase unknown double heterozygotes. In
the following, we generalize models (1) and (2) to di-
rectly analyze genetic data of two markers. The princi-
ple, actually, can be applied to multiple marker data.

In addition to marker A, assume that a second marker
B is typed, which has n alleles denoted by By, ..., B,.
Suppose that the marker B is also in Hardy-Weinberg
equilibrium. Let the frequency of allele B, be Pg,,
k=1,2,...,n Thereare Jp=n(n+ 1) /2 possible geno-
types, which can be listed as B\ By, ..., B,B,, BiBs, ...,
B\B,, ..., B,_1B,. Let y be the trait value of an in-
dividual with genotype G, at marker A and genotype Gg
at marker B. Such as relations (7), define

2 if Gy = AjA;
ifGa=AA;, j#i
0 else,

—P? if Gy = AjA;

XA; — 1

) PaPa ifGa=AAy, jF

e —P§ i Gy =Aj4;
0 else, (12)
2 if Gg = BBy,

xpr=14 1 if Gg=ByB;, [#k
0 else,
—P;  if Gg= BBy
Py Py it Gg=BB;, l#k

2Bkl =

—P;  if Gg=BB

0 else.

If marker A has only two alleles A; and Ay, then x,;
defined above is closely related to x4, which is defined in
(7). Actually, it is easy to see the following relation
x4 + 2P, = x4 since Py, + Py, = 1.

To extend model (2) by using two markers A and Bin
the analysis, consider the following model

m—1 n—1
y=wy+to+ ZxAiOLA,;‘l‘ ZXBkaBk+e- (13)
i=1 k=1

In addition to the covariate effects, there are m + n — 1
parameters o, 0, Opp, =1, ..., m—1,k=1, ..., n—1
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in model (13). To see why model (13) extends model
(2), itis worthwhile to note that model (2) is equivalent
toy=wy+a+ S/, xyau + e Actually, the quantity
>or, x4 =2 implies that y = wy +a+ E:’;l Xai0a; T
e=wy+ Z:’;l Xpiloa; + /2] + x4,,00/2 + e if only in-
formation of marker A is used in the analysis; thus, o, =
a/2,a;, =0y +a/2,i=1,..., m— 1. Such as model
(2), model (13) takes only the additive effect into
account. Hence, we call it an additive effect model.
Similarly, model (1) can be extended to

m—1 n—1

y=wyta+ meam + ngkagk

+ Z ZAZJSALJ + Z 2prOpr T . (14)

1=i<j=m 1=k<i=n

In addition to the covariate effects, there are J, + Jp— 1
parameters &, &4, Qpp O4i5 Opy in model (14). Model
(14) takes both additive and dominance effects into ac-
count, and it is called the genotype effect model. Again,
model (1) is equivalent to y = wy + a + Z:’;l a0 T+
D i=ig=m 24045 T e.

Denote XA = (xAla ey XA(mfl))T, XB = (xBla ey
Xp(n—1))"> and Xy p= (X3, Xp)". Let us denote the additive
variance—covariance matrix of the indicator variables
XAi»  XBR bY Va= COV(XAU137 XAUB) = E(XAUBXAug)

EX, 5(EX} ;). Similarly, let Zy = (za12, -+, Z2a1m
ZA23s + o+ 5 ZA2mp + v s ZA(m—l)m))T’ Zp = (212, - > ZBIns

T T
ZB23s + v+ 5 AB2ms + v s Z'B(n,fl)n)) 5 and ZAUB = (Z,L ZI-;) .

Letus denote the dominance variance—covariance matrix
of the indicator variables 2,5, g by Vb = Cov(Zyup, Zaus) -
Fork=1,2, ..., n,letusdenote Dg,o = P(Q1 B;) —q1 Pg,,
which are measures of LD between QTL Q and marker B.
In APPENDIX E, we show that the regression coefficients of
models (13) and (14) are given by

QAL DAIQ
QA(m—1) 1 DA,HQ
=(Va/2 o
o (Va/2) P
QB(n-1) DanlQ
da12 [Pa,Da, g — Pa,Dayo)®
Baim—tym | _ -1 [Pa, \Dang = Pa,Da, 0l N
dp12 P [Py, Dp, 0 — Pp, D) ¢
OB(n—1)n [P, ,Dp,o — Pp,Ds, Q]2
(15)

The elements of matrices Vi and V, are provided in
APPENDIX E. Equations 15 show that the parameters of LD
(i.e., Da,g and Dy, ) and gene effect (i.e., agand d) are
contained in the regression coefficients. Models (13) and
(14) simultaneously take care of the LD and the effects of
the putative trait locus Q. The gene substitution effect o
is contained onlyin a4, ag; and the dominance effect 8,
is contained only in 8455 3. Therefore, Vj is called the
additive variance—covariance matrix; and Vp is called the
dominance variance—covariance matrix. The model (14)
orthogonally decomposes the genetic effect into a sum-
mation of additive and dominance effects.

In Fan and XI1oNG (2002), regression models are
proposed for LD mapping of QTL by diallelic markers.
Models (13) and (14) extend the models by using
multiallelic markers in LD analysis. On the basis of
Equations 15, we may use models (13) and (14) to test
the association between the trait locus Q and the two
markers A and B. Assume that the additive genetic effect
is significantly present, but the dominance genetic ef-
fectis notsignificantly present; i.e., OLQ# 0 but 8Q= 0.To
test association between the markers A and B and the
QTL Q, one may test hypotheses Hup,o: a1 = -+ =
QA(m—1) = Q1 =+ = QAB(p—1) = 0 vs. HABaI: at least one
o4 Op is not equal to 0. To see this, note that the
hypothesis Hyp,0 is equivalent to Dy, o = - - -
Do =---=Dp, o =0,since agis significantly differ-
ent from 0. On the other hand, assume that both ad-
ditive and dominance genetic effects are significantly
present at the putative QTL @; i.e., ap# 0 and 8, # 0. To
test association between the markers A and B and the
QTL Q, one may test hypothesis Hypaa0: 0041 = -+ =

= DAmle_ =

QAm—1) =Bl =" = Qp(n-1) = dp12="" =0 1m="""
6A(rrhl)m =0pig ="' =dp1, =" = SB(nfl)n =0 vs
Hpaa1: at least one ay;, apy, 8445 dpi is not equal to 0,
since both agand 3 are significantly different from 0.

Regression models, F-lests, and moncentralily parameler
approximations: Assume that N individuals from a pop-
ulation are available for study, whose trait values are
listed as yy, ..., yvand their genotypes as Gu1, ... , Gay
at marker A and Gg, ..., Ggyat marker B. For individ-
ual s, let xAl), zg;, xl(j,g, szl be the corresponding coding
functlons of genoty(pes GAs and GBY Let us denote

/HB—( jAl)a"" (m—1)> ﬂ BY((n 1)) and ZABB:

(2125 - - Almv cey A(m 1),mZ312a e 7ZBln7 sy ZB(n n ),
s=1,2,...,N. Denote ayup = (®, Ou1, ..., Aa(m—1)
Qpl, .- 5 Oppe1))’, and Buup = Baie, oo, Sa(m—Tym
Op19, - -+ » Opm_1)n)"- The corresponding regression of

model (14) can be written as

Y= w_\.'y+X/§‘SU)BocAU3+ ZXBBSALJB-F e, s=1,2....N

(i6)

Let us denote Do = (D4, g,--.,Da, ,0)" and DBQ =

(Ds,0s---+Dp, 10)7; AAQ = ([PAZDA 0 — PyDaol’s. .,
[PA DA Q0 PA DA 71()} )T al’ld AB() = ([PBzDBIQ P31
Dg,q ] vy [Py, Do — Pp,Dg, o))" On the basis of
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regression (16), one may construct an [f-test statistic
F4paq to test the null hypothesis H 4 p,q0 in the same way
as constructing F,, .q or F,,, (GRAYBILL 1976, Chap. 6).
Under the null hypothesis of H 4 pad0, Fapad is central to
K Js+ Jp—2, N— Js — Jp+ 1). Assume the sample size
Nis large enough that the large sample theory applies.
Under the alternative hypothesis of Hapaa1, Fapaa 15
noncentral to F{(Jx + Jp— 2, N— Jo — Jp+ 1), and it can
be shown that the corresponding noncentrality param-
eter is approximated by

D 5
T T -1 AQ 2
v | @ DR 2 (322 ) ot/ )

NABad ® —5
o? +(AT AT )Vfl AAQ g2 /( 2 2)
4@ 28Q) YD\ Ay, )T 9%

Similarly, an [Ftest statistic [45, used to test the null
hypothesis H 4,0 can be constructed. Under the null hy-
pothesis of Hup,o, Fapaiscentralto F(m+ n—2, N—n—
m + 1). Under the alternative hypothesis of Hp,1, Fapa
isnoncentral to F(m + n— 2, N— m— n+ 1), and it can
be shown that the corresponding noncentrality param-
eter is approximated by

N Dy
Maga &~ —(D%,, Do) (Vi /2) 1 742 ) o2 )
= 03 D3 0872 (112 ) (e

The haplotype trend regression method: If only one
marker Ais used in the analysis, the proposed model (2)
is equivalent to the HTR method of ZAYKIN et al. (2002).
However, the proposed models are different from the
haplotype trend regression method for two/multiple
marker data. Assume that M markers are typed in a
region of the trait locus Q. On the basis of the genotypes
of the multiple markers, assume that / haplotypes can
be determined as Ay, ..., hy with frequencies P, ,j =
1,2,...,J. For each individual, we may define an ex-
pected haplotype score vector as follows (SCHAID et al.
2002; ZAYKIN et al. 2002). The expected haplotype score
vector is a column vector of J elements (¢, ..., ¢)°
based on the genotype combination (G, ..., Gy) at
the markers of an individual. For instance, the score
vectoris (1,0, ..., 0)Tif haplotype pair &,/ % is the only
possible phase of the genotype combination (G, ...,
Gy). In general, ¢ is the conditional probability of a
haplotype %;given genotype combination (G, ..., Gy)
at the markers; i.e.,

Phj Z{:l P(le R} le‘h].’ hi)Ph’
Z{:l Z{c:l P(G’lv DR} GM‘hi’ hk)Ph’Phk

G :P(h]'|G17~~7GM) =

In the above equation, the conditional probability
P(Gy, ..., Gylh, ) is 1 if haplotype pair h;/ hy, is a pos-
sible phase for the genotype combination (G, ...,
Gy), and P(Gy, ..., Gylh, h;) is 0 otherwise. For each
individual, the summation Z{Zl ¢; of the expected
haplotype scores is equal to 1.

TABLE 1
Expected scorings I, i = 1, 2, 3, 4 of haplotypes of model (17)

Haplotype and related expected scoring

Genotype (Gs, Gg)  A1By, I}  ABs, Iy A9By, I AsBs, Iy
(A1Ay, B By) 1 0 0 0
(A1A1, BiBy) : 3 0 0
(A Ay, ByBo) 0 1 0 0
(A1Ag, B, By) : 0 3 0
(A1Ag, By By) a ) &) a
(A1Ag, ByB) 0 3 0 :
(AoAg, ByBy) 0 0 1 0
(AgAy, By By) 0 0 3 3
(AsAs, ByBo) 0 0 0 1

The constants are given by ¢; = P(A; By| Gy = A;Ag, Gg= B, By) =
P(A1B1) P(AsBs) / [2P(A1B1) P(A9Bs) + 2P(A1 By) P(A9By) ] and 6o =
9 C1.

For the purpose of explanation, consider two diallelic
markers Aand B. Let us denote the two alleles of marker
Aby A, Ag; and denote the two alleles of marker Bby B,
B,. Table 1 gives the score vector for each genotype
combination of markers A and B. To understand the
entries of Table 1, it is worthwhile to take genotype
combination (G4 = A1A;, Gg = B1B;) as an example.
Two copies of haplotype A; B, can be formed from the
genotype combination (Gy4 = AjA;, Gg = B1B;). The
score for haplotype A, B, is 1 for this genotype combi-
nation; and scores for the other three haplotypes are all
0. Denote the genotype of an individual at marker A by
G4 and the genotype at marker B by Gg. Let us denote
= P(A131|GA = A1Ag, Gg= B1By) = P(A,By) P(A2Bs) /
[2P(A1By) P(A9Bs) + 2P(A1Bo) P(AsBy)] = ¢y; e, ¢ is
the conditional probability of a haplotype A;B; given
the double heterozygotes (G4 = A1A9, Gg = B1Bs); and
= (3 = % — ¢. For the double heterozygotes (G4 =
A1Ag, Gg= B By), the expected scores are ¢y, ¢, ¢o, ¢; for
haplotypes A1 B, A1Bo, A9B;, A9Bs. The scores of the
other genotype combinations are provided in Table 1.
Then the corresponding model of the haplotype trend
regression method can be written as

4
y=wy+ Y IBi+e, (17)
=1

where 3; are regression coefficients, and /; are expected
scorings of haplotypes defined in Table 1. It can be seen
that model (17) is not equivalent to either proposed
model (13) or model (14).

In the general case of M markers, let I; be the
expected score of haplotype hj, j=1,2, ..., J In terms
of conditional probabilities, chan be expressed as

L= ... P(hlG,...

G Gm

, GM)l(Gl,...,GM)'



Association Mapping of QTL 669

The corresponding model of the haplotype trend re-
gression method can be written as

J
+ Z 1B, +e. (18)
=

Forj=1,2, ..., Jletusdenote D, o = P(Q1 %) — ¢ Py,
which are measures of LD between QTL Q and the
haplotypes. Here P(Q, %)) is the frequency of haplotype
Q1h;. In APPENDIX F, we show that the regression co-
efficients of model (18) satisfy the matrix equation

B2 B(hE) ... E(LI)\ (B

E(kL)  E(I3) E(LIy) Bo

E(L) E(hk) ... E(I) By
Py, a dy
Ph2 az d?

=W —+ OCQ — 8Q , (19)
P}?/ (l] d]

where E(/;];) are given in APPENDIX F, and

aj=> ...> P(hGi,...,Gy)

G Gy
J
X YN " P(Gi, ..., Gulhi, ln) [Py, Dyq + Py Dig)]
=1 k=1
di=>...> P(hG,...,Gy)

o

G,

=7

1

J
> P(Gi, ..., Gulhi, ) Dy Dig.-
k=1

-

—

X

=

From Equations 19, it is clear that model (18) models
both the additive and dominance effects. Suppose that
the haplotype and the QTL Q are in linkage equilib-
rium; i.e. Dh Q =0,j=1,2,. ] Then Equation 19 im-
pliesB;=--- = B]— s smcezﬂl = land EI; = P),.
Hence, model (18) is reduced to (5). To test association
between the haplotypes and the trait locus, one may test
a null hypothesis 1 = --- = B and the related Ftest
statistic can be constructed.

Again, assume that N individuals from a population
are available for study with trait values and genotype
information. On the basis of regression (18), one may
construct an [test statistic Fiyrg to test the null hypoth-
esis B; = --- = B;= w (GRAYBILL 1976). Under the null
hypothesis, Fiyrr is central to F{ /— 1, N— J). Under the
alternative hypothesis that at least two 3;’s are not equal
to each other, Fyrr is noncentral to F(J — 1, N — J).
Assume the sample size Nis large enough that the large
sample theory applies. Then it can be shown that the

corresponding noncentrality parameter is approxi-
mated by

N IR
)\HTR@?(Bl—327~--781—Bj)[HE tH!
X(Bl_823"'7BI_B[)Ta
where
E(I}) E(hk) E(LI)
E(LL) E(Ly) E(L1))
E:
E(h) E(LL) ... E(lf)
1 -1 0 0 0 0 0
1 0 -1 0 0 0 0
1 0 0 -1 0 0 0
H = .
1 0 0 0 0 -1 0
1 0 0 0 0 0 -1

The advantage of model (17) is that it may model
the haplotype effect by parameters ;. In practice, it is
necessary to calculate the expected scorings or haplo-
type frequencies before building the haplotype trend
regression model. Instead, the proposed models (13)
and (14) may be used to analyze genetic data directly.
Moreover, we have derived analytical formulas to calcu-
late the regression coefficients of the HTR method and
the related noncentrality parameter of the test statistic
Farr. Note that the original article by ZAYKIN ef al.
(2002) did not work out this very useful information.
Our analytical coefficient equations and related non-
centrality parameter approximations can be readily uti-
lized for power evaluation.

RESULTS

Type I error rates: To evaluate the robustness of the
proposed models, we calculate type I error rates of test
statistics Fm,ada Fm,a’ FAB,ada FAB,aa and FHTR at a 0.0b
significance level. The results are presented in Tables 2
and 3. Four test cases are considered: null, no major
gene effect a = d = 0; additive, additive mode of in-
heritance ¢ = 1, but no dominant effect d = 0; dom-
inant, dominant mode of inheritance ¢ = d = 1; and
recessive, recessive mode of inheritance ¢ = 1 and d =
—0.5. The total variance is fixed as g2 = 1.0 and the trait
allele frequency is taken as ¢; = ¢» = 0.5 except for that
in the null test case. In Table 2, only one marker A is
used in analysis; the number m of alleles ranges from 2
to 6. The allele frequencies are given by: Py, = P, = 0.5
when m = 2; Py, = 0.4, Py, = Py, = 0.3 when m = 3;
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TABLE 2

Type I error rates (percentage) of test statistics F,, ,q and F,,, ,
at a 0.05 significance level when only one marker A is used
in the analysis

Error rates

No. of alleles Sample size  Test case  Faa  Iya

Diallele, m = 2 N =200 Null 490 493
Additive 510 4.89
Dominant 4.75 4.98

Recessive 5.03 5.09

N =200 Null 494 5.18
Additive 5.03 4.92
Dominant 5.07 5.06
Recessive 4.65 4.85

Triallele, m = 3

Quadriallele, m = 4 N =200 Null 4.89 5.29
Additive 4.72  4.69
Dominant 5.03 4.92

Recessive 4.86 4.85

N =200 Null 471 b5.14
Additive 4.96 4.49
Dominant 5.02 4.94
Recessive 5.04 4.76

Five alleles, m = b

N = 200 Null 5.02 5.21
Additive 5.23 4.92
Dominant 9.11 5.16
Recessive 7.04 4.97

Six alleles, m = 6

N = 300 Null 491 5.36
Additive 5.08 4.98
Dominant 5.39 491
Recessive 5.32 5.11

Six alleles, m = 6

The total variance is fixed as 0 = 1.0 and the trait allele
frequency is taken as ¢; = ¢ = 0.5. The number m of alleles
ranges from 2 to 6. The allele frequencies are given by:
PAI _PAz —05Whenm—2 P/'\1 —04 PA —PA —nghen
m = 3; Py =---=Py, =025 whenm74 Py ==
Py, =02 when m = 5; and Py, =Py, =02,Py, =--- =
P,, = 0.15 when m = 6. Four test cases are considered: null
no major gene effect a = d = 0; additive, additive mode of in-
heritance a = 1, but no dominant effect d = 0; dominant,
dominant mode of inheritance a = d = 1; recessive, recessive
mode of inheritance ¢ = 1 and d = —0.5. In each test case,
linkage equilibrium is assumed between the QTL Q and
the marker A; i.e., Dy,o = P(Q1A;) — 1 P4, = 0.

Py =---=Py, =025 when m = 4; Py, =--- =Py, =
0.2when m=5;and Py, = Py, =0.2,Py, =+ =Py, =
0.15 when m = 6.

To calculate the type I error rates, 10,000 data sets are
simulated for each test case. Each data set contains either
200 or 300 individuals. In each test case in Table 2, the
data sets are generated under an assumption of linkage
equilibrium between the QTL Q and the marker 4; ¢.e.,
Dp,o = P(Q1A;) — qi Pa, = 0. That is, there is no associa-
tion between the QTL Qand marker A. Utilizing the data

sets, we fit either model (8) or model (9), and then
calculate the Ftest F,, ,q or F,, .. Because the data sets are
generated under the assumption of linkage equilibrium,
an empirical test statistic that is larger than the cutting
point of the related Fstatistic at a 0.05 significance level is
treated as a false positive. On the basis of the Ftest of
either I, ,q or I, 5, type I error rates are calculated as the
proportions of the 10,000 simulation data sets that give
significant results at the 0.05 significance level.

For the test statistic £, ,, the Table 2 results show that
the type I error rates are around the 0.05 nominal sig-
nificance level in all cases. Hence, the proposed model
(9) is robust for data sets of a sample size N = 200. For
test statistic £, ,q, the type I error rates are around the
0.05 nominal significance level when m = 5 for data sets
of sample size N = 200. For m = 6 and a sample size N =
200, the type I error rates of test F,,,q are too big for
the dominant and recessive test cases (9.11 and 7.04%,
respectively). This is partially due to the large degrees
of freedom, J, — 1 = m(m + 1)/2 — 1 = 20 of test
F,.2a when m = 6; in addition, the high rate of type I
error may be also caused by the mode of inheritance,
i.e., for the cases of dominant and recessive models.
When the sample size increases to N = 300, the type I
error rates of test F, ,q are around the 0.05 nominal
significance level for m = 6. Model (8) is less robust than
model (9).

In Table 3, two markers A and B are used in the anal-
ysis. The numbers m and n of alleles are equal to 2. The
allele frequencies are given by P, = P,, = 0.5 and
Py, = Pg, = 0.5. In each test case, linkage equilibrium
isassumed between the QTL Qand the markers Aand B;
i.e., Dy,o0 = Dp,o = 0. Denote Dy, 5, = P(ABy) — Py, Py,
which is the measure of LD between A and B. Here
P(A,B;) is the frequency of haplotype A;B,. Let

Dagp = P(A1Q1B1) — Py, Dp g — Pp Dy, g — Pay 1 P,

(20)
be the measure of the third-order LD (THOMSON
and BAUR 1984). Here P(A; Q) B;) is the frequency of
haplotype A; Q) B;. Between marker A and marker B, two
situations are considered: (1) linkage equilibrium, i.e.,
Dy g, =0, and (2) linkage disequilibrium, i.e., Da, p, =
0.08. No linkage disequilibrium of third order is
assumed among markers A and B and the QTL (; that
is, Dagp = 0. Again, 10,000 data sets are simulated for
each test case, and each data set contains 200 individ-
uals. The simulation is done as follows. First, the
haplotype frequencies are calculated on the basis of
allele frequencies and LD coefficients by relation (20)
(THOMSON and Baur 1984). Then data sets are simu-
lated using the haplotype frequencies. On the basis of
the Ftest of either Fyp,.q4 or F4p5, or the HIR method,
type I error rates are calculated as the proportions of the
10,000 simulation data sets that give significant results at
the 0.05 significance level. The Table 3 results show that
the type I error rates are around the 0.05 nominal

— q1Day g,
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TABLE 3

Type I error rates (percentage) of test statistics Fap a4, Fap 2, and Fyrg of the haplotype trend regression (HTR)
method at a 0.05 significance level when two markers A and B are used in the analysis

Error Rates

LD measure

DAlBl = P(AlBl) — PAIPBI Sample size Test case FAB,ad FAB,a FHTR

0 N = 200 Null 4.90 5.22 5.39
Additive 5.09 4.75 4.77
Dominant 4.62 4.87 4.79
Recessive 5.36 5.12 4.81

0.08 N = 200 Null 5.09 5.23 5.55
Additive 4.92 4.74 4.71
Dominant 4.63 4.84 4.71
Recessive 5.04 5.02 4.94

The total variance is fixed as 0® = 1.0 and the trait allele frequency is taken as ¢; = ¢o = 0.5. The numbers m
and » of alleles = 2. The allele frequencies are given by Py, = P4, = 0.5 and Py = Pp, = 0.5. Four test cases are
considered: null, no major gene effect @ = d = 0; additive, additive mode of inheritance a = 1, but no dominant
effect d = 0; dominant, dominant mode of inheritance a = d = 1; recessive, recessive mode of inheritance ¢ =1
and d=-0.5. In each test case, linkage equilibrium is assumed between the QTL Qand the markers Aand B; i.e.,
Dy,¢9 = Dg,o = 0. No linkage disequilibrium of third order is assumed among markers A and Band the QTL @,
that iS, DAQB = 0.
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significance level in all cases. Hence, the proposed
models (13) and (14) and the HTR method are robust
for data sets of a sample size N = 200.

Table 4 shows type I error rates (percentages) of test
statistics Fupcad, Fapca, and Fyyrr at a 0.05 significance
level when three diallelic markers A, B, and Care used in
the analysis. The measures Dapc, Dage, and Dpgc of the
third-order LD are defined as that of D4p; the measure
of the fourth order is defined accordingly (BENNETT
1954). Such as relation (20), the haplotype frequencies

at the three markers A, B, and C and at QTL Q are
calculated on the basis of allele frequencies and LD co-
efficients by WEIR’s (1996, p. 119) relation (3.14). Then
data sets are simulated using the haplotype frequencies.
Since this article is about population data, one indi-
vidual may have two copies of haplotypes. Each haplo-
type is sampled according to the haplotype frequencies.
From the Table 4 results, we can see that the proposed
models and the HTR method give correct type I errors
for data sets of a sample size N = 200.

TABLE 4

Type I error rates (percentage) of test statistics Fapc,ada> Fapc,a» and Fyrr of the haplotype trend regression
(HTR) method at a 0.05 significance level when three diallelic markers A, B, and C are used in the analysis

Error rates
LD measure

DAlBI = DA, o = PB| G Sample size Test case FAB(,I,ad FABC,a FHTR
0.08 N =200 Null 5.2 5.35 5.43
Additive 4.98 4.85 4.74
Dominant 4.31 4.68 4.62
Recessive 5.29 5.3 5.27
0.06 N =200 Null 5.24 5.41 5.39
Additive 5.15 4.89 4.71
Dominant 4.61 5.0 5.03
Recessive 5.09 4.94 5.08

The total variance is fixed as 0® = 1.0 and the trait allele frequency is taken as ¢; = ¢ = 0.5. The allele fre-
quencies are given by Py, = P,, = 0.5, Pg, = P, = 0.5, and P, = P, = 0.5. Four test cases are considered: null,
no major gene effect @ = d = 0; additive, additive mode of inheritance @ = 1, but no dominant effect d = 0;
dominant, dominant mode of inheritance a = d = 1; recessive, recessive mode of inheritance ¢= 1 and d =-0.5.
In each test case, linkage equilibrium is assumed between the QTL Q and the markers A, B, and G i.e,
Dy,o = Dp,g = Dc,o = 0. Moreover, neither third- nor fourth-order linkage disequilibrium is assumed; i.e., Dypc =

Dagp = Dagc= Dpoc = Dapco=10.
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Ficure 1.—Power curves of the test statis-
tics Iy aq, Faas F50q, and I, against the dis-
2 b equilibrium coefficient D; = Dy, for a
dominant mode of inheritance ¢ = d = 1.0
° at a 0.05 significance level. F} ,q and F, , are
S calculated when marker A has four equal fre-
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-] F 4a) E and £, are calculated by collapsing two of
F {4.ad) the four alleles: (A and C) alleles A; and Ay
@ | - F{2a} are collapsed as one allele, and alleles Ag
°© F_{2ad) and Ay are collapsed to be the other; (B
and D) alleles A; and As are collapsed to be
© | one allele, and alleles A and A4 are collapsed
5 © to be the other. The other parameters are
5 g = 0.50, i = 0.25, N = 200.
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Power calculation and comparison: Let 4> = Uéa/ a?
be the heritability. Figure 1 shows power curves of the
test statistics Fy,, F4ad, fo,, and I%5,q against the dis-
equilibrium coefficient D,  for a dominant mode of in-
heritance a= d=1.0ata 0.05 significance level based on
the approximations of noncentrality parameters \,,,
and N, aq. Fa, and Fy,q are calculated when A has
four equal frequency alleles; i.e., Py, = --- = P4, = 0.25.
In addition, the measures of LD are given as follows:
Figure 1, A and B, Ds,go = Da,0 = —Da,0,Da,0 = Da, 0,
and Figure 1, Cand D, Da,g = —Da, o, Da,0 = —Da,0 =
Dy, /2. F5, and [ ,q are calculated by collapsing the
four alleles to be two alleles: in Figure 1, A and C, alleles
A; and Ay are collapsed as one allele, and alleles Az and
A4 are collapsed to be the other; in Figure 1, B and D,
alleles A; and As are collapsed to be one allele, and
alleles As and A4 are collapsed to be the other. For I,
and [% ,q, a simple calculation can show that the mea-
sures of LD in Figure 1A are 0, 0; the measures of LD in
Figure 1B are 2Dy, o, —2D,,o; the measures of LD in
Figure 1C are 0, 0; and the measures of LD in Figure 1D
are 3Dy, /2, —3Dy4, /2. Hence, the QTL Qis in linkage
equilibrium with the marker after collapsing the alleles

in Figure 1, Aand C. The other parameters are ¢; = 0.50,
= 0.25, N= 200.
From Figure 1, we may see the following:

1. F,,q is slightly less powerful than F,,, and F5,q is
slightly less powerful than F . This is because that
test statistic [,,q has larger degrees of freedom
than those of F,, ,. Note that the noncentrality param-
eter approximation \,, ,q of I, .4 is given by Equation
10. The contribution of the dominance effect is
NoZ,R},/0%, which depends on both dominance
effect d and the magnitude of factor RjQ; and it can
be significant when both of them are large enough.
Hence, including a dominance component in the
model can improve the power of QTL detection only
when the magnitude of o7, R},, is large enough to
compensate for the extra degrees of freedom. Note
that the quantity o3, R}, is the product of the dom-
inance variance Gid and of the measure R} of LD.

The magnitude of o2 R}, is the result of the

dominance variance o, reduced by a factor RjQ.

Even when (rgd is large, O'EdeQ can be small when LD

coefficients are not big; i.e., RfiQ is small.
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2. When the measures of LD are high, the power of the
test statistics is high. On the other hand, the power is
minimal if all measures of LD are close to 0.

3. The dependence of power on measures of LD can
also be observed by comparing Figure 1A with Figure
1C, 1B with 1D. The power of F, ,q and [} , in Figure
1A is higher than that of F ,q and [}, in Figure 1C,
respectively; the power of each test statistic in Figure
1B is higher than that of the same test statistic in
Figure 1D. This is because the measures of LD in Figure
1A are equal to or higher than those in Figure 1C,
and the measures of LD in Figure 1B are equal to or
higher than those in Figure 1D.

4. In Figure 1B and Figure 1D, the power of Fj 4 is
slightly lower than that of 5 ,q4; the power of Fy, is
slightly lower than that of 5 ,,.

5. In Figure 1A and Figure 1C, the power of F%.q
and F, is minimal. This is because measures of
LD are 0 after collapsing the alleles in these two
graphs.

Figure 2 shows power curves of the test statistics [% ,,
Fyaa, I3, and 3,4 against the disequilibrium coeffi-

Disequilibrium Coefficient D_1

cient Dy, o for a dominant mode of inheritance a = d =
1.0 at a 0.05 significance level. F,, and [} ,q are cal-
culated as those in Figure 1. F5 , and £ ,4 are calculated
by collapsing two of the four alleles to be a new alelle: in
Figure 2, A and C, alleles A; and Ay are collapsed as a
new one; in Figure 2, B and D, alleles A; and Ag are
collapsed to be a new one. For F5, and F5 4, a simple
calculation can show that the measures of LD in Figure
2A are 0, Dy, g, — D4, o; the measures of LD in Figure 2B
are 2Dy, ¢, —Da, g, —Da, ¢; the measures of LD in Figure
2C are 0,D,,9/2,—D,,¢/2; and the measures of LD in
Figure 2D are 3Dy, /2, —Da, 0, —Da o/2. Among the
features shown in Figure 1, it can be seen that in Figure
2, A and C, the power of F, ,q is higher than that of F5 .4,
and the power of F , is higher than that of /5 ,. In Figure
2,Band D, the power of F , is slightly lower than that of
F5 .4, and the power of F, , is slightly lower than that of
F; ,. Hence, the way to collapse the alleles has impact on
power.

From Figures 1 and 2, we may see that the power
of Iy, and Fj ,q is relatively stable although it may be
slightly lower than that of I5,, I5 4, f9,, and 5,4 in
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certain circumstances. However, the power of F5 ,, I 44,
F 5, and Is ,q depends heavily on the way to collapse the
alleles. This shows the advantage of using multiallelic
markers in an association study of QTL detection. For
multiallelic marker data, the proposed test statistics
F,. and F, ,q can be directly used to test if there is
association between the marker and the QTL. As shown
in Figures 1 and 2, the test statistic F,,, is usually more
powerful than F,, 4 due to the increase of degrees of
freedom of test statistic F,, ,q.

Figure 3 shows power curves of the test statistics Fy ,
and F} ,q against the heritability #* at a 0.05 significance
level for a dominant mode of inheritance a = d = 1.0
and for a recessive mode of inheritance a = 1.0, d =
—0.5, respectively. As with Figures 1 and 2, Figure 3 is
based on noncentrality parameter approximations (10)
and (11). In Figure 3, A and B, the power can be high as
the heritability #* > 0.1; in these two graphs, the mea-
sures of LD are given by Dy o = —Ds,o = Da,o =
—D4, o = 0.08. In Figure 3, C and D, the power can be
high as the heritability #* > 0.15; in these two graphs, the
measures of LD are given by Dy, o = —Da,0 = Da,o =
—Dy,o = 0.06. Figure 4 shows power curves of the test
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statistics I , and F ,q against the trait allele frequency ¢,
or marker allele frequency P4, at a 0.05 significance
level. It can be seen that the power depends on both the
measures of linkage disequilibrium and the trait allele
frequency ¢; or marker allele frequency Py,.

Comparison with the haplotype trend regression
method: Assume that the two diallelic markers A and B
are used in the analysis. Figures 5 and 6 show power
curves of the test statistics Fup,, FiTr, and Fyp .4 against
the heritability #* ata 0.05 significance level. The related
parameters are given in the figure legends. The power
curves of the test statistics Fup,, FgTr, and Fyp.q are
calculated on the basis of approximations of noncen-
trality parameters N\ 4p,, AgTr, and N 4paq.

In Figure 5, no third-order linkage disequilibrium is
assumed; i.e., Dygp= 0. In Figure 6, A and B, weak third-
order linkage disequilibrium is assumed; i.e., Dagp =
0.025. It can be seen that the genotype effect model can
be less powerful than the HTR method, and the HTR
method can be less powerful than the additive effect
model in the case of no or weak third-order linkage
disequilibrium among the two markers and the QTL
(Figure 5 and Figure 6, A and B). In Figure 6, C and D,
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strong third-order linkage disequilibrium is assumed;
i.e., Dagp = 0.065. In the case that strong third-order
linkage disequilibrium exists, the HTR method can be
more powerful (Figure 6, C and D).

Note the following fact: in Figure 6, A and B, the max-
imum of Dygp is 0.025; in Figure 6, C and D, the max-
imum of Dypis 0.065 (otherwise, some of the haplotype
would have negative frequencies). Thus, the simulated
power curves of the haplotype trend regression method
in Figures 5 and 6 represent the two extreme situations:
(1) no third-order linkage disequilibrium (Figure 5)
and (2) strongest third-order linkage disequilibrium
(Figure 6). In practice, the third-order linkage disequi-
librium would exist in a2 more moderate way that is
between the two extremes; and the power of the hap-
lotype trend regression method should be between
those of the two extremes. Note that the proposed geno-
type effect model and additive effect model utilize only
the second-order linkage disequilibrium or pairwise
linkage disequilibrium. Hence, the powers of Fyp, and
F4p 2q are the same for Figures 5 and 6.

Figure 7 shows power curves of the test statistics Fypc
and Fipcaaq and Fyrr against the heritability #° at a 0.05
significance level, when three diallelic markers A, B, and
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C are used in the analysis. The related parameters are
given in the figure legend. From Figure 7, it can be seen
that the power of Iir is the lowest. This is due to the
large number of degrees of freedom of Fyyrg, which is
F(7, N—8), N=200. In contrast, Fypc, is F(3, N — 4),
N=200; and Fyp¢,is {6, N— 7), N=200. The low power
of Fyyrr is most likely due to the biallelic QTL situation
that we consider. In the situation of multiple QTL
haplotypes and strong LD between QTL and marker
haplotypes, the haplotype-based methods are expected
to have good power.

Comparison based on ACE haplotype frequencies:
To work on more realistic scenarios, we take the hap-
lotype information of ACE genes as an example. Ten
diallelic polymorphisms in the ACE gene spanning
26 kb were genotyped (KEAVNEY et al. 1998). The order
of the 10 polymorphisms is T-5991C, A-5466C, T-3892C,
A-240T, T93C, T1237C, G2215A, I/D, G2350A, and
4656 (CT)3/2. Table 5 lists 10 haplotypes, where the first
7 are the most frequent haplotypes (http:/www.well.
ox.ac.uk/~mfarrall/oxhap_freq.html). For the 10 hap-
lotypes, allele I at marker I/D is always present with
allele A at marker G2350A, and allele D at marker I/D is
always present with allele G at marker G2350A. Hence,
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the two markers can be treated as one. Similarly, mark-
ers T-5991C and A-5466C can be treated as one; and
markers A-240T and T-93C can be treated as one. There-
fore, the 10 haplotypes can be considered as containing
seven markers.

In ABECASIS et al. (2000a,b) and FAN et al. (2005), it is
found that that markers I/D and G2350A show strongest
association with the circulating ACE level. Thus, markers
I/D and G2350A are treated as a putative trait locus Q.
A quantitative trait of the putative locus Q is simulated
for each graph in Figure 8, A-D. The empirical power
curves of the test statistics Fyyrr, F5, and F,q4 are plotted
against the heritability #* at a 0.05 significance level in
Figure 8. Here F, is the test statistic based on the additive
effect model, and E,4 is the test statistic based on the
genotype effect model. The empirical power curves
Skirr, SF,, and SF,4 in Figure 8 are calculated as follows.
First, the interval (0.01, 0.25) of the heritability A* is
divided into 24 subintervals. Correspondingly, the 24
subintervals lead to 25 end points. For each end point,
there is a set of parameters for the power curve. Using the
set of parameters, 2500 data sets are simulated for each
end point. For each data set, empirical statistics of FiTg,
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F,, and F,q are calculated. The simulated power is the
proportion of the 2500 simulated data sets for which
the empirical statistic is larger than the cutting point of
the corresponding [distribution at a 0.05 significance
level.

In Figure 8, A and C, the curves are plotted for a
dominant mode of inheritance a = d = 1.0; in Figure 8,
B and D, the curves are plotted for an additive mode of
inheritance a = 1.0, d = 0. In Figure 8, A and B, all 10
haplotypes are used in the simulations; in Figure 8, C
and D, only the first 7 most frequent haplotypes are
used. From Figure 8, A-D, it can be seen that the
proposed additive effect model has similar power to that
of the HTR method. In Figure 8, A and C, when the
dominance effects are present, the genotype effect
model has similar power to those of the additive effect
model and the HTR method. In Figure 8, B and D, the
genotype effect model is less powerful because of the
absence of the dominance effect. Hence, the genotype
effect model can be useful only if the dominance effect
can compensate for the extra degrees of freedom.

Simulation study: To evaluate the accuracy of the
noncentrality parameter approximations, we performed
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simulations for the power curves in Figures 1, 2, 5, 6,
and 7. The results are presented as supplemental in-
formation (http:/www.genetics.org/supplemental/).
It can be seen that the approximations are excellent.

DISCUSSION

In this article, two models, the genotype effect model
and the additive effect model, are proposed for high-
resolution association mapping of QTL on the basis of
population data. The two models extend our previous
research, which is based on multiple diallelic markers
(FAN and Xi1onG 2002, 2003; JuNG et al. 2005). The
genotype effect model is closely linked to the measured
genotype approach (BOERWINKLE et al. 1986). The very
popular genetics software such as Mendel 5.0 is already
capable of performing association mapping of QTL by
the additive effect model (CANTOR et al. 2005; LANGE
et al. 2005). Surprisingly, there is no research to theoreti-
cally show why these two models are valid methods in
association mapping of QTL under normal distribution.
There are no existing analytical formulas to evaluate the
power of the related test statistics. This article shows that
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the model coefficients are functions of measures of LD;
and thus related F-test statistics can be constructed for
association study of QTL. In the presence of both
additive and dominance effects of the QTL, either the
F,,aa (o1 Fypaq) statistic or the F, , (or Fyp,) statistic can
be used. Since the F, ,q (or Iypa.q) test statistic has
bigger degrees of freedom than those of F,,, (or Fyp,),
F,,. (or Fup,) can be more powerful. If the extra degrees
of freedom of the F, ,; test can be compensated by
magnitude 02 R}, it can be more powerful than F,,,.
The formulas of noncentrality parameter approxima-
tions (10) and (11) clearly indicate the dependence of
the power on the quantity R, for genetic data. That is,
the noncentrality parameter of test statistics of the null
hypothesis of no genetic effects is reduced by a factor
of R}, for additive variance and by a factor of R}, for
dominance variance. If only one diallelic marker A is
used in the analysis, both our previous research and the
work of colleagues have derived similar formulas to sup-
port this argument (SHAM et al. 2000; FAN and X10NG
2002, 2003; FAN and JunG 2003; FAN et al. 2005; JuNG
et al. 2005). This is a good example in the debate on
appropriate measures of LD for markers or multiallelic
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markers (Heprick 1987; DevLIN and Risca 1995;
PrrrcHARD and PrzEwoRskI 2001; WEIss and CLARK
2002). For multiallelic markers or haplotypes, a satisfac-
tory measure of LD has not been derived, as mentioned
regarding p306 in ARDLIE ¢f al. (2002). For two diallelic
loci A and Q, ARDLIE et al. (2002) favor using RIQ‘Q =
D3,/ (Pa,Pa,q1 ¢2), which is the correlation of alleles at
the two loci. For multiallelic marker data, this article
extends previous research by providing the definition
of Ripand deriving Equations 10 and 11. HAYES et al.
(2003) introduced a multilocus approach for estimating
LD and past effective size and used chromosome seg-
ment homozygosity (CSH), which was introduced in
SvED (1971). The dependence of the noncentrality pa-
rameter on the quantity Rf,Q has been indicated by our
study and also by SHAM et al. (2000).

In FULKER et al. (1999), ABEcasis et al. (2000a,b,
2001), and SHAM et al. (2000), an association between-
family and association within-family (“AbAw”) approach
is proposed to decompose the genetic association into
effects of between pairs and within pairs on the basis of
variance component models. The AbAw approach is
based on any single diallelic marker. Instead of using a
single diallelic marker, we have proposed variance com-
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ponent models using multiple diallelic markers. In our
models, the association is decomposed into additive and
dominance components (FAN and X1onG 2002, 2003;
Fan and JuNG 2003; FAN et al. 2005; JUNG et al. 2005). In
FaN and JunG (2003), FaN et al. (2005), and JUNG et al.
(2005), we compare our method with the AbAw ap-
proach and find that our method is advantageous over
the AbAw approach. In model (1) or (2), only one
marker is used in model building. If multiple markers
or multiallelic markers are available, it is very easy to
generalize the models to analyze the data. For instance,
model (14) generalizes model (1) if two markers are
available in the analysis. Accordingly, model (13) gen-
eralizes model (2). If only one marker is used in analysis,
the proposed model (2) is equivalent to the haplotype
trend regression method by ZAYKIN et al. (2002), which
is very close to the method of SCHAID et al. (2002). How-
ever, the proposed models are different from the haplo-
type trend regression method for two/multiple marker
data. If both markers are diallelic markers, the genotype
effect model can be less powerful than the HTR method,
and the HTR method can be less powerful than the
additive effect model in the case of no or weak third-order
linkage disequilibrium among the two markers and the
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TABLE 5
Ranked ACE haplotype frequencies

Haplotype Haplotype Haplotype

rank identity code Frequency
1 TATATTGIA3 1111112111 0.352113
2 CCCTCCADG2 2222221222 0.284507
3 TATATCADG2 1111121222 0.087324
4 TACATCADG2 1121121222 0.073239
5 TATATCGIA3 1111122111 0.050704
6 CCCTCCGDG2 2222222222 0.025352
7 TATATTAIA3 1111111111 0.025352
8 CCCTCCGIA3 2222222111 0.008451
9 CCCTCCADGS3 2222221221 0.008451
10 TATATCGDG2 1111122222 0.008451

QTL. If strong third-order linkage disequilibrium exists,
the HTR method can be more powerful.

Basically, the proposed models are genotype based.
The models can be used to analyze directly any num-
ber of markers, and the markers can be either diallelic
or multiallelic. By a simulation study based on ACE
haplotype frequencies, we show that the proposed
additive effect models have similar power to that of the
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haplotype-based HTR method. In the meantime, the
proposed models enjoy the simplicity of not needing to
estimate the expected haplotype scorings; in contrast,
the HTR method needs to calculate the expected hap-
lotype scorings before building the models. The pro-
posed models decompose the main marker effectsinto a
summation of additive and dominance effects. In the
presence of haplotype effects, itis important to estimate
the haplotype effects and haplotype-based methods are
more relevant (STRAM et al. 2003; TREGOUET et al. 2004).

One potential problem of this generalization is that
the number of parameters can be very big. Then, one
needs to select important alleles in the analysis and
search for important genetic variants that are truly asso-
ciated with the genetic traits. At first glance, model (1),
(2), (13), or (14) seems too complicated and contains
too many terms. However, the models are not inti-
midating at all if one takes into account the recent
discovery of haplotype structure in the human genome.
Although a haplotype block may contain many SNPs, it
takes only a few SNPs to uniquely identify each of the
haplotypes in the block. Within a block, there are only
two to four common haplotypes (ARNHEIM et al. 2003;
DALY et al. 2001; GoLDSTEIN 2001; PATIL et al. 2001;
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REIcH et al. 2001; Rioux et al. 2001; J. C. STEPHENS et al.
2001; GABRIEL ¢f al. 2002; NORDBORG and TAVARE 2002;
PHILLIPS et al. 2003). This implies that model (1), (2),
(13), or (14) contains a few terms and hence is manage-
able. Moreover, model (1) or (2) already takes the haplo-
type structure into account and is potentially more
powerful. In practice, one may want to collapse some
alleles to reduce the number of parameters. However,
the collapsing process may decrease linkage disequilib-
rium and therefore result in loss of power. The proposed
regression models can be fitted to alleviate the problem.

In the mathematical derivations, we make the assump-
tion of HWE. Itis unclear how to construct tests reflect-
ing deviations from HWE and this requires further
research. In addition, we illustrate that the false-positive
rate of the genotype effect test is too high for more than
five alleles in a sample of 200 individuals. This is
obviously due to the large numbers of possible geno-
types and hence to sparseness in the contingency table.
This problem could be overcome by using exact tests or
permutation procedures.

The models of this article are based on population
data. Suppose that both population and pedigree data
including sibships are available. Then, model (1) or (2)
can be generalized to perform high-resolution com-
bined LD mapping and a linkage study of QTL by
variance component models in the spirit of our previous
work. In fact, we may generalize regression (1) or (2) by
adding the polygenic effect to fit the data. Moreover, log-
likelihoods can be constructed on the basis of variance
component models. This will generalize our research by
using either diallelic/multiallelic markers or haplotypes
in a combined analysis of population and pedigree data.
It is well known that association study-based population
data are prone to false positives, due to the population
stratification and population history. A valid approach
would be to find linkage information by using pedigree
data to locate the QTL on a broad chromosome region.
Then, a combined linkage and association mapping can
be performed for fine mapping of the genetic traits on
the basis of both population and pedigree data (FAN and
X10NG 2003). This would be more likely to overcome the
drawbacks of separate analysis of either a linkage study
or association mapping: low resolution of linkage anal-
ysis and high false-positive rates in the association study.
In the meantime, it is more likely to take advantage of
the two methods: the low false-positive rates of linkage
analysis and the high resolution of the association-
mapping method.

We thank two anonymous reviewers for very detailed and thoughtful

critiques, which make the paper better. R. Fan was supported by the
National Science Foundation Grant DMS-0505025.
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APPENDIX A

For an individual of a population with trait values y and genotype G4 at marker A4, let x; be an indicator function of
genotype A;A; and x;; be an indicator function of genotype A;A;. That is, they are dummy variables defined by

1if Gy = A;A;

Xi = aa) = { 0 else,

Lif Gy = AiA,

Xij = laa) = {0 else,

where 4, j=1,2, ..., m, i# j. Then model (1) can be rewritten as

y=wy+t iniBii +
i1

Z xi]-BijnLe. (Al)

1=i<j=m

Note that E(x;) = P . Given Equation Al, taking expectation of yx;; leads to E(yx;;) = E(x;)[wy + B;] = P} [wy + B,].
On the other hand, a true random-effect model describing the trait value is y = wy + g + ¢, where

a for genotype Q) Q)
g= d for genotype Q) Qo
—a for genotype Qs Q.
Utilizing P(QyA;) = Da,o + Pa,qi and P(QuA;) = —Dy,o + Pa,¢o gives

E(yx;;) = wyE(x;;) + E(gx;)

= wyP} + a[P(QA)]* + d - 2P(Q A;) P(QeA;) — a[P(QA))]*
= wyP}, + al2Daq + Pa,qt — Pa,ge]Pa; + 2d(Da,g + Pa,q1)(Pa,ge — Daso)

wiji + p.,Pi_ + 2DA7Q0LQPA1 — BQDEX,'Q' (A2)
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Equating the above quantity to E(yx;) = P} [wy + B,] shows Equation 3 when i = j.

If i # j, Ex; = 2P, P, . Multiplying at both sides of Equation Al by x; and taking the expectation lead to E(yx;) =
E(x;) [wy + Byl Agam utilizing P(Q1A;) = Da,o + Pa,qi, P(QeA;) = —Da,g + Pa,qo, P(Q1Aj) = Dao + Pyqr, and
P(Q2A;) = —Daq + Py, qo gives

E(yxi;) = wyE(x;) + E(gx)
= wY - 2Py Py, + 2a[P(Q1 Ai) P(Q14;) — P(QeAi) P(Q4))]
+ d[2P(Q1A)) P(QoA;) + 2P(QeAi) P(Q1 4))]
= 2Py, Pywy + 2a[(Da,g + Pa,q1)(Dajo + Pa;qi) — (—Dag + Pa,g2)(—=Dao + Pa, o))
+2d[(Da,g + Pa.q1)(Pa;ge—a,0) + (—Da,g + Pa,qe)(Dajg + Paq1)]
— 9P, Py wy + 2Py Py + 200[Dag Py, + DajoPa] — 2DaqDa g (A3)

Equating the above quantity to E(yx;) = 2Py Ps, [wy + B;] shows Equation 3 when i # j.

APPENDIX B
For an individual with trait values y and genotypes G4 at marker A, let z; be the number of alleles A; of genotype Gy,
i=1,2, ..., m Thatis, z is a dummy variable defined by
2if Gy = AjA;
0 else.

Then model (2) can be rewritten as

y=wy+ Zzl-a,--l-e. (B1)

=1

Multiplying both sides of expression (B1) by z; and taking the expectation lead to

2
Z1 Z] Z1%2 e Z1Zy (e 3] yz1
2
Z9 2921 Z9 e 2%y o9 Yz
wyE| . | +E| . ) . .| =E| . | (B2)
2 2
m ZmZl  ImZ2 ... Z,, Ay YZm

The elements of the matrix on the left-hand side of the above equation can be calculated as follows: E(z;) = 2P2 +
2P, 277&1 =2P,,, E(z Z)—4P2 + 2P, Zﬁél 2P2 + 2P,,. For i # j, the expectation E(zz)) = 2P, Py, . For the
elements on the righthand side, Equations A2 and A3 lead to E(yz) = 2E(yxi)+ 32, E(yxz) = 2Py wy + 2Py o +
209Dy, g, since Y. Dy, = 0. Plugging the above quantities into matrix Equation B2 gives Equation 4 as

o B PA1 -1 2PA1 [V + 20&(\)’DA] Q
B Py, 2Pyt 209Dy
= 2diag(PA],PA2,...,PAm)+2 . (PAHPAngaPA,,,)
(&3 L PAm QPAWIJ“ + QOLQDAMQ
I 1 P+ agDaq
111 Ppyp + OCQDA2Q
= |diag(P,', Py, P[;m‘)f§ (1,1,...,1) )
L 1 Py, toagDy,0
n/2 DAIQ/PAI
n/2 Da,q/Pa,
= . + OLQ 5

n/2 Da,q/Pa,
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where diag(...) denotes a diagonal matrix; e.g., diag(Py,,..., Py, ) is
Py 0 ... O
0 Py ... O
0 0 ... Py

m

In the above calculation, we use a fact of the inverse matrix (M + ab’) ' =M ' — (M 'a)(FM ") /(1 + M 'a).

APPENDIX C
Denote a vector v* = (P} ,... ,P{ [2Py Py,,..., 2Py Py, ..., 2Py, Py ). If the sample size Nis large enough, the
large number law implies the approximation
1 & ,
X"X/N = N; X X7 ~ E(X X) = diag(P} , v), (C1)

where diag(P3 , v) is a diagonal matrix, whose elements on the diagonal are given by the elements of (P5 , v). That is, if
M = diag(P3 ,v), then M[1,1] = P, M[ ]y, Ja] = 2P4, ,Pa,. Let Hbe a (Jy — 1) X ]y matrix defined by

1 -1 0 0o ... 0 0 0
1 0 -1 0o ... 0 0 0
1 0 o -1 ... 0 0 0
H=1. : : : : : :
1 0 0 0o ... 0 -1 0
L0 0 0 ..0 0 -1/
Then, (HN)" = (B11 — B22, --- 5 B11 — B B11 — Bi2s -+ 5 B11 — Bim -+ » B11 — Bm—1,m). From approximation (Cl),

we have the approximation

1
H(X'X) 'H" ~ NH[olialg(Pj1 o) T HT

1
1 |1 1
_NPA‘ f (1,1,...,1) +ﬁd1ag(u),
1
where u= (P;2,... P2, (2P Py] 2, ..., [2Ps, Py ] 2, ..., [2Ps, Py ] %). Applying a fact of inverse matrix (M +
Ay A, 1 2 1 m m—1 m pplymg

abf) ' =M"'— (M'a)(FM")/(1 + "M 'a) again, we have

[H(X"X)'H]™! ~ N[diag(v) — vv"].
The noncentrality parameter is given by
1 T Ty \—1 zg7]—1
)\m,ad = ?(HT]) [H(X X) H } (HTl)

N o Nm71 m )
~ 52 Bu =B+ 5> D 2Pl (B — By

i=2 i=1 j=i+1
N m m—1 m 2
~ | 2 B BIPL D D 2PuPy By~ By)
i= i=1 j=i

2
N m m N m m
=— ZPA,PAJ(BH - sz)Q _?lZZPA,PA,(Bn - Bg)] . (C2)

=1 j=1 i=1 j=1
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From Equation 3, we have
Bi1 — By = @q[2Da,o/Pa, — Dag/Pa, — Dajo/ Pa] = 80[D3 o/ P3, — DagDaq/ (PaPa))].
Utilizing relation )" | D4, = 0, we have

m m

DD PPy (B — By)? =20

=1 j=1

4[D3 o/ Pi Jegdq

QDilQ/P;z‘l + ZDI%‘iQ/P/L
=1

+82

b

0
(DfllQ/Pj (ZDA Q/PA>

> PaPa(Biy — By) = [2Da,q/PaJag — (D3 o/ P 13-
i=1 j=1

Plugging the above equation into (C2), we have

2
N m
Nmad = p [QQZQI 42 ZDI%,Q/[‘Il @Pa] + 5o dt o %2 (Z DA Q/ N @2Px; ]) .

i=1

Note that P(Q:A;) — Pags = —Dag, and so R, = Y0, [thQ/[PAlql] + (*DAlQ)Q/[PAﬂqQ]] =0 D20/ [Py el
Hence, the noncentrality parameter approximation (10) is valid.

APPENDIX D

The large number law implies the following approximation:

Py,
T 1 S T T : PA2
Z'Z/N = NZ 7,7} ~ E(L 7)) = 2diag(Pa,, Pay, -, Pa,) 2| [ (P, Pagso o, Pa).
=1 .
Py

m

In the above approximation, the quantities ££(z;z) in APPENDIX B are used. Applying a fact of inverse matrix (M + ab) ' =
-l — (M 'a)(bM™) /(1 + FM 'a), the inverse is

1
° a1 -1 p-1 —1 11
[Z7Z/N] zgdlag(PA],PAQ,...,PAW)—; (1T
1
Let Kbe a (m — 1) X m matrix defined by
1 -1 0 0 0 0 0

—
oS o
\
S -
|
—_— o
o O
oS o
o O

—_
(=
=
=)
I
—

(m—1)Xm
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Then, (K§)" = (a; — ag, ..., a1 — o). On the other hand, we have the approximation
1
T —1 7 ~ 1 . —1 —1 —1 T 1 1 T
K(Z"Z)"'K NQ—NKdlag(PA1 Py, ,...,PAm)K —mK : (1,1,..., 1)K
1
1
1 ]! 1 B »
Q—NPA1 : (1,1,...,1) + 2Ndlag(PAZ PA% ,PAW),
1
whose inverse is given by
Py,
77 =1 -1 . Pay
[K([TZ) KT] %2Ndlag(PA2,PA3,...,PAm)72N . (PA27PA37"'5PAW)'
Py

Therefore, an approximation of the noncentrality parameter is given by

Non, (KW (27 2)' K77 (K)

m 2
Z Py (o1 — Oti)] :
=1

Equation 4 implies that a; — a; = atg [Da, o/ Pa, — Da,o/Pa,). Thus, the noncentrality parameter

2N & s 2N
%?;PAt(al —OLZ') —?

2Noc)

0'

m,a ~

m 2
ZPA (Dayo/Pay — Dag/Pa)? (ZPA (Dayq/Pa, — DAiQ/PA,)>

=1 =1

QNOL 1qo N(Ta o
= %q ! RjQ = 2g RjQ'
o o

m
Q < C S
2 szhQ_/le + ZDfoQ/PAl Alg/Pj
i=1

APPENDIX E

Fori=1,2, ..., mk=1, ..., n,letusdenote D, 5, = P(A;B,) — P, Pg, ,which are measures of LD between markers
A and B. Here P(A;By) is frequency of haplotype A;By. It can be shown that for i# j, k£ L, j# 7, I# U, (4, )) # (7, ]),
(kD) # (K, 1),

Exy; = 2Py,  Ex3, = 2P] + 2Py,  E(xaixaj) = 2Py Py,
Eka = 2P3k7 Exgk = 2P§k + QPBk; E(kaxBZ) = 2PBkPBl7
Exyy =0, Exjy = PiP[Pa+ Py, Eapu=0, Exy = Py Py [Py + Pl

Elxaixpe] = 2Da,p, + 4PaPp,,  Elxaizaj] = Elxaizajr] = E[xaizpu] = 0,

I =
E[xprzaij] = [kaZBkz] = Elxpzgn] =0,  E[zagzaiy] = (Pa,PaPu)?, (E1)
Elzg2407] = Elzpuzs] = (Pp,Ps, Py ),  Elzuzsrr] =0,
Ezaijzpu] = [PA (Pp,Da,p, — Pp,Da,p,) — Pa,(PpDap, — PBkDAjBI)]Q,
Elyxai] = 2Py (wy + ) + 200Dy0,  Elyxge] = 2Pp, (wy + p) + 209 Dp, g,
Elyza) = 8¢[Py,Da,o — PaDagl®,  Elyzu] = 8¢[Pp,Ds,q — P5Dp,0)°-
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The quantities in (E1) imply that

Pay(1=Py)  —PaPay ... —PaPa,, D, = Das,,
7PA1PA2 PA2(1 - PA2) oo 7PA2PA,”71 DAZB] PR DA2B7171
Va=2 7PA1 PAm—l _PAQPAm—l) s PAm—l (1 - PAm—l) DAm—lBl s DAmlenfl
DAI B DA231 s DAm—lBI PB] (1 - PBI) s _PBl PB;H
Dap, DAZBH L e Da, 8, —Pg, Py, , Py, (1= Pp,,)

Since EZ4p is a vector of 0’s by the quantities in (E1), it can be shown that Vp = Cov(Zaup, Zaup) = E(ZausZius)-
Moreover, the quantities in (E1) imply that the covariance matrix Cov(Xsup, Zayup) is a 0 matrix.

Taking variance—covariance between yand x4, X, za;5 Zpw o1 the basis of relation (14), we may get the regression
coefficients (15) of models (13) and (14).

APPENDIX F

Multiplying both sides of expression (18) by /;and taking the expectation lead to

I I} Ll ... LI\ (B v
L LL I} ... LI By yly

wyE| . | +E| . . . S|l =E|l". | (F1)
I oho I ... I} By i

The elements of the matrix on the left-hand side of the above equation can be calculated as follows:

E(L) = E(1,) = Py, E(LL) = > ... > P(h|Gu,...,Gu)P(lj|Gr,...,Ga)P(Gr, ..., Gy).
G Gm

The elements on the right-hand side are given by

E(ylj) = wyE(j) + E(gl))

= Pjwy + Z ZPh|G1,..., VEglc,,..am]s
Gy
where
J J
Elglg,..cum)] = aZZP s+ o Gul hiy hye) [P(Quhi) P(Quki) — P(Qolue) P(Qo i)
i=1 k=1

Plugging the above quantities into matrix Equation F1 gives Equation 19.



