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ABSTRACT

In this article, population-based regression models are proposed for high-resolution linkage disequi-
librium mapping of quantitative trait loci (QTL). Two regression models, the ‘‘genotype effect model’’ and the
‘‘additive effect model,’’ are proposed to model the association between the markers and the trait locus. The
marker can be either diallelic or multiallelic. If only one marker is used, the method is similar to a classical
setting by Nielsen and Weir, and the additive effect model is equivalent to the haplotype trend regression
(HTR) method by Zaykin et al. If two/multiple marker data with phase ambiguity are used in the analysis, the
proposed models can be used to analyze the data directly. By analytical formulas, we show that the genotype
effect model can be used to model the additive and dominance effects simultaneously; the additive effect
model takes care of the additive effect only. On the basis of the two models, F-test statistics are proposed to
test association between the QTL and markers. By a simulation study, we show that the two models have
reasonable type I error rates for a data set of moderate sample size. The noncentrality parameter ap-
proximations of F-test statistics are derived to make power calculation and comparison. By a simulation study,
it is found that the noncentrality parameter approximations of F-test statistics work very well. Using the
noncentrality parameter approximations, we compare the power of the two models with that of the HTR. In
addition, a simulation study is performed to make a comparison on the basis of the haplotype frequencies of
10 SNPs of angiotensin-1 converting enzyme (ACE) genes.

IN genetics research, one important goal is to locate
and identify important genetic variants that are re-

lated to complex traits. With the development of dense
maps such as single-nucleotide polymorphisms (SNPs)
and high-resolution microsatellites in the human ge-
nome, enormous amounts of genetic data on human chro-
mosomes are becoming available (International SNP
Map Working Group 2001; Kong et al. 2002; Interna-
tional HapMap Consortium 2003; HapMap project,
http://www.hapmap.org). The opportunities for a ge-
nomewide scan to map complex disease genes are tre-
mendous. It is important to build appropriate models
and useful algorithms in association mapping of com-
plex diseases to identify important genetic variants of
complex traits, for human, animal, or plant study.

In recent years, there has been great interest in linkage
disequilibrium (LD) mapping (or association study) of
quantitative traits of complex diseases. One way is to use
diallelic markers such as SNPs in analysis. This approach
has been receiving much attention and there are quite
a lot of references to it in the literature (Fulker et al.
1999; George et al. 1999; Abecasis et al. 2000a,b, 2001;
Sham et al. 2000; Fan et al. 2005). Another approach is

to use haplotype data that may consist of a set of SNPs
(Schaid et al. 2002; Zaykin et al. 2002; Schaid 2004). The
haplotype data may provide more information on the
relation between DNA variants and complex traits than
that of any single SNP. Hence, it is important to in-
vestigate models and algorithms that are based on hap-
lotype data. In Schaid et al. (2002) and Zaykin et al.
(2002), score tests are proposed for association between
complex traits and haplotypes, which can be ambiguous
owing to the unknown linkage phase of different hap-
lotypes. In Zaykin et al. (2002), the method is called hap-
lotype trend regression (HTR), which is very close to the
method of Schaid et al. (2002) (see Schaid 2004, p. 355,
for further explanation). HTR does not assume that
haplotype phases are known. Meuwissen and Goddard

(2000) introduced a haplotype-based approach, which
assumes that haplotype phases are known. In addition,
mixed models are used to model the haplotype effect in
Meuwissen and Goddard (2000). Morris et al. (2004)
used a Markov chain Monte Carlo algorithm based on
the shattered coalescent model for fine mapping.

On the other hand, the direct available information is
genotypes by current genotyping technology, instead
of haplotypes. Hence, it is interesting to build models
by directly using genotype information; under these
models, the main effects of each marker are modeled,
which does not require phase information across the
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markers. If phase is unknown, presumably the haplotypes
would need to be estimated first, using a reconstruction
algorithm such as PHASE or EM algorithms (Dempster

et al. 1977; M. Stephens et al. 2001; Stephens and
Donnelly 2003). This may introduce bias into the sub-
sequent analysis, which would need to be investigated. It
is of real interest in making comparison of the genotype-
based models and the haplotype-based models. Inter-
estingly, Morris et al. (2004) and Clayton et al. (2004)
have observed that the haplotypes at SNPs may be only
slightly more advantageous or even less powerful for fine
mapping than the corresponding unphased genotypes.

Suppose that a quantitative trait locus (QTL) is located
in a chromosome region. In the region, a marker (or
two/multiple markers) is (or are) typed. In our previous
research, the markers are assumed to be diallelic (Fan
and Xiong 2002). In the current article, the markers
can be either diallelic or multiallelic. Suppose that a pop-
ulation sample is available. For each individual in the
sample, both trait value and genotypes at the markers
are observed. We propose two regression models in as-
sociation mapping of QTL based on population genetic
data. One model is the ‘‘genotype effect model,’’ and
the other is the ‘‘additive effect model.’’ These two
models extend our previous research of high-resolution
LD mapping of QTL using diallelic markers (Fan and
Xiong 2002). The model can be very easily performed
by using any statistical software in data analysis, or it can
be easily implemented by widely used language such as
C11. By analytical formulas, we show that the genotype
effect model can be used to model the additive and
dominance effects simultaneously; the additive effect
model takes care of additive effect only. On the basis
of the two models, F-test statistics are proposed to test
association between the QTL and markers. To investi-
gate the robustness of the proposed models and the
related F-test statistics, simulation studies are performed
to calculate the type I error rates. The noncentrality
parameters of F-test statistics are derived to make power
calculation and comparison. Moreover, the proposed
models are compared with the haplotype trend regres-
sion method by simulation study and type I error rate
analysis when two diallelic markers are used in the anal-
ysis (Zaykin et al. 2002). On the basis of the haplotype fre-
quencies of 10 SNPs of angiotensin-1 converting enzyme
(ACE) genes, a simulation study is performed to make
power comparison of the proposed models with the hap-
lotype trend regression method (Keavney et al. 1998).

A software, CLAM_QTL, is written in C11 to im-
plement the proposed models and methods, which can
be downloaded from http://www.stat.tamu.edu/�rfan/
software.html/.

METHODS

As the first step, we present models and methods by
using one marker. Here the marker can be either bi-

allelic or multiallelic. This article extends our previous
work (Fan and Xiong 2002). Similar results were worked
out independently by colleagues at North Carolina State
University, although their language and notations are
slightly different (Weir and Cockerham 1977; Nielsen

and Weir 1999, 2001). Then, the models and methods
are extended to use two/multiple markers in analysis.
On the basis of the models, F-test statistics are proposed,
and the related noncentrality parameter approxima-
tions of the F-tests are derived.

Analysis by one marker: Population models: Consider a
quantitative trait locus Q, which is located at an auto-
some. Suppose that there are two allelesQ1 andQ2 at the
trait locus with frequencies q1 and q2, respectively. In
a region of the QTL Q, suppose that one marker A is
typed, which may be diallelic such as a single-nucleotide
polymorphism or may be multiallelic such as a micro-
satellite marker. Let us denote the alleles of marker A by
A1, . . . , Am, where m is the number of alleles. Suppose
that the marker A is in Hardy-Weinberg equilibrium
(HWE). Let the frequency of Ai be PAi

; i ¼ 1; 2; . . . ;m.
There are JA ¼ m(m 1 1)/2 possible genotypes, which
can be listed as A1A1, . . . , AmAm, A1A2, . . . , A1Am, . . . ,
Am�1Am. Accordingly, letb11, . . . , bmm,b12, . . . , b1m, . . . ,
bm�1,m be the corresponding effects of the listed geno-
types on the quantitative trait. Let y be the trait value of an
individual with genotype GA¼ AiAj. Under an assumption
of normality, the trait value can be modeled as

y¼wg1bij 1 e; ð1Þ

where w is a row vector of covariates such as sex and age,
g is a column vector of regression coefficients of w, and e
is the error term. Assume that e is normal N(0, se

2). In
addition to the covariate effects, there are JA ¼ m(m 1

1)/2 parameters bij in model (1), where bij ¼ bji. Model
(1) treats each genotype effect as one parameter. Hence,
we call it a genotype effect model. In practice, model (1)
may lead to large number of parameters.

Now let us denote the effect of allele Ai as ai, i ¼
1, . . . , m. Suppose the genetic effect is additive in a
sense of bij¼ ai1 aj, i, j¼ 1, . . . , m. If an individual has
quantitative trait value y and genotype GA ¼ AiAj, model
(1) can be modified as

y¼wg1ai1aj 1 e: ð2Þ

In addition to the covariate effects, there are m param-
eters ai, i ¼ 1, . . . , m, in model (2). Compared with
model (1), model (2) may significantly reduce the
number of parameters. Since it models only the additive
effect, we call it the additive effect model.

Property of model coefficients and association tests: As in
the traditional quantitative genetics, let a be the effect of
genotypeQ1Q1, d be the effect of genotypeQ1Q2, and�a
be the effect of genotype Q2Q2 (Falconer and Mackay

1996). Let aQ ¼ a 1 (q2 � q1)d be the average effect
of gene substitution and dQ ¼ 2d be the dominance
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deviation. In addition, let m¼ a(q1 � q2) 1 2dq1q2 be the
aggregate effect of the QTL on the trait mean in the
population. For i ¼ 1, 2, . . . , m, let us denote DAiQ ¼
PðQ1AiÞ � q1PAi

, which are measures of LD between
QTL Q and marker A. Here P(Q1Ai) is the frequency of
haplotype Q1Ai. In appendix a, we show that the regres-
sion coefficients of model (1) are given by

bij¼m1aQ ½DAiQ=PAi
1DAjQ=PAj

��dQDAiQDAjQ=½PAi
PAj

�:
ð3Þ

In appendix b, we show that the regression coefficients
of model (2) are given by

ai ¼m=21aQDAiQ=PAi : ð4Þ

From Equations 3 and 4, it is clear that bij¼ai1aj, when
dQ ¼ 0, i.e., no dominance effect. Suppose that the
marker A and the QTL Q are in linkage equilibrium; i.e.,
DAiQ ¼ 0; i ¼ 1; 2; . . . ;m. Then Equation 3 implies bij ¼
m; Equation 4 implies that ai ¼ m/2. Hence, models (1)
and (2) are reduced to

y¼wg1m1 e: ð5Þ
Assume that the additive genetic effect is significantly

present, but the dominance genetic effect is not sig-
nificantly present; i.e., aQ 6¼ 0 but dQ ¼ 0. To test
association between the marker A and the QTL Q,
one may test hypotheses Ha0: a1 ¼ � � � ¼ am vs. Ha1: at
least two ai’s are not equal. To see this, note that the
hypotheses Ha0: a1 ¼ � � � ¼ am is equivalent to Ha0 :
DA1Q=PA1

¼ � � � ¼ DAmQ=PAm
, since aQ is significantly

different from 0. Thus, 0 ¼
Pm

i¼1 DAiQ ¼ DA1Q ½11PA2
=

PA1
1 � � � 1PAm

=PA1
� implies DA1Q ¼ 0 and so

DA2Q ¼ � � � ¼DAmQ ¼ 0 under Ha0. Hence, the hypotheses
Ha0: a1 ¼ � � � ¼ am vs. Ha1: at least two ai’s are not equal to
each other are equivalent to Ha0 : DA1Q ¼ � � � ¼ DAmQ ¼
0 vs:Ha1: at least oneDAiQ is not equal to 0. Model (2) can
be used to map the QTL by an association analysis.

On the other hand, assume that both additive and
dominance genetic effects are significantly present at
the putative QTL Q; i.e., aQ 6¼ 0 and dQ 6¼ 0. To test
association between the marker A and the QTL Q, one
may test hypotheses Had0: b11 ¼ � � � ¼ bmm ¼ b12 ¼ � � � ¼
b1m¼ � � �¼bm�1,m vs.Had1: at least twobij’s are not equal.

Relation to our previous work: If the marker A has only
two allelesA1 andA2, Fan and Xiong (2002) proposed the
following model in association mapping of the QTL Q,

y¼wg1m1xAaA1 zAdA1 e; ð6Þ

where xA and zA are dummy random variables defined by

xA ¼
2PA2 if GA ¼A1A1

PA2 �PA1 if GA ¼A1A2;

�2PA1 if GA ¼A2A2

8><
>:

zA ¼
�P 2

A2
if GA ¼A1A1

PA2PA1 if GA ¼A1A2;

�P 2
A1

if GA ¼A2A2

8><
>:

ð7Þ

and aA and dA are regression coefficients of the dummy
variables xA and zA. The regression coefficients are given
by aA ¼ DA1QaQ=ðPA1

PA2
Þ and dA ¼ D2

A1Q
dQ= P 2

A1
P 2
A2

� �
(Fan and Xiong 2002). It can be shown that model
(6) is equivalent to model (1). Actually, the following
relations of the regression coefficients of the two models
can be shown: b11 ¼ m 1 2PA2

aA � P 2
A2
dA;b12 ¼ m1

ðPA2
�PA1

ÞaA1PA1
PA2

dA, and b22 ¼ m� 2PA1
aA� P 2

A1
dA.

Similarly, model (2) is equivalent to y¼ wg1 m1 xHaA1

e, and we have the following relations 2a1 ¼ m 1 2PA2
aA

and 2a2 ¼ m� 2PA1
aA. The advantage of model (6) is

that the association effect is decomposed into summa-
tions of additive and dominance effects ifA is diallelic. IfA
has more than two alleles, model (1) extends model (6),
and model (2) extends model y ¼ wg 1 m 1 xHaA 1 e.
Regression models: Assume that N individuals from a

population are available for study. Let us list their trait
values as y1, . . . , yN and their genotypes as GA1, . . . , GAN.
For individual k, let xii(k) be the indicator function of ge-
notype AiAi and xij

(k) be the indicator function of genotype
AiAj. That is, they are dummy variables defined by

x
ðkÞ
ii ¼ 1 if GAk ¼AiAi

0 else;
x
ðkÞ
ij ¼ 1 if GAk ¼AiAj

0 else;

��

where i, j ¼ 1, 2, . . . , m, i 6¼ j. Let Xk ¼ ðxðkÞ11 ; . . . ;
xðkÞmm ; x

ðkÞ
12 ; . . . ; x

ðkÞ
1m ; . . . ; x

ðkÞ
m�1;mÞ

t; k ¼ 1, 2, . . . , N; i.e., Xk

is a column vector of genotype indicator functions of
individual k. Here the superscript t denotes a vector/
matrix transpose. Denote h ¼ ðb11; . . . ;bmm ; b12; . . . ;
b1m ; . . . ;bm�1;mÞt: The corresponding regression of
model (1) can be written as

yk ¼wkg1X t
k h1 ek ; ð8Þ

where subscript k indicates the corresponding quanti-
ties of individual k.

Similarly, let zðkÞi be the number of alleles Ai of ge-
notype GAk, i ¼ 1, 2, . . . , m, for individual k. That is, zðkÞi

is a dummy variable defined by

z
ðkÞ
i ¼

2 if GAk ¼AiAi

1 if GAk ¼AiAj ; j 6¼ i
0 else:

:

8<
:

DenoteZk ¼ ðzðkÞ1 ; . . . ; zðkÞm Þt andc ¼ ða1; . . . ;amÞt:To use
model (2) for data analysis, the corresponding regression
model is

yk ¼wkg1Z t
kc1 ek : ð9Þ

F-tests and noncentrality parameter approximations: It is
well known that the additive variance s2

ga ¼ 2q1q2a
2
Q and

the dominance variance s2
gd¼ðq1q2Þ2d2

Q : Let s2 ¼ s2
ga 1

s2
gd 1s2

e be the total variance. Assume that there are no
covariates. Let us denote X ¼ ðX1; . . . ;XN Þt; y ¼ ðy1; . . . ;
yN Þt; and e ¼ ðe1; . . . ; eN Þt: Then model (8) can be ex-
pressed as y ¼ Xh 1 e. By standard regression theory, the
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coefficients can be estimated by ĥ ¼ ðX tX Þ�1X tY . Let H
be a ( JA � 1) 3 JA matrix defined by

H ¼

1 �1 0 0 . . . 0 0 0
1 0 �1 0 . . . 0 0 0
1 0 0 �1 . . . 0 0 0
..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

.

1 0 0 0 . . . 0 �1 0
1 0 0 0 . . . 0 0 �1

0
BBBBBB@

1
CCCCCCA

ð JA�1Þ3 JA

:

Then, (Hh)t¼ (b11� b22, . . . , b11� bmm,b11� b12, . . . ,
b11 � b1m, . . . , b11 � bm�1,m). Hence, the hypothesis
Had0 is equivalent to Hh ¼ (0, . . . , 0)t. From Graybill

(1976), Chap. 6, the test statistic of a hypothesis Had0 is
noncentral F( JA � 1, N � JA) defined by

Fm;ad ¼
ðH ĥÞt½H ðX tX Þ�1H t��1ðH ĥÞ

Y t½IN �X ðX tX Þ�1X t�Y
N � JA
JA�1

;

where IN is the N3 N identity matrix. The noncentrality
parameter of the above F-statistic is lm,ad ¼ (Hh)t[H
(X tX)�1H t]�1(Hh)/s2. Under the assumption of large
sample sizesN, we show inappendixc the approximation

lm;ad �
N

s2 s2
gaR

2
AQ 1s2

gdR
4
AQ

h i
; ð10Þ

where RAQ
2 is a general measure of the degree of link-

age disequilibrium between marker A and the QTL Q
defined by R2

AQ ¼
Pm

j¼1

P2
s¼1½PðQsAjÞ � PAj

qs�2=½PAj
qs �

(Crow and Kimura 1970; Hedrick 1987; Morton

and Wu 1988; Sham et al. 2000). Note that RAQ
2 is the

x2-statistic of the m3 2 table of haplotype frequencies of
the marker A and trait locus Q. Approximation (10)
shows that the noncentrality parameter of test statistics
of the null hypothesis of no genetic effects of model (1)
is reduced by a factor of R2

AQ for additive variance and by
a factor of R4

AQ for dominance variance.
Similarly, let us denote Z ¼ ðZ1; . . . ;ZN Þt: Then model

(9) can be expressed as y ¼ Zc 1 e. The coefficients can
be estimated by ĉ ¼ ðZ tZÞ�1Z tY . Let K be a (m� 1)3m
matrix defined by

K ¼

1 �1 0 0 . . . 0 0 0
1 0 �1 0 . . . 0 0 0
1 0 0 �1 . . . 0 0 0
..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

.

1 0 0 0 . . . 0 �1 0
1 0 0 0 . . . 0 0 �1

0
BBBBBB@

1
CCCCCCA

ðm�1Þ3m

:

Then, (Kc)t¼ (a1 � a2, . . . , a1 � am). Hence, the hypo-
thesis Ha0 is equivalent to Kc ¼ (0, . . . , 0)t. From
Graybill (1976), Chap. 6, the test statistic of the hypo-
thesis Ha0 is noncentral F(m � 1, N � m) defined by

Fm;a ¼
ðK ĉÞt½K ðZ tZÞ�1K t��1ðK ĉÞ
Y t½IN �ZðZ tZÞ�1Z t�Y

N �m

m�1
:

The noncentrality parameter of the above F-statistic is
lm,a ¼ (Kc)t[K(Z tZ)�1K t]�1(Kc)/s2. Under an assump-

tion of large sample sizes N, we show in appendix d the
following approximation:

lm;a ¼
1

s2ðKcÞt½K ðZ tZÞ�1K t��1ðKcÞ �
Ns2

ga

s2 R2
AQ : ð11Þ

This approximation (11) shows that the noncentrality
parameter lm,a is reduced by a factor of R2

AQ for additive
variance. The dominance variance is not present in lm,a.

Analysis by two/multiple markers: Population models
and association tests: If genetic data of two/multiple
markers are available, models (1) and (2) can be ex-
tended for association study of QTL. Most importantly,
the data of two/multiple markers may contain phase
ambiguity, i.e., phase unknown double heterozygotes. In
the following, we generalize models (1) and (2) to di-
rectly analyze genetic data of two markers. The princi-
ple, actually, can be applied to multiple marker data.

In addition to marker A, assume that a second marker
B is typed, which has n alleles denoted by B1, . . . , Bn.
Suppose that the marker B is also in Hardy-Weinberg
equilibrium. Let the frequency of allele Bk be PBk

;
k ¼ 1; 2; . . . ;n. There are JB¼ n(n1 1)/2 possible geno-
types, which can be listed as B1B1, . . . , BnBn, B1B2, . . . ,
B1Bn, . . . , Bn�1Bn. Let y be the trait value of an in-
dividual with genotype GA at marker A and genotype GB

at marker B. Such as relations (7), define

xAi ¼
2 if GA ¼AiAi

1 if GA ¼AiAj ; j 6¼ i

0 else;

8><
>:

zAij ¼

�P 2
Aj

if GA ¼AiAi

PAi
PAj

if GA ¼AiAj ; j 6¼ i

�P 2
Ai

if GA ¼AjAj

0 else;

8>>>><
>>>>:

xBk ¼
2 if GB ¼ BkBk

1 if GB ¼ BkBl ; l 6¼ k

0 else;

8><
>:

zBkl ¼

�P 2
Bl

if GB ¼ BkBk

PBk
PBl

if GB ¼ BkBl ; l 6¼ k

�P 2
Bk

if GB ¼ BlBl

0 else:

8>>><
>>>:

ð12Þ

If marker A has only two alleles A1 and A2, then xAi
defined above is closely related to xA, which is defined in
(7). Actually, it is easy to see the following relation
xA 1 2PA1

¼ xA1 since PA1
1PA2

¼ 1.
To extend model (2) by using two markers A and B in

the analysis, consider the following model

y¼wg1a1
Xm�1

i¼1

xAiaAi1
Xn�1

k¼1

xBkaBk1 e: ð13Þ

In addition to the covariate effects, there are m1 n � 1
parametersa,aAi,aBk, i¼ 1, . . . , m� 1, k¼ 1, . . . , n� 1
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in model (13). To see why model (13) extends model
(2), it is worthwhile to note that model (2) is equivalent
to y ¼ wg1a1

Pm�1
i¼1 xAiaAi 1 e. Actually, the quantityPm

i¼1 xAi ¼ 2 implies that y ¼ wg1a1
Pm�1

i¼1 xAiaAi 1

e ¼ wg1
Pm�1

i¼1 xAi ½aAi 1a=2�1 xAma=21 e if only in-
formation of marker A is used in the analysis; thus, am¼
a/2, ai ¼ aAi 1 a/2, i ¼ 1, . . . , m � 1. Such as model
(2), model (13) takes only the additive effect into
account. Hence, we call it an additive effect model.
Similarly, model (1) can be extended to

y¼wg1a1
Xm�1

i¼1

xAiaAi1
Xn�1

k¼1

xBkaBk

1
X

1#i,j#m

zAijdAij 1
X

1#k,l#n

zBkldBkl 1 e: ð14Þ

In addition to the covariate effects, there are JA 1 JB � 1
parameters a, aAi, aBk, dAij, dBkl in model (14). Model
(14) takes both additive and dominance effects into ac-
count, and it is called the genotype effect model. Again,
model (1) is equivalent to y ¼ wg1a1

Pm�1
i¼1 xAiaAi 1P

1#i,j#m zAijdAij 1 e.
Denote XA ¼ (xA1, . . . , xA(m�1))t, XB ¼ (xB1, . . . ,

xB(n�1))t, andXA[B¼ (XA
t,XB

t)t. Let us denote the additive
variance–covariance matrix of the indicator variables
xAi, xBk by VA ¼ CovðXA[B ;XA[BÞ ¼ EðXA[BX

t
A[BÞ�

EXA[BðEX t
A[BÞ: Similarly, let ZA ¼ (zA12, . . . , zA1m,

zA23, . . . , zA2m, . . . , zA(m�1)m))t, ZB ¼ (zB12, . . . , zB1n,
zB23, . . . , zB2n, . . . , zB(n�1)n))t, and ZA[B ¼ ðZ t

A; Z
t
BÞ

t.
Let us denote the dominance variance–covariance matrix
of the indicator variables zAij, zBklbyVD¼Cov(ZA[B,ZA[B).
For k¼ 1, 2, . . . , n, let us denoteDBkQ ¼ PðQ1BkÞ�q1PBk

,
which are measures of LD between QTL Q and markerB.
In appendix e, we show that the regression coefficients of
models (13) and (14) are given by

aA1

..

.

aAðm�1Þ

aB1

..

.

aBðn�1Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼ ðVA=2Þ�1

DA1Q

..

.

DAm�1Q

DB1Q

..

.

DBn�1Q

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
aQ

dA12

..

.

dAðm�1Þm

dB12

..

.

dBðn�1Þn

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼ V �1
D

½PA2DA1Q �PA1DA2Q �2

..

.

½PAm�1DAmQ �PAm
DAm�1Q �2

½PB2DB1Q �PB1DB2Q �2

..

.

½PBn�1DBnQ �PBn
DBn�1Q �2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
dQ :

ð15Þ

The elements of matrices VA and VD are provided in
appendix e. Equations 15 show that the parameters of LD
(i.e., DAiQ and DBkQ ) and gene effect (i.e., aQ and dQ) are
contained in the regression coefficients. Models (13) and
(14) simultaneously take care of the LD and the effects of
the putative trait locus Q. The gene substitution effect aQ

is contained only inaAi,aBk; and the dominance effect dQ
is contained only in dAij, dBkl. Therefore, VA is called the
additive variance–covariance matrix; and VD is called the
dominance variance–covariance matrix. The model (14)
orthogonally decomposes the genetic effect into a sum-
mation of additive and dominance effects.

In Fan and Xiong (2002), regression models are
proposed for LD mapping of QTL by diallelic markers.
Models (13) and (14) extend the models by using
multiallelic markers in LD analysis. On the basis of
Equations 15, we may use models (13) and (14) to test
the association between the trait locus Q and the two
markers A and B. Assume that the additive genetic effect
is significantly present, but the dominance genetic ef-
fect is not significantly present; i.e., aQ 6¼ 0 but dQ¼ 0. To
test association between the markers A and B and the
QTL Q, one may test hypotheses HABa0: aA1 ¼ � � � ¼
aA(m�1) ¼ aB1 ¼ � � � ¼ aB(n�1) ¼ 0 vs. HABa1: at least one
aAi, aBk is not equal to 0. To see this, note that the
hypothesis HABa0 is equivalent to DA1Q ¼ � � � ¼ DAm�1Q ¼
DB1Q ¼ � � � ¼ DBn�1Q ¼ 0, since aQ is significantly differ-
ent from 0. On the other hand, assume that both ad-
ditive and dominance genetic effects are significantly
present at the putative QTL Q; i.e., aQ 6¼ 0 and dQ 6¼ 0. To
test association between the markers A and B and the
QTL Q, one may test hypothesis HABad0: aA1 ¼ � � � ¼
aA(m�1) ¼ aB1 ¼ � � � ¼ aB(n�1) ¼ dA12 ¼ � � � ¼ dA1m¼ � � � ¼
dA(m�1)m ¼ dB12 ¼ � � � ¼ dB1n ¼ � � � ¼ dB(n�1)n ¼ 0 vs.
HABad1: at least one aAi, aBk, dAij, dBkl is not equal to 0,
since both aQ and dQ are significantly different from 0.
Regression models, F-tests, and noncentrality parameter

approximations: Assume that N individuals from a pop-
ulation are available for study, whose trait values are
listed as y1, . . . , yN and their genotypes as GA1, . . . , GAN

at marker A and GB1, . . . , GBN at marker B. For individ-
ual s, let xðsÞAi ; z

ðsÞ
Aij ; x

ðsÞ
Bk ; z

ðsÞ
Bkl be the corresponding coding

functions of genotypes GAs and GBs. Let us denote
X ðsÞ
A[B ¼ ð1; xðsÞA1 ; . . . ; x

ðzÞ
Aðm�1Þ; x

ðsÞ
B1 ; . . . ; x

ðsÞ
Bðn�1ÞÞ and Z ðsÞ

A[B ¼
ðzðsÞA12; . . . ; z

ðsÞ
A1m ; . . . ; z

ðsÞ
Aðm�1Þm ; z

ðsÞ
B12; . . . ; z

ðsÞ
B1n; . . . ; z

ðsÞ
Bðn�1ÞnÞ;

s ¼ 1; 2; . . . ;N : Denote aA[B ¼ (a, aA1, . . . , aA(m�1),
aB1, . . . , aB(n�1))t, and dA[B ¼ (dA12, . . . , dA(m�1)m,
dB12, . . . , dB(n�1)n)t. The corresponding regression of
model (14) can be written as

ys ¼wsg1X
ðsÞ
A[BaA[B1Z

ðsÞ
A[BdA[B1 es; s¼ 1;2 . . . ;N :

ð16Þ

Let us denote DAQ ¼ ðDA1Q ; . . . ;DAm�1Q Þ
t and DBQ ¼

ðDB1Q ; . . . ;DBn�1Q Þ
t; DAQ ¼ ½PA2

DA1Q � PA1
DA2Q �

2; . . . ;
�

½PAm�1
DAmQ � PAm

DAm�1Q �
2Þt and DBQ ¼ ½PB2

DB1Q � PB1

�
DB2Q �

2; . . . ; ½PBn�1
DBnQ � PBn

DBn�1Q �
2Þt. On the basis of
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regression (16), one may construct an F-test statistic
FAB,ad to test the null hypothesis HABad0 in the same way
as constructing Fm,ad or Fm,a (Graybill 1976, Chap. 6).
Under the null hypothesis of HABad0, FAB,ad is central to
F( JA 1 JB � 2, N � JA � JB 1 1). Assume the sample size
N is large enough that the large sample theory applies.
Under the alternative hypothesis of HABad1, FAB,ad is
noncentral to F( JA 1 JB � 2, N� JA � JB 1 1), and it can
be shown that the corresponding noncentrality param-
eter is approximated by

lABad � N

s2

ðDt
AQ ; D

t
BQ ÞðVA=2Þ�1 DAQ

DBQ

� �
s2

ga=ðq1q2Þ

1 ðDt
AQ ;D

t
BQ ÞV �1

D

DAQ

DBQ

� �
s2

gd=ðq2
1q

2
2 Þ

2
664

3
775:

Similarly, an F-test statistic FAB,a used to test the null
hypothesis HABa0 can be constructed. Under the null hy-
pothesis of HABa0, FAB,a is central to F(m1 n� 2, N� n�
m1 1). Under the alternative hypothesis of HABa1, FAB,a

is noncentral to F(m1 n� 2, N�m� n1 1), and it can
be shown that the corresponding noncentrality param-
eter is approximated by

lABa �
N

s2ðDt
AQ ;D

t
BQ ÞðVA=2Þ�1 DAQ

DBQ

� �
s2

ga=ðq1q2Þ:

The haplotype trend regression method: If only one
marker A is used in the analysis, the proposed model (2)
is equivalent to the HTR method of Zaykin et al. (2002).
However, the proposed models are different from the
haplotype trend regression method for two/multiple
marker data. Assume that M markers are typed in a
region of the trait locus Q. On the basis of the genotypes
of the multiple markers, assume that J haplotypes can
be determined as h1, . . . , hJ with frequencies Phj ; j ¼
1; 2; . . . ; J . For each individual, we may define an ex-
pected haplotype score vector as follows (Schaid et al.
2002; Zaykin et al. 2002). The expected haplotype score
vector is a column vector of J elements (c1, . . . , cJ)t

based on the genotype combination (G1, . . . , GM) at
the markers of an individual. For instance, the score
vector is (1, 0, . . . , 0)t if haplotype pair h1/h1 is the only
possible phase of the genotype combination (G1, . . . ,
GM). In general, cj is the conditional probability of a
haplotype hj given genotype combination (G1, . . . , GM)
at the markers; i.e.,

cj ¼ Pðhj jG1; . . . ;GM Þ ¼
Phj

PJ
i¼1 PðG1; . . . ;GM jhj ; hiÞPhiPJ

i¼1

PJ
k¼1 PðG1; . . . ;GM jhi ; hkÞPhi Phk

:

In the above equation, the conditional probability
P(G1, . . . , GMjhi, hk) is 1 if haplotype pair hi/hk is a pos-
sible phase for the genotype combination (G1, . . . ,
GM), and P(G1, . . . , GMjhk, hj) is 0 otherwise. For each
individual, the summation

PJ
j¼1 cj of the expected

haplotype scores is equal to 1.

For the purpose of explanation, consider two diallelic
markers A and B. Let us denote the two alleles of marker
A by A1, A2; and denote the two alleles of marker B by B1,
B2. Table 1 gives the score vector for each genotype
combination of markers A and B. To understand the
entries of Table 1, it is worthwhile to take genotype
combination (GA ¼ A1A1, GB ¼ B1B1) as an example.
Two copies of haplotype A1B1 can be formed from the
genotype combination (GA ¼ A1A1, GB ¼ B1B1). The
score for haplotype A1B1 is 1 for this genotype combi-
nation; and scores for the other three haplotypes are all
0. Denote the genotype of an individual at marker A by
GA and the genotype at marker B by GB. Let us denote
c1 ¼ P(A1B1|GA ¼ A1A2, GB ¼ B1B2) ¼ P(A1B1)P(A2B2)/
[2P(A1B1)P(A2B2) 1 2P(A1B2)P(A2B1)] ¼ c4; i.e., c1 is
the conditional probability of a haplotype A1B1 given
the double heterozygotes (GA ¼ A1A2, GB ¼ B1B2); and
c2 ¼ c3 ¼ 1

2 � c1: For the double heterozygotes (GA ¼
A1A2, GB¼ B1B2), the expected scores are c1, c2, c2, c1 for
haplotypes A1B1, A1B2, A2B1, A2B2. The scores of the
other genotype combinations are provided in Table 1.
Then the corresponding model of the haplotype trend
regression method can be written as

y ¼ wg1
X4

i¼1

Iibi 1 e; ð17Þ

where bi are regression coefficients, and Ii are expected
scorings of haplotypes defined in Table 1. It can be seen
that model (17) is not equivalent to either proposed
model (13) or model (14).

In the general case of M markers, let Ij be the
expected score of haplotype hj, j ¼ 1, 2, . . . , J. In terms
of conditional probabilities, Ij can be expressed as

Ij ¼
X
G1

. . .
X
GM

Pðhj jG1; . . . ;GM Þ1ðG1;...;GM Þ:

TABLE 1

Expected scorings Ii, i¼ 1, 2, 3, 4 of haplotypes of model (17)

Haplotype and related expected scoring

Genotype (GA, GB) A1B1, I1 A1B2, I2 A2B1, I3 A2B2, I4

(A1A1, B1B1) 1 0 0 0
(A1A1, B1B2) 1

2
1
2 0 0

(A1A1, B2B2) 0 1 0 0

(A1A2, B1B1) 1
2 0 1

2 0
(A1A2, B1B2) c1 c2 c2 c1
(A1A2, B2B2) 0 1

2 0 1
2

(A2A2, B1B1) 0 0 1 0
(A2A2, B1B2) 0 0 1

2
1
2

(A2A2, B2B2) 0 0 0 1

The constants are givenby c1¼P(A1B1|GA¼A1A2,GB¼B1B2)¼
P(A1B1)P(A2B2)/[2P(A1B1)P(A2B2)12P(A1B2)P(A2B1)]andc2¼
1
2 – c1.
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The corresponding model of the haplotype trend re-
gression method can be written as

y ¼ wg1
XJ
j¼1

Ijbj 1 e: ð18Þ

For j¼ 1, 2, . . . , J, let us denote DhjQ ¼ PðQ1hjÞ � q1Phj ,
which are measures of LD between QTL Q and the
haplotypes. Here P(Q1hj) is the frequency of haplotype
Q1hj. In appendix f, we show that the regression co-
efficients of model (18) satisfy the matrix equation

EðI 2
1 Þ EðI1I2Þ . . . EðI1IJ Þ

EðI2I1Þ EðI 2
2 Þ . . . EðI2IJ Þ

..

. ..
.

. . . ..
.

EðIJ I1Þ EðIJ I2Þ . . . EðI 2
J Þ

0
BBBBB@

1
CCCCCA

b1

b2

..

.

bJ

0
BBBBB@

1
CCCCCA

¼ m

Ph1

Ph2

..

.

PhJ

0
BBBBB@

1
CCCCCA1 aQ

a1

a2

..

.

aJ

0
BBBB@

1
CCCCA� dQ

d1

d2

..

.

dJ

0
BBBB@

1
CCCCA; ð19Þ

where E(IiIk) are given in appendix f, and

aj ¼
X
G1

. . .
X
GM

Pðhj jG1; . . . ;GM Þ

3
XJ
i¼1

XJ
k¼1

PðG1; . . . ;GM jhi ; hkÞ PhiDhkQ 1PhkDhiQ

� �
dj ¼

X
G1

. . .
X
GM

Pðhj jG1; . . . ;GM Þ

3
XJ
i¼1

XJ
k¼1

PðG1; . . . ;GM jhi ; hkÞDhiQDhkQ :

From Equations 19, it is clear that model (18) models
both the additive and dominance effects. Suppose that
the haplotype and the QTL Q are in linkage equilib-
rium; i.e.,DhjQ ¼ 0; j ¼ 1; 2; . . . ; J . Then Equation 19 im-
plies b1 ¼ � � � ¼ bJ ¼ m, since

PJ
j¼1 Ij ¼ 1 and EIj ¼ Phj .

Hence, model (18) is reduced to (5). To test association
between the haplotypes and the trait locus, one may test
a null hypothesis b1 ¼ � � � ¼ bJ, and the related F-test
statistic can be constructed.

Again, assume that N individuals from a population
are available for study with trait values and genotype
information. On the basis of regression (18), one may
construct an F-test statistic FHTR to test the null hypoth-
esis b1 ¼ � � � ¼ bJ ¼ m (Graybill 1976). Under the null
hypothesis, FHTR is central to F( J� 1, N� J ). Under the
alternative hypothesis that at least two bj’s are not equal
to each other, FHTR is noncentral to F( J � 1, N � J ).
Assume the sample size N is large enough that the large
sample theory applies. Then it can be shown that the

corresponding noncentrality parameter is approxi-
mated by

lHTR � N

s2ðb1 � b2; . . . ;b1 � bJ Þ½HE�1H t��1

3 ðb1 � b2; . . . ;b1 � bJ Þt;

where

E ¼

EðI 2
1 Þ EðI1I2Þ . . . EðI1IJ Þ

EðI2I1Þ EðI 2
2 Þ . . . EðI2IJ Þ

..

. ..
.

. . . ..
.

EðIJ I1Þ EðIJ I2Þ . . . EðI 2
J Þ

0
BBBBB@

1
CCCCCA

H ¼

1 �1 0 0 . . . 0 0 0

1 0 �1 0 . . . 0 0 0

1 0 0 �1 . . . 0 0 0

..

. ..
. ..

. ..
.

. . . ..
. ..

. ..
.

1 0 0 0 . . . 0 �1 0

1 0 0 0 . . . 0 0 �1

0
BBBBBBBBB@

1
CCCCCCCCCA

ð J�1Þ3J

:

The advantage of model (17) is that it may model
the haplotype effect by parameters bi. In practice, it is
necessary to calculate the expected scorings or haplo-
type frequencies before building the haplotype trend
regression model. Instead, the proposed models (13)
and (14) may be used to analyze genetic data directly.
Moreover, we have derived analytical formulas to calcu-
late the regression coefficients of the HTR method and
the related noncentrality parameter of the test statistic
FHTR. Note that the original article by Zaykin et al.
(2002) did not work out this very useful information.
Our analytical coefficient equations and related non-
centrality parameter approximations can be readily uti-
lized for power evaluation.

RESULTS

Type I error rates: To evaluate the robustness of the
proposed models, we calculate type I error rates of test
statistics Fm,ad, Fm,a, FAB,ad, FAB,a, and FHTR at a 0.05
significance level. The results are presented in Tables 2
and 3. Four test cases are considered: null, no major
gene effect a ¼ d ¼ 0; additive, additive mode of in-
heritance a ¼ 1, but no dominant effect d ¼ 0; dom-
inant, dominant mode of inheritance a ¼ d ¼ 1; and
recessive, recessive mode of inheritance a ¼ 1 and d ¼
�0.5. The total variance is fixed as s2 ¼ 1.0 and the trait
allele frequency is taken as q1 ¼ q2 ¼ 0.5 except for that
in the null test case. In Table 2, only one marker A is
used in analysis; the number m of alleles ranges from 2
to 6. The allele frequencies are given by: PA1

¼ PA2
¼ 0:5

when m ¼ 2; PA1
¼ 0:4;PA2

¼ PA3
¼ 0:3 when m ¼ 3;
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PA1
¼ � � � ¼ PA4

¼ 0:25 when m ¼ 4; PA1
¼ � � � ¼ PA5

¼
0:2 when m ¼ 5; and PA1

¼ PA2
¼ 0:2;PA3

¼ � � � ¼ PA6
¼

0:15 when m ¼ 6.
To calculate the type I error rates, 10,000 data sets are

simulated for each test case. Each data set contains either
200 or 300 individuals. In each test case in Table 2, the
data sets are generated under an assumption of linkage
equilibrium between the QTL Q and the marker A; i.e.,
DAiQ ¼ PðQ1AiÞ � q1PAi

¼ 0. That is, there is no associa-
tion between the QTLQ and markerA. Utilizing the data

sets, we fit either model (8) or model (9), and then
calculate the F-test Fm,ad or Fm,a. Because the data sets are
generated under the assumption of linkage equilibrium,
an empirical test statistic that is larger than the cutting
point of the related F-statistic at a 0.05 significance level is
treated as a false positive. On the basis of the F-test of
either Fm,ad or Fm,a, type I error rates are calculated as the
proportions of the 10,000 simulation data sets that give
significant results at the 0.05 significance level.

For the test statistic Fm,a, the Table 2 results show that
the type I error rates are around the 0.05 nominal sig-
nificance level in all cases. Hence, the proposed model
(9) is robust for data sets of a sample size N ¼ 200. For
test statistic Fm,ad, the type I error rates are around the
0.05 nominal significance level when m# 5 for data sets
of sample size N¼ 200. For m¼ 6 and a sample size N¼
200, the type I error rates of test Fm,ad are too big for
the dominant and recessive test cases (9.11 and 7.04%,
respectively). This is partially due to the large degrees
of freedom, JA � 1 ¼ m(m 1 1)/2 � 1 ¼ 20 of test
Fm,ad when m ¼ 6; in addition, the high rate of type I
error may be also caused by the mode of inheritance,
i.e., for the cases of dominant and recessive models.
When the sample size increases to N ¼ 300, the type I
error rates of test Fm,ad are around the 0.05 nominal
significance level for m¼ 6. Model (8) is less robust than
model (9).

In Table 3, two markers A and B are used in the anal-
ysis. The numbers m and n of alleles are equal to 2. The
allele frequencies are given by PA1

¼ PA2
¼ 0:5 and

PB1
¼ PB2

¼ 0:5. In each test case, linkage equilibrium
is assumed between the QTLQ and the markersA andB;
i.e., DAiQ ¼ DBiQ ¼ 0. Denote DA1B1

¼ PðA1B1Þ � PA1
PB1

,
which is the measure of LD between A and B. Here
P(A1B1) is the frequency of haplotype A1B1. Let

DAQB ¼ PðA1Q1B1Þ � PA1DB1Q � q1DA1B1 � PB1DA1Q � PA1q1PB1

ð20Þ
be the measure of the third-order LD (Thomson
and Baur 1984). Here P(A1Q1B1) is the frequency of
haplotype A1Q1B1. Between marker A and marker B, two
situations are considered: (1) linkage equilibrium, i.e.,
DA1B1

¼ 0, and (2) linkage disequilibrium, i.e., DA1B1
¼

0:08. No linkage disequilibrium of third order is
assumed among markers A and B and the QTL Q; that
is, DAQB ¼ 0. Again, 10,000 data sets are simulated for
each test case, and each data set contains 200 individ-
uals. The simulation is done as follows. First, the
haplotype frequencies are calculated on the basis of
allele frequencies and LD coefficients by relation (20)
(Thomson and Baur 1984). Then data sets are simu-
lated using the haplotype frequencies. On the basis of
the F-test of either FAB,ad or FAB,a or the HTR method,
type I error rates are calculated as the proportions of the
10,000 simulation data sets that give significant results at
the 0.05 significance level. The Table 3 results show that
the type I error rates are around the 0.05 nominal

TABLE 2

Type I error rates (percentage) of test statistics Fm,ad and Fm,a

at a 0.05 significance level when only one marker A is used
in the analysis

Error rates

No. of alleles Sample size Test case Fm,ad Fm,a

Diallele, m ¼ 2 N ¼ 200 Null 4.90 4.93
Additive 5.10 4.89
Dominant 4.75 4.98
Recessive 5.03 5.09

Triallele, m ¼ 3 N ¼ 200 Null 4.94 5.18
Additive 5.03 4.92
Dominant 5.07 5.06
Recessive 4.65 4.85

Quadriallele, m ¼ 4 N ¼ 200 Null 4.89 5.29
Additive 4.72 4.69
Dominant 5.03 4.92
Recessive 4.86 4.85

Five alleles, m ¼ 5 N ¼ 200 Null 4.71 5.14
Additive 4.96 4.49
Dominant 5.02 4.94
Recessive 5.04 4.76

Six alleles, m ¼ 6 N ¼ 200 Null 5.02 5.21
Additive 5.23 4.92
Dominant 9.11 5.16
Recessive 7.04 4.97

Six alleles, m ¼ 6 N ¼ 300 Null 4.91 5.36
Additive 5.08 4.98
Dominant 5.39 4.91
Recessive 5.32 5.11

The total variance is fixed as s2 ¼ 1.0 and the trait allele
frequency is taken as q1 ¼ q2 ¼ 0.5. The number m of alleles
ranges from 2 to 6. The allele frequencies are given by:
PA1

¼ PA2
¼ 0:5 when m ¼ 2; PA1

¼ 0:4;PA2
¼ PA3

¼ 0:3 when
m ¼ 3; PA1

¼ � � � ¼ PA4
¼ 0:25 when m ¼ 4; PA1

¼ � � � ¼
PA5

¼ 0:2 when m ¼ 5; and PA1
¼ PA2

¼ 0:2;PA3
¼ � � � ¼

PA6
¼ 0:15 when m ¼ 6. Four test cases are considered: null,

no major gene effect a ¼ d ¼ 0; additive, additive mode of in-
heritance a ¼ 1, but no dominant effect d ¼ 0; dominant,
dominant mode of inheritance a ¼ d ¼ 1; recessive, recessive
mode of inheritance a ¼ 1 and d ¼ –0.5. In each test case,
linkage equilibrium is assumed between the QTL Q and
the marker A; i.e., DAiQ ¼ PðQ1AiÞ � q1PAi

¼ 0.
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significance level in all cases. Hence, the proposed
models (13) and (14) and the HTR method are robust
for data sets of a sample size N ¼ 200.

Table 4 shows type I error rates (percentages) of test
statistics FABC,ad, FABC,a, and FHTR at a 0.05 significance
level when three diallelic markersA, B, andC are used in
the analysis. The measures DABC, DAQC, and DBQC of the
third-order LD are defined as that of DAQB; the measure
of the fourth order is defined accordingly (Bennett
1954). Such as relation (20), the haplotype frequencies

at the three markers A, B, and C and at QTL Q are
calculated on the basis of allele frequencies and LD co-
efficients by Weir’s (1996, p. 119) relation (3.14). Then
data sets are simulated using the haplotype frequencies.
Since this article is about population data, one indi-
vidual may have two copies of haplotypes. Each haplo-
type is sampled according to the haplotype frequencies.
From the Table 4 results, we can see that the proposed
models and the HTR method give correct type I errors
for data sets of a sample size N ¼ 200.

TABLE 3

Type I error rates (percentage) of test statistics FAB,ad, FAB,a, and FHTR of the haplotype trend regression (HTR)
method at a 0.05 significance level when two markers A and B are used in the analysis

LD measure
DA1B1

¼ PðA1B1Þ � PA1
PB1

Error Rates

Sample size Test case FAB,ad FAB,a FHTR

0 N ¼ 200 Null 4.90 5.22 5.39
Additive 5.09 4.75 4.77
Dominant 4.62 4.87 4.79
Recessive 5.36 5.12 4.81

0.08 N ¼ 200 Null 5.09 5.23 5.55
Additive 4.92 4.74 4.71
Dominant 4.63 4.84 4.71
Recessive 5.04 5.02 4.94

The total variance is fixed as s2 ¼ 1.0 and the trait allele frequency is taken as q1 ¼ q2 ¼ 0.5. The numbers m
and n of alleles ¼ 2. The allele frequencies are given by PA1

¼ PA2
¼ 0:5 and PB1

¼ PB2
¼ 0:5. Four test cases are

considered: null, no major gene effect a¼ d¼ 0; additive, additive mode of inheritance a¼ 1, but no dominant
effect d ¼ 0; dominant, dominant mode of inheritance a ¼ d ¼ 1; recessive, recessive mode of inheritance a ¼ 1
and d¼ –0.5. In each test case, linkage equilibrium is assumed between the QTL Q and the markers A and B; i.e.,
DAiQ ¼ DBiQ ¼ 0. No linkage disequilibrium of third order is assumed among markers A and B and the QTL Q;
that is, DAQB ¼ 0.

TABLE 4

Type I error rates (percentage) of test statistics FABC,ad, FABC,a, and FHTR of the haplotype trend regression
(HTR) method at a 0.05 significance level when three diallelic markers A, B, and C are used in the analysis

LD measure
DA1B1

¼ DA1C1
¼ PB1C1

Error rates

Sample size Test case FABC,ad FABC,a FHTR

0.08 N ¼ 200 Null 5.2 5.35 5.43
Additive 4.98 4.85 4.74
Dominant 4.31 4.68 4.62
Recessive 5.29 5.3 5.27

0.06 N ¼ 200 Null 5.24 5.41 5.39
Additive 5.15 4.89 4.71
Dominant 4.61 5.0 5.03
Recessive 5.09 4.94 5.08

The total variance is fixed as s2 ¼ 1.0 and the trait allele frequency is taken as q1 ¼ q2 ¼ 0.5. The allele fre-
quencies are given by PA1

¼ PA2
¼ 0:5, PB1

¼ PB2
¼ 0:5, and PC1

¼ PC2
¼ 0:5. Four test cases are considered: null,

no major gene effect a ¼ d ¼ 0; additive, additive mode of inheritance a ¼ 1, but no dominant effect d ¼ 0;
dominant, dominant mode of inheritance a¼ d¼ 1; recessive, recessive mode of inheritance a¼ 1 and d¼ –0.5.
In each test case, linkage equilibrium is assumed between the QTL Q and the markers A, B, and C; i.e.,
DAiQ ¼ DBiQ ¼ DCiQ ¼ 0. Moreover, neither third- nor fourth-order linkage disequilibrium is assumed; i.e., DABC ¼
DAQB ¼ DAQC ¼ DBQC ¼ DABCQ ¼ 0.
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Power calculation and comparison: Let h2 ¼ sga
2 /s2

be the heritability. Figure 1 shows power curves of the
test statistics F4,a, F4,ad, F2,a, and F2,ad against the dis-
equilibrium coefficient DA1Q for a dominant mode of in-
heritance a¼ d¼ 1.0 at a 0.05 significance level based on
the approximations of noncentrality parameters lm,a

and lm,ad. F4,a and F4,ad are calculated when A has
four equal frequency alleles; i.e., PA1

¼ � � � ¼ PA4
¼ 0:25.

In addition, the measures of LD are given as follows:
Figure 1, A and B, DA2Q ¼ DA4Q ¼ �DA1Q ;DA3Q ¼ DA1Q ,
and Figure 1, C and D, DA2Q ¼ �DA1Q ;DA3Q ¼ �DA4Q ¼
DA1Q=2. F2,a and F2,ad are calculated by collapsing the
four alleles to be two alleles: in Figure 1, A and C, alleles
A1 and A2 are collapsed as one allele, and alleles A3 and
A4 are collapsed to be the other; in Figure 1, B and D,
alleles A1 and A3 are collapsed to be one allele, and
alleles A2 and A4 are collapsed to be the other. For F2,a

and F2,ad, a simple calculation can show that the mea-
sures of LD in Figure 1A are 0, 0; the measures of LD in
Figure 1B are 2DA1Q ;�2DA1Q ; the measures of LD in
Figure 1C are 0, 0; and the measures of LD in Figure 1D
are 3DA1Q=2;�3DA1Q=2. Hence, the QTL Q is in linkage
equilibrium with the marker after collapsing the alleles

in Figure 1, A and C. The other parameters are q1 ¼ 0.50,
h2 ¼ 0.25, N ¼ 200.

From Figure 1, we may see the following:

1. F4,ad is slightly less powerful than F4,a, and F2,ad is
slightly less powerful than F2,a. This is because that
test statistic Fm,ad has larger degrees of freedom
than those of Fm,a. Note that the noncentrality param-
eter approximation lm,ad of Fm,ad is given by Equation
10. The contribution of the dominance effect is
Ns2

gdR
4
AQ=s

2; which depends on both dominance
effect d and the magnitude of factor R4

AQ ; and it can
be significant when both of them are large enough.
Hence, including a dominance component in the
model can improve the power of QTL detection only
when the magnitude of s2

gdR
4
AQ is large enough to

compensate for the extra degrees of freedom. Note
that the quantity s2

gdR
4
AQ is the product of the dom-

inance variance s2
gd and of the measure RAQ

4 of LD.
The magnitude of s2

gdR
4
AQ is the result of the

dominance variance s2
gd reduced by a factor R4

AQ :
Even when s2

gd is large, s2
gdR

4
AQ can be small when LD

coefficients are not big; i.e., R4
AQ is small.

Figure 1.—Power curves of the test statis-
tics F4,ad, F4,a, F2,ad, and F2,a against the dis-
equilibrium coefficient D1 ¼ DA1Q for a
dominant mode of inheritance a ¼ d ¼ 1.0
at a 0.05 significance level. F4,ad and F4,a are
calculated when markerAhas four equal fre-
quency alleles; i.e., PA1

¼ � � � ¼ PA4
¼ 0:25.

The measures of LD are (A and B) DA2Q ¼
DA4Q ¼ �DA1Q ;DA3Q ¼ DA1Q and (C and D)
DA2Q¼�DA1Q ;DA3Q¼�DA4Q ¼ DA1Q =2. F2,ad

and F2,a are calculated by collapsing two of
the four alleles: (A and C) alleles A1 and A2

are collapsed as one allele, and alleles A3

and A4 are collapsed to be the other; (B
and D) alleles A1 and A3 are collapsed to be
one allele, and allelesA2 andA4 are collapsed
to be the other. The other parameters are
q1 ¼ 0.50, h2 ¼ 0.25, N ¼ 200.

672 R. Fan, J. Jung and L. Jin



2. When the measures of LD are high, the power of the
test statistics is high. On the other hand, the power is
minimal if all measures of LD are close to 0.

3. The dependence of power on measures of LD can
also be observed by comparing Figure 1A with Figure
1C, 1B with 1D. The power of F4,ad and F4,a in Figure
1A is higher than that of F4,ad and F4,a in Figure 1C,
respectively; the power of each test statistic in Figure
1B is higher than that of the same test statistic in
Figure 1D. This is because the measures of LD in Figure
1A are equal to or higher than those in Figure 1C,
and the measures of LD in Figure 1B are equal to or
higher than those in Figure 1D.

4. In Figure 1B and Figure 1D, the power of F4,ad is
slightly lower than that of F2,ad; the power of F4,a is
slightly lower than that of F2,a.

5. In Figure 1A and Figure 1C, the power of F2,ad

and F2,a is minimal. This is because measures of
LD are 0 after collapsing the alleles in these two
graphs.

Figure 2 shows power curves of the test statistics F4,a,
F4,ad, F3,a, and F3,ad against the disequilibrium coeffi-

cient DA1Q for a dominant mode of inheritance a ¼ d ¼
1.0 at a 0.05 significance level. F4,a and F4,ad are cal-
culated as those in Figure 1. F3,a and F3,ad are calculated
by collapsing two of the four alleles to be a new alelle: in
Figure 2, A and C, alleles A1 and A2 are collapsed as a
new one; in Figure 2, B and D, alleles A1 and A3 are
collapsed to be a new one. For F3,a and F3,ad, a simple
calculation can show that the measures of LD in Figure
2A are 0;DA1Q ;�DA1Q ; the measures of LD in Figure 2B
are 2DA1Q ;�DA1Q ;�DA1Q ; the measures of LD in Figure
2C are 0;DA1Q=2;�DA1Q=2; and the measures of LD in
Figure 2D are 3DA1Q=2;�DA1Q ;�DA1Q=2. Among the
features shown in Figure 1, it can be seen that in Figure
2, A and C, the power of F4,ad is higher than that of F3,ad,
and the power of F4,a is higher than that of F3,a. In Figure
2, B and D, the power of F4,ad is slightly lower than that of
F3,ad, and the power of F4,a is slightly lower than that of
F3,a. Hence, the way to collapse the alleles has impact on
power.

From Figures 1 and 2, we may see that the power
of F4,a and F4,ad is relatively stable although it may be
slightly lower than that of F3,a, F3,ad, F2,a, and F2,ad in

Figure 2.—Power curves of the test
statistics F4,a, F4,ad, F3,a, and F3,ad, against
the disequilibrium coefficient D1 ¼
DA1Q for a dominant mode of inheri-
tance a ¼ d ¼ 1.0 at a 0.05 significance
level. F4,ad and F4,a are calculated when
marker A has four equal frequency al-
leles; i.e., PA1

¼ � � � ¼ PA4
¼ 0:25. The

measures of LD are the same as those
in Figure 1. F3,ad and F3,a are calculated
by collapsing two of the four alleles: (A
and C) alleles A1 and A2 are collapsed as
a new one; (B and D) alleles A1 and A3

are collapsed to be a new one. The other
parameters are q1 ¼ 0.50, h2 ¼ 0.25, N ¼
200.
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certain circumstances. However, the power of F3,a, F3,ad,
F2,a, and F2,ad depends heavily on the way to collapse the
alleles. This shows the advantage of using multiallelic
markers in an association study of QTL detection. For
multiallelic marker data, the proposed test statistics
Fm,a and Fm,ad can be directly used to test if there is
association between the marker and the QTL. As shown
in Figures 1 and 2, the test statistic Fm,a is usually more
powerful than Fm,ad due to the increase of degrees of
freedom of test statistic Fm,ad.

Figure 3 shows power curves of the test statistics F4,a

and F4,ad against the heritability h2 at a 0.05 significance
level for a dominant mode of inheritance a ¼ d ¼ 1.0
and for a recessive mode of inheritance a ¼ 1.0, d ¼
�0.5, respectively. As with Figures 1 and 2, Figure 3 is
based on noncentrality parameter approximations (10)
and (11). In Figure 3, A and B, the power can be high as
the heritability h2 . 0.1; in these two graphs, the mea-
sures of LD are given by DA1Q ¼ �DA2Q ¼ DA3Q ¼
�DA4Q ¼ 0:08. In Figure 3, C and D, the power can be
high as the heritability h2 . 0.15; in these two graphs, the
measures of LD are given by DA1Q ¼ �DA2Q ¼ DA3Q ¼
�DA4Q ¼ 0:06. Figure 4 shows power curves of the test

statistics F4,a and F4,ad against the trait allele frequency q1

or marker allele frequency PA1
at a 0.05 significance

level. It can be seen that the power depends on both the
measures of linkage disequilibrium and the trait allele
frequency q1 or marker allele frequency PA1

.
Comparison with the haplotype trend regression

method: Assume that the two diallelic markers A and B
are used in the analysis. Figures 5 and 6 show power
curves of the test statistics FAB,a, FHTR, and FAB,ad against
the heritability h2 at a 0.05 significance level. The related
parameters are given in the figure legends. The power
curves of the test statistics FAB,a, FHTR, and FAB,ad are
calculated on the basis of approximations of noncen-
trality parameters lABa, lHTR, and lABad.

In Figure 5, no third-order linkage disequilibrium is
assumed; i.e., DAQB¼ 0. In Figure 6, A and B, weak third-
order linkage disequilibrium is assumed; i.e., DAQB ¼
0.025. It can be seen that the genotype effect model can
be less powerful than the HTR method, and the HTR
method can be less powerful than the additive effect
model in the case of no or weak third-order linkage
disequilibrium among the two markers and the QTL
(Figure 5 and Figure 6, A and B). In Figure 6, C and D,

Figure 3.—Power curves of the test sta-
tistics F4,a and F4,ad against the heritability
h2 at a 0.05 significance level. (A and C)
The curves are plotted for a dominant
mode of inheritance a ¼ d ¼ 1.0; (B
and D) the curves are plotted for a reces-
sive mode of inheritance a ¼ 1.0, d ¼
�0.5. F4,a and F4,ad are calculated when
marker A has four equal frequency al-
leles; i.e.,PA1

¼ � � � ¼ PA4
¼ 0:25. The mea-

sures of LD are given as follows: (A and B)
DA1Q ¼ �DA2Q ¼ DA3Q ¼ �DA4Q ¼ 0:08;
(C and D) DA1Q ¼ �DA2Q ¼ DA3Q ¼
�DA4Q ¼ 0:06. The other parameters
are q1 ¼ 0.50 and N ¼ 250.
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strong third-order linkage disequilibrium is assumed;
i.e., DAQB ¼ 0.065. In the case that strong third-order
linkage disequilibrium exists, the HTR method can be
more powerful (Figure 6, C and D).

Note the following fact: in Figure 6, A and B, the max-
imum of DAQB is 0.025; in Figure 6, C and D, the max-
imum ofDAQB is 0.065 (otherwise, some of the haplotype
would have negative frequencies). Thus, the simulated
power curves of the haplotype trend regression method
in Figures 5 and 6 represent the two extreme situations:
(1) no third-order linkage disequilibrium (Figure 5)
and (2) strongest third-order linkage disequilibrium
(Figure 6). In practice, the third-order linkage disequi-
librium would exist in a more moderate way that is
between the two extremes; and the power of the hap-
lotype trend regression method should be between
those of the two extremes. Note that the proposed geno-
type effect model and additive effect model utilize only
the second-order linkage disequilibrium or pairwise
linkage disequilibrium. Hence, the powers of FAB,a and
FAB,ad are the same for Figures 5 and 6.

Figure 7 shows power curves of the test statistics FABC,a

and FABC,ad and FHTR against the heritability h2 at a 0.05
significance level, when three diallelic markers A, B, and

C are used in the analysis. The related parameters are
given in the figure legend. From Figure 7, it can be seen
that the power of FHTR is the lowest. This is due to the
large number of degrees of freedom of FHTR, which is
F(7, N � 8), N ¼ 200. In contrast, FABC,a is F(3, N � 4),
N¼ 200; and FABC,a is F(6,N� 7),N¼ 200. The low power
of FHTR is most likely due to the biallelic QTL situation
that we consider. In the situation of multiple QTL
haplotypes and strong LD between QTL and marker
haplotypes, the haplotype-based methods are expected
to have good power.

Comparison based on ACE haplotype frequencies:
To work on more realistic scenarios, we take the hap-
lotype information of ACE genes as an example. Ten
diallelic polymorphisms in the ACE gene spanning
26 kb were genotyped (Keavney et al. 1998). The order
of the 10 polymorphisms is T-5991C, A-5466C, T-3892C,
A-240T, T-93C, T1237C, G2215A, I/D, G2350A, and
4656(CT)3/2. Table 5 lists 10 haplotypes, where the first
7 are the most frequent haplotypes (http://www.well.
ox.ac.uk/�mfarrall/oxhap_freq.html). For the 10 hap-
lotypes, allele I at marker I/D is always present with
allele A at marker G2350A, and allele D at marker I/D is
always present with allele G at marker G2350A. Hence,

Figure 4.—Power curves of the test
statistics F4,a and F4,ad against the trait
allele frequency q1 or allele frequency
PA1

at a 0.05 significance level. (A and
C) The curves are plotted for a domi-
nant mode of inheritance a ¼ d ¼ 1.0;
(B and D) the curves are plotted for a
recessive mode of inheritance a ¼ 1.0,
d ¼ �0.5. (A and B) The parameters
are given by PA1

¼ � � � ¼ PA4
¼ 0:25,

q2 ¼ 1 � q1;DA1Q ¼ ðminðq1;PA1
Þ � q1

PA1
Þ=2 ¼ �DA2Q ¼ DA3Q ¼ �DA4Q ; (C

and D) the parameters are given by
PA2

¼ 0:5 � PA1
, PA3

¼PA4
¼0:25; q1 ¼

0:5;DA1Q ¼ ðminðq1;PA1
Þ � q1PA1

Þ=2 ¼
�DA2Q ;DA3Q ¼ �DA4Q¼0:05.The other
parameters are h2 ¼ 0.15 and N ¼ 250.
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the two markers can be treated as one. Similarly, mark-
ers T-5991C and A-5466C can be treated as one; and
markers A-240Tand T-93C can be treated as one. There-
fore, the 10 haplotypes can be considered as containing
seven markers.

In Abecasis et al. (2000a,b) and Fan et al. (2005), it is
found that that markers I/D and G2350A show strongest
association with the circulating ACE level. Thus, markers
I/D and G2350A are treated as a putative trait locus Q.
A quantitative trait of the putative locus Q is simulated
for each graph in Figure 8, A–D. The empirical power
curves of the test statistics FHTR, Fa, and Fad are plotted
against the heritability h2 at a 0.05 significance level in
Figure 8. Here Fa is the test statistic based on the additive
effect model, and Fad is the test statistic based on the
genotype effect model. The empirical power curves
SFHTR, SFa, and SFad in Figure 8 are calculated as follows.
First, the interval (0.01, 0.25) of the heritability h2 is
divided into 24 subintervals. Correspondingly, the 24
subintervals lead to 25 end points. For each end point,
there is a set of parameters for the power curve. Using the
set of parameters, 2500 data sets are simulated for each
end point. For each data set, empirical statistics of FHTR,

Fa, and Fad are calculated. The simulated power is the
proportion of the 2500 simulated data sets for which
the empirical statistic is larger than the cutting point of
the corresponding F-distribution at a 0.05 significance
level.

In Figure 8, A and C, the curves are plotted for a
dominant mode of inheritance a ¼ d ¼ 1.0; in Figure 8,
B and D, the curves are plotted for an additive mode of
inheritance a ¼ 1.0, d ¼ 0. In Figure 8, A and B, all 10
haplotypes are used in the simulations; in Figure 8, C
and D, only the first 7 most frequent haplotypes are
used. From Figure 8, A–D, it can be seen that the
proposed additive effect model has similar power to that
of the HTR method. In Figure 8, A and C, when the
dominance effects are present, the genotype effect
model has similar power to those of the additive effect
model and the HTR method. In Figure 8, B and D, the
genotype effect model is less powerful because of the
absence of the dominance effect. Hence, the genotype
effect model can be useful only if the dominance effect
can compensate for the extra degrees of freedom.

Simulation study: To evaluate the accuracy of the
noncentrality parameter approximations, we performed

Figure 5.—Power curves of the test sta-
tistics FAB,a and FAB,ad and FHTR of the hap-
lotype trend regression method against
the heritability h2 at a 0.05 significance
level, when two diallelic markers A and B
are used in the analysis. (A and C) The
curves are plotted for a dominant mode
of inheritance a ¼ d ¼ 1.0; (B and D) the
curves are plotted for an additive mode
of inheritance a ¼ 1.0, d ¼ 0. (A and B)
The parameters are given by DA1Q ¼
DB1Q ¼ 0:15;DA1B1

¼ 0:10;DA1QB1
¼ 0; (C

and D) the parameters are given by
DA1Q ¼ DB1Q ¼ 0:10;DA1B1

¼ 0:08;DA1QB1
¼

0. The other parameters are PA1
¼ PA2

¼
PB1

¼ PB2
¼ q1¼q2¼0:5 and N ¼ 200.
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simulations for the power curves in Figures 1, 2, 5, 6,
and 7. The results are presented as supplemental in-
formation (http://www.genetics.org/supplemental/).
It can be seen that the approximations are excellent.

DISCUSSION

In this article, two models, the genotype effect model
and the additive effect model, are proposed for high-
resolution association mapping of QTL on the basis of
population data. The two models extend our previous
research, which is based on multiple diallelic markers
(Fan and Xiong 2002, 2003; Jung et al. 2005). The
genotype effect model is closely linked to the measured
genotype approach (Boerwinkle et al. 1986). The very
popular genetics software such as Mendel 5.0 is already
capable of performing association mapping of QTL by
the additive effect model (Cantor et al. 2005; Lange
et al. 2005). Surprisingly, there is no research to theoreti-
cally show why these two models are valid methods in
association mapping of QTL under normal distribution.
There are no existing analytical formulas to evaluate the
power of the related test statistics. This article shows that

the model coefficients are functions of measures of LD;
and thus related F-test statistics can be constructed for
association study of QTL. In the presence of both
additive and dominance effects of the QTL, either the
Fm,ad (or FAB,ad) statistic or the Fm,a (or FAB,a) statistic can
be used. Since the Fm,ad (or FAB,ad) test statistic has
bigger degrees of freedom than those of Fm,a (or FAB,a),
Fm,a (or FAB,a) can be more powerful. If the extra degrees
of freedom of the Fm,ad test can be compensated by
magnitude s2

gdR
4
AQ ; it can be more powerful than Fm,a.

The formulas of noncentrality parameter approxima-
tions (10) and (11) clearly indicate the dependence of
the power on the quantity RAQ

2 for genetic data. That is,
the noncentrality parameter of test statistics of the null
hypothesis of no genetic effects is reduced by a factor
of R2

AQ for additive variance and by a factor of R4
AQ for

dominance variance. If only one diallelic marker A is
used in the analysis, both our previous research and the
work of colleagues have derived similar formulas to sup-
port this argument (Sham et al. 2000; Fan and Xiong

2002, 2003; Fan and Jung 2003; Fan et al. 2005; Jung
et al. 2005). This is a good example in the debate on
appropriate measures of LD for markers or multiallelic

Figure 6.—Power curves of the test sta-
tistics FAB,a and FAB,ad and FHTR of the hap-
lotype trend regression method against
the heritability h2 at a 0.05 significance
level, when two diallelic markers A and
B are used in analysis. All parameters
are the same as those in Figure 5 except
that (A and B) DA1QB1

¼ 0:025 and (C
and D) DA1QB1

¼ 0:065.
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markers (Hedrick 1987; Devlin and Risch 1995;
Pritchard and Przeworski 2001; Weiss and Clark
2002). For multiallelic markers or haplotypes, a satisfac-
tory measure of LD has not been derived, as mentioned
regarding p306 in Ardlie et al. (2002). For two diallelic
loci A and Q, Ardlie et al. (2002) favor using R2

AQ ¼
D2
A1Q

=ðPA1
PA2

q1q2Þ, which is the correlation of alleles at
the two loci. For multiallelic marker data, this article
extends previous research by providing the definition
of RAQ

2 and deriving Equations 10 and 11. Hayes et al.
(2003) introduced a multilocus approach for estimating
LD and past effective size and used chromosome seg-
ment homozygosity (CSH), which was introduced in
Sved (1971). The dependence of the noncentrality pa-
rameter on the quantity R2

AQ has been indicated by our
study and also by Sham et al. (2000).

In Fulker et al. (1999), Abecasis et al. (2000a,b,
2001), and Sham et al. (2000), an association between-
family and association within-family (‘‘AbAw’’) approach
is proposed to decompose the genetic association into
effects of between pairs and within pairs on the basis of
variance component models. The AbAw approach is
based on any single diallelic marker. Instead of using a
single diallelic marker, we have proposed variance com-

ponent models using multiple diallelic markers. In our
models, the association is decomposed into additive and
dominance components (Fan and Xiong 2002, 2003;
Fan and Jung 2003; Fan et al. 2005; Jung et al. 2005). In
Fan and Jung (2003), Fan et al. (2005), and Jung et al.
(2005), we compare our method with the AbAw ap-
proach and find that our method is advantageous over
the AbAw approach. In model (1) or (2), only one
marker is used in model building. If multiple markers
or multiallelic markers are available, it is very easy to
generalize the models to analyze the data. For instance,
model (14) generalizes model (1) if two markers are
available in the analysis. Accordingly, model (13) gen-
eralizes model (2). If only one marker is used in analysis,
the proposed model (2) is equivalent to the haplotype
trend regression method by Zaykin et al. (2002), which
is very close to the method of Schaid et al. (2002). How-
ever, the proposed models are different from the haplo-
type trend regression method for two/multiple marker
data. If both markers are diallelic markers, the genotype
effect model can be less powerful than the HTR method,
and the HTR method can be less powerful than the
additive effect model in the case of no or weak third-order
linkage disequilibrium among the two markers and the

Figure 7.—Power curves of the test sta-
tistics FABC,a and FABC,ad and FHTR of the
haplotype trend regression method
against the heritability h2 at a 0.05 signif-
icance level, when three diallelic markers
A, B, and C are used in the analysis. (A
and C) The curves are plotted for a dom-
inant mode of inheritance a ¼ d ¼ 1.0; (B
and D) the curves are plotted for an ad-
ditive mode of inheritance a ¼ 1.0, d ¼ 0.
(A and B) The parameters are given by
DAQ ¼ DBQ ¼ DCQ ¼ DDQ ¼ 0.12, DAB ¼
DAC ¼ DBC ¼ 0.08; (C and D) the param-
eters are given by DAQ ¼ DBQ ¼ DCQ ¼
DDQ ¼ 0.10, DAB ¼ DAC ¼ DBC ¼ 0.06. Nei-
ther third- nor fourth-order linkage dis-
equilibrium is assumed among markers
and the QTL. The other parameters are
PA1

¼ PB1
¼ PC1

¼ q1 ¼ 0:5 and N ¼ 200.
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QTL. If strong third-order linkage disequilibrium exists,
the HTR method can be more powerful.

Basically, the proposed models are genotype based.
The models can be used to analyze directly any num-
ber of markers, and the markers can be either diallelic
or multiallelic. By a simulation study based on ACE
haplotype frequencies, we show that the proposed
additive effect models have similar power to that of the

haplotype-based HTR method. In the meantime, the
proposed models enjoy the simplicity of not needing to
estimate the expected haplotype scorings; in contrast,
the HTR method needs to calculate the expected hap-
lotype scorings before building the models. The pro-
posed models decompose the main marker effects into a
summation of additive and dominance effects. In the
presence of haplotype effects, it is important to estimate
the haplotype effects and haplotype-based methods are
more relevant (Stram et al. 2003; Tregouet et al. 2004).

One potential problem of this generalization is that
the number of parameters can be very big. Then, one
needs to select important alleles in the analysis and
search for important genetic variants that are truly asso-
ciated with the genetic traits. At first glance, model (1),
(2), (13), or (14) seems too complicated and contains
too many terms. However, the models are not inti-
midating at all if one takes into account the recent
discovery of haplotype structure in the human genome.
Although a haplotype block may contain many SNPs, it
takes only a few SNPs to uniquely identify each of the
haplotypes in the block. Within a block, there are only
two to four common haplotypes (Arnheim et al. 2003;
Daly et al. 2001; Goldstein 2001; Patil et al. 2001;

TABLE 5

Ranked ACE haplotype frequencies

Haplotype
rank

Haplotype
identity

Haplotype
code Frequency

1 TATATTGIA3 1111112111 0.352113
2 CCCTCCADG2 2222221222 0.284507
3 TATATCADG2 1111121222 0.087324
4 TACATCADG2 1121121222 0.073239
5 TATATCGIA3 1111122111 0.050704
6 CCCTCCGDG2 2222222222 0.025352
7 TATATTAIA3 1111111111 0.025352
8 CCCTCCGIA3 2222222111 0.008451
9 CCCTCCADG3 2222221221 0.008451
10 TATATCGDG2 1111122222 0.008451

Figure 8.—Empirical power curves of
the test statistics FHTR, Fa, and Fad against
the heritability h2 at a 0.05 significance
level. The notation SFa is the empirical
power of the F-test statistic based on the
additive effect model, SFad is the empiri-
cal power of the F-test statistic based on
the genotype effect model, and SFHTR is
the empirical power of the F-test statistic
based on HTR. (A and C) The curves
are plotted for a dominant mode of in-
heritance a ¼ d ¼ 1.0; (B and D) the
curves are plotted for an additive mode
of inheritance a ¼ 1.0, d ¼ 0. (A and B)
Ten haplotypes are used in the simula-
tions; (C and D) 7 haplotypes are used.
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Reich et al. 2001; Rioux et al. 2001; J. C. Stephens et al.
2001; Gabriel et al. 2002; Nordborg and Tavaré 2002;
Phillips et al. 2003). This implies that model (1), (2),
(13), or (14) contains a few terms and hence is manage-
able. Moreover, model (1) or (2) already takes the haplo-
type structure into account and is potentially more
powerful. In practice, one may want to collapse some
alleles to reduce the number of parameters. However,
the collapsing process may decrease linkage disequilib-
rium and therefore result in loss of power. The proposed
regression models can be fitted to alleviate the problem.

In the mathematical derivations, we make the assump-
tion of HWE. It is unclear how to construct tests reflect-
ing deviations from HWE and this requires further
research. In addition, we illustrate that the false-positive
rate of the genotype effect test is too high for more than
five alleles in a sample of 200 individuals. This is
obviously due to the large numbers of possible geno-
types and hence to sparseness in the contingency table.
This problem could be overcome by using exact tests or
permutation procedures.

The models of this article are based on population
data. Suppose that both population and pedigree data
including sibships are available. Then, model (1) or (2)
can be generalized to perform high-resolution com-
bined LD mapping and a linkage study of QTL by
variance component models in the spirit of our previous
work. In fact, we may generalize regression (1) or (2) by
adding the polygenic effect to fit the data. Moreover, log-
likelihoods can be constructed on the basis of variance
component models. This will generalize our research by
using either diallelic/multiallelic markers or haplotypes
in a combined analysis of population and pedigree data.
It is well known that association study-based population
data are prone to false positives, due to the population
stratification and population history. A valid approach
would be to find linkage information by using pedigree
data to locate the QTL on a broad chromosome region.
Then, a combined linkage and association mapping can
be performed for fine mapping of the genetic traits on
the basis of both population and pedigree data (Fan and
Xiong 2003). This would be more likely to overcome the
drawbacks of separate analysis of either a linkage study
or association mapping: low resolution of linkage anal-
ysis and high false-positive rates in the association study.
In the meantime, it is more likely to take advantage of
the two methods: the low false-positive rates of linkage
analysis and the high resolution of the association-
mapping method.

We thank two anonymous reviewers for very detailed and thoughtful
critiques, which make the paper better. R. Fan was supported by the
National Science Foundation Grant DMS-0505025.
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Nordborg, M., and S. Tavaré, 2002 Linkage disequilibrium: what
history has to tell us. Trends Genet. 18: 83–90.

Patil, N. P., A. J. Berno, D. A. Hinds, W. A. Barrett, J. M. Doshi et al.,
2001 Blocks of limited haplotype diversity revealed by high-resolution
scanning of human chromosome 21. Science 294: 1719–1723.

Phillips, M. S., R. Lawrence, R. Sachidanandam, A. P. Morris, D. J.
Balding et al., 2003 Chromosome-wide distribution of markers
and the role of recombination hot spots. Nat. Genet. 33: 382–387.

Pritchard, J. K., and M. Przeworski, 2001 Linkage disequilibrium
in humans: model and data. Am. J. Hum. Genet. 69: 1–14.

Reich, D. E., M. Cargill, S. Bolk, J. Ireland, R. C. Sabett et al.,
2001 Linkage disequilibrium in the human genome. Nature
411: 199–204.

Rioux, J. D., M. J. Daly, M. S. Silverberg, K. Lindblad, H. Steinhart
et al., 2001 Genetic variation in the 5q31 cytokine gene cluster
confers susceptibility to Crohn disease. Nat. Genet. 29: 223–228.

Schaid, D. J., 2004 Evaluating associations of haplotypes with traits.
Genet. Epidemiol. 27: 348–364.

Schaid, D. J., C. M. Rowland, D. E. Tines, R. M. Jacobson and G. A.
Poland, 2002 Score tests for association between traits and hap-

lotypes when linkage phase is ambiguous. Am. J. Hum. Genet. 70:
425–434.

Sham, P. C., S. S. Cherny, S. Purcell and J. K. Hewitt, 2000 Power
of linkage versus association analysis of quantitative traits, by use
of variance-components models, for sibship data. Am. J. Hum.
Genet. 66: 1616–1630.

Stephens, J. C., J. A. Schneider, D. A. Tanguay, J. Choi, T. Acharya
et al., 2001 Haplotype variation and linkage disequilibrium in 313
human genes. Science 293: 489–493.

Stephens, M., and P. Donnelly, 2003 A comparison of Bayesian
methods for haplotype reconstruction from population genotype
data. Am. J. Hum. Genet. 73: 1162–1169.

Stephens, M., N. Smith and P. Donnelly, 2001 A new statistical
method for haplotype reconstruction from population data.
Am. J. Hum. Genet. 68: 978–989.

Stram, D. O., C. A. Haiman, J. N. Hirschhorn, D. Altshuler, L. N.
Kolonel et al., 2003 Choosing haplotype-tagging SNPs based on
unphased genotype data using a preliminary sample of unrelated
subjects with an example from the multiethnic cohort study. Hum.
Hered. 55: 179–190.

Sved, J. A., 1971 Linkage disequilibrium and homozygosity of chromo-
some segments in finite populations. Theor. Popul. Biol. 2: 125–141.

Thomson, G., and M. P. Baur, 1984 Third order linkage disequilib-
rium. Tissue Antigens 24: 250–255.

Tregouet, D. A., S. Escolano, L. Tiret, A. Mallet and J. L. Golmard,
2004 A new algorithm for haplotype-based association analysis:
the stochastic-EM algorithm. Ann. Hum. Genet. 68: 165–177.

Weir, B. S., 1996 Genetic Data Analysis II, Ed. 2. Sinauer Associates,
Sunderland, MA.

Weir, B. S., and C. C. Cockerham, 1977 Two-locus theory in quanti-
tative genetics, pp. 247–269 in Proceedings of the International Confer-
ence on Quantitative Genetics, edited by E. Pollak, O. Kempthorne
and T. B. Bailey. Iowa State University Press, Ames, IA.

Weiss, K. M., and A. G. Clark, 2002 Linkage disequilibrium and the
mapping of complex traits. Trends Genet. 18: 19–24.

Zaykin, D. V., P. H. Westfall, S. S Young, M. A. Karnoub, M. J.
Wagner et al., 2002 Testing association of statistically inferred
haplotypes with discrete and continuous traits in samples of un-
related individuals. Hum. Hered. 53: 79–91.

Communicating editor: G. Gibson

APPENDIX A

For an individual of a population with trait values y and genotype GA at marker A, let xii be an indicator function of
genotype AiAi and xij be an indicator function of genotype AiAj. That is, they are dummy variables defined by

xii ¼ 1ðAiAiÞ ¼
1 if GA ¼ AiAi

0 else;
xij ¼ 1ðAiAj Þ ¼

1 if GA ¼ AiAj

0 else;

��
where i, j ¼ 1, 2, . . . , m, i 6¼ j. Then model (1) can be rewritten as

y ¼ wg1
Xm
i¼1

xiibii 1
X

1#i,j#m

xijbij 1 e: ðA1Þ

Note that EðxiiÞ ¼ P 2
Ai

. Given Equation A1, taking expectation of yxii leads to EðyxiiÞ ¼ EðxiiÞ½wg1bii � ¼ P 2
Ai
½wg1bii �.

On the other hand, a true random-effect model describing the trait value is y ¼ wg 1 g 1 e, where

g ¼
a for genotypeQ1Q1

d for genotypeQ1Q2

�a for genotypeQ2Q2:

8<
:

Utilizing PðQ1AiÞ ¼ DAiQ 1PAi
q1 and PðQ2AiÞ ¼ �DAiQ 1 PAi

q2 gives

EðyxiiÞ ¼ wgEðxiiÞ1EðgxiiÞ
¼ wgP 2

Ai
1 a½PðQ1AiÞ�2 1 d � 2PðQ1AiÞPðQ2AiÞ � a½PðQ2AiÞ�2

¼ wgP 2
Ai
1 a½2DAiQ 1PAi

q1 � PAi
q2�PAi

1 2dðDAiQ 1PAi
q1ÞðPAi

q2 � DAiQ Þ
¼ wgP 2

Ai
1mP 2

Ai
1 2DAiQaQPAi

� dQD
2
AiQ

: ðA2Þ
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Equating the above quantity to EðyxiiÞ ¼ P 2
Ai
½wg1bii � shows Equation 3 when i ¼ j.

If i 6¼ j, Exij ¼ 2PAi
PAj

. Multiplying at both sides of Equation A1 by xij and taking the expectation lead to E(yxij) ¼
E(xij)[wg 1 bij]. Again, utilizing PðQ1AiÞ ¼ DAiQ 1PAi

q1, PðQ2AiÞ ¼ �DAiQ 1PAi
q2, PðQ1AjÞ ¼ DAjQ 1PAj

q1, and
PðQ2AjÞ ¼ �DAjQ 1PAj

q2 gives

EðyxijÞ ¼ wgEðxijÞ1EðgxijÞ
¼ wg � 2PAiPAj 1 2a½PðQ1AiÞPðQ1AjÞ � PðQ2AiÞPðQ2AjÞ�
1 d½2PðQ1AiÞPðQ2AjÞ1 2PðQ2AiÞPðQ1AjÞ�

¼ 2PAiPAj wg1 2a½ðDAiQ 1PAi q1ÞðDAjQ 1PAj q1Þ � ð�DAiQ 1PAi q2Þð�DAjQ 1PAj q2Þ�
1 2d½ðDAiQ 1PAi

q1ÞðPAj
q2�AjQ Þ1 ð�DAiQ 1PAi

q2ÞðDAjQ 1PAj
q1Þ�

¼ 2PAi
PAj

wg1 2PAi
PAj

m1 2aQ ½DAiQPAj
1DAjQ PAi

� � 2dQDAiQDAjQ : ðA3Þ

Equating the above quantity to EðyxijÞ ¼ 2PAi
PAj

½wg1bij � shows Equation 3 when i 6¼ j.

APPENDIX B

For an individual with trait values y and genotypes GA at marker A, let zi be the number of alleles Ai of genotype GA,
i ¼ 1, 2, . . . , m. That is, zi is a dummy variable defined by

zi ¼
2 if GA ¼ AiAi

1 if GA ¼ AiAj ; j 6¼ i
0 else:

8<
:

Then model (2) can be rewritten as

y ¼ wg1
Xm
i¼1

ziai 1 e: ðB1Þ

Multiplying both sides of expression (B1) by zi and taking the expectation lead to

wgE

z1

z2

..

.

zm

0
BBB@

1
CCCA1E

z2
1 z1z2 . . . z1zm

z2z1 z2
2 . . . z2zm

..

. ..
.

. . . ..
.

zmz1 zmz2 . . . z2
m

0
BBB@

1
CCCA

a1

a2

..

.

am

0
BBB@

1
CCCA ¼ E

yz1

yz2

..

.

yzm

0
BBB@

1
CCCA: ðB2Þ

The elements of the matrix on the left-hand side of the above equation can be calculated as follows: EðziÞ ¼ 2P 2
Ai
1

2PAi

P
j 6¼ i PAj

¼ 2PAi
; Eðz2

i Þ ¼ 4P 2
Ai
1 2PAi

P
j 6¼ i PAj

¼ 2P 2
Ai
1 2PAi

. For i 6¼ j, the expectation EðzizjÞ ¼ 2PAi
PAj

. For the
elements on the right-hand side, Equations A2 and A3 lead to EðyziÞ ¼ 2EðyxiiÞ1

P
j 6¼ i EðyxijÞ ¼ 2PAi

wg1 2PAi
m1

2aQDAiQ , since
P

i DAiQ ¼ 0. Plugging the above quantities into matrix Equation B2 gives Equation 4 as

a1

a2

..

.

am

0
BBBB@

1
CCCCA ¼ 2 diagðPA1 ;PA2 ; . . . ;PAm

Þ1 2

PA1

PA2

..

.

PAm

0
BBBB@

1
CCCCAðPA1 ;PA2 ; . . . ;PAm

Þ

2
66664

3
77775

�1 2PA1m1 2aQDA1Q

2PA2m1 2aQDA2Q

..

.

2PAm
m1 2aQDAmQ

0
BBBBB@

1
CCCCCA

¼ diagðP�1
A1

;P�1
A2

; . . . ;P�1
Am

Þ � 1

2

1

1

..

.

1

0
BBBB@

1
CCCCAð1; 1; . . . ; 1Þ

2
66664

3
77775

PA1m1aQDA1Q

PA2m1aQDA2Q

..

.

PAm
m1aQDAmQ

0
BBBBB@

1
CCCCCA

¼

m=2

m=2

..

.

m=2

0
BBBB@

1
CCCCA1aQ

DA1Q=PA1

DA2Q=PA2

..

.

DAmQ=PAm

0
BBBBB@

1
CCCCCA;
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where diag(. . .) denotes a diagonal matrix; e.g., diagðPA1
; . . . ;PAm

Þ is

PA1 0 . . . 0
0 PA2 . . . 0

..

. ..
.

. . . ..
.

0 0 . . . PAm

0
BBB@

1
CCCA:

In the above calculation, we use a fact of the inverse matrix (M1 abt)�1 ¼ M�1 � (M�1a)(btM�1)/(1 1 btM�1a).

APPENDIX C

Denote a vector vt ¼ ðP 2
A2
; . . . ;P 2

Am
; 2PA1

PA2
; . . . ; 2PA1

PAm
; . . . ; 2PAm�1

PAm
Þ. If the sample size N is large enough, the

large number law implies the approximation

X tX=N ¼ 1

N

XN
i¼1

XiX
t
i � EðX1X

t
1 Þ ¼ diagðP 2

A1
; vÞ; ðC1Þ

where diagðP 2
A1
; vÞ is a diagonal matrix, whose elements on the diagonal are given by the elements of ðP 2

A1
; vÞ. That is, if

M ¼ diagðP 2
A1
; vÞ, then M ½1; 1� ¼ P 2

A1
; M ½ JA; JA� ¼ 2PAm�1

PAm
. Let H be a ( JA � 1) 3 JA matrix defined by

H ¼

1 �1 0 0 . . . 0 0 0
1 0 �1 0 . . . 0 0 0
1 0 0 �1 . . . 0 0 0
..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

.

1 0 0 0 . . . 0 �1 0
1 0 0 0 . . . 0 0 �1

0
BBBBBB@

1
CCCCCCA

ð JA�1Þ3JA

:

Then, (Hh)t ¼ (b11 � b22, . . . , b11 � bmm, b11 � b12, . . . , b11 � b1m, . . . , b11 � bm�1,m). From approximation (C1),
we have the approximation

H ðX tX Þ�1H t � 1

N
H ½diagðP 2

A1
; vÞ��1H t

¼ 1

N
P�2
A1

1

1

..

.

1

0
BBBB@

1
CCCCAð1; 1; . . . ; 1Þ1 1

N
diagðuÞ;

where u ¼ ðP�2
A2

; . . . ;P�2
Am

; ½2PA1
PA2

��2; . . . ; ½2PA1
PAm

��2; . . . ; ½2PAm�1
PAm

��2Þ. Applying a fact of inverse matrix (M 1

abt)�1 ¼ M�1 � (M�1a)(btM�1)/(1 1 btM�1a) again, we have

½H ðX tX Þ�1H t��1 � N ½diagðvÞ � vvt�:

The noncentrality parameter is given by

lm;ad ¼ 1

s2ðHhÞt½H ðX tX Þ�1H t��1ðHhÞ

� N

s2

Xm
i¼2

ðb11 � biiÞ2P 2
Ai
1

N

s2

Xm�1

i¼1

Xm
j¼i11

2PAi
PAj

ðb11 � bijÞ2

� N

s2

Xm
i¼2

ðb11 � biiÞP 2
Ai
1
Xm�1

i¼1

Xm
j¼i1 1

2PAi
PAj

ðb11 � bijÞ
" #2

¼ N

s2

Xm
i¼1

Xm
j¼1

PAi
PAj

ðb11 � bijÞ2 � N

s2

Xm
i¼1

Xm
j¼1

PAi
PAj

ðb11 � bijÞ
" #2

: ðC2Þ
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From Equation 3, we have

b11 � bij ¼ aQ ½2DA1Q=PA1 � DAiQ=PAi
� DAjQ=PAj

� � dQ ½D2
A1Q

=P 2
A1

� DAiQDAjQ=ðPAi
PAj

Þ�:

Utilizing relation
Pm

i¼1 DAiQ ¼ 0, we have

Xm
i¼1

Xm
j¼1

PAi
PAj

ðb11 � bijÞ2 ¼ 2a2
Q 2D2

A1Q
=P 2

A1
1
Xm
i¼1

D2
AiQ

=PAi

" #
� 4½D3

A1Q
=P 3

A1
�aQdQ

1 d2
Q ðD2

A1Q
=P 2

A1
Þ2 1

Xm
i¼1

D2
AiQ

=PAi

 !2" #
;

Xm
i¼1

Xm
j¼1

PAi
PAj

ðb11 � bijÞ ¼ ½2DA1Q=PA1 �aQ � ½D2
A1Q

=P 2
A1
�dQ :

Plugging the above equation into (C2), we have

lm;ad � N

s2 2a2
Q q1q2

Xm
i¼1

D2
AiQ

=½q1q2PAi �1 d2
Q q

2
1q

2
2

Xm
i¼1

D2
AiQ

=½q1q2PAi �
 !2" #

:

Note that PðQ2AiÞ � PAi
q2 ¼ �DAiQ , and so R2

AQ ¼
Pm

i¼1 D2
AiQ

=½PAi
q1�1 ð�DAiQ Þ

2=½PAi
q2�

h i
¼
Pm

i¼1 D
2
AiQ

=½PAi
q1q2�.

Hence, the noncentrality parameter approximation (10) is valid.

APPENDIX D

The large number law implies the following approximation:

Z tZ=N ¼ 1

N

XN
i¼1

ZiZ
t
i � EðZ1Z

t
1Þ ¼ 2 diagðPA1 ;PA2 ; . . . ;PAm

Þ1 2

PA1

PA2

..

.

PAm

0
BBB@

1
CCCAðPA1 ;PA2 ; . . . ;PAm

Þ:

In the above approximation, the quantities E(zizj) in appendix b are used. Applying a fact of inverse matrix (M1 abt)�1 ¼
M�1 � (M�1a)(btM�1)/(1 1 btM�1a), the inverse is

½Z tZ=N ��1 � 1

2
diagðP�1

A1
;P�1

A2
; . . . ;P�1

Am
Þ � 1

4

1
1
..
.

1

0
BB@

1
CCAð1; 1; . . . ; 1Þ:

Let K be a (m � 1) 3 m matrix defined by

K ¼

1 �1 0 0 . . . 0 0 0
1 0 �1 0 . . . 0 0 0
1 0 0 �1 . . . 0 0 0
..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

.

1 0 0 0 . . . 0 �1 0
1 0 0 0 . . . 0 0 �1

0
BBBBBB@

1
CCCCCCA

ðm�1Þ3m

:
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Then, (Kc)t ¼ (a1 � a2, . . . , a1 � am). On the other hand, we have the approximation

K ðZ tZÞ�1K t � 1

2N
K diagðP�1

A1
;P�1

A2
; . . . ;P�1

Am
ÞK t � 1

4N
K

1

1

..

.

1

0
BBBB@

1
CCCCAð1; 1; . . . ; 1ÞK t

¼ 1

2N
P�1
A1

1

1

..

.

1

0
BBBB@

1
CCCCAð1; 1; . . . ; 1Þ1 1

2N
diagðP�1

A2
;P�1

A3
; . . . ;P�1

Am
Þ;

whose inverse is given by

½K ðZ tZÞ�1K t��1 � 2N diagðPA2 ;PA3 ; . . . ;PAm
Þ � 2N

PA2

PA3

..

.

PAm

0
BBB@

1
CCCAðPA2 ;PA3 ; . . . ;PAm

Þ:

Therefore, an approximation of the noncentrality parameter is given by

lm;a ¼
1

s2ðKcÞt½K ðZ tZÞ�1K t��1ðKcÞ

� 2N

s2

Xm
i¼1

PAi
ða1 � aiÞ2 � 2N

s2

Xm
i¼1

PAi
ða1 � aiÞ

" #2

:

Equation 4 implies that a1 � ai ¼ aQ DA1Q=PA1
�

�
DAiQ=PAi

�. Thus, the noncentrality parameter

lm;a �
2Na2

Q

s2

Xm
i¼1

PAi
ðDA1Q=PA1 � DAiQ=PAi

Þ2 �
Xm
i¼1

PAi
ðDA1Q=PA1 � DAiQ=PAi

Þ
 !2" #

¼
2Na2

Q

s2 D2
A1Q

=P 2
A1
1
Xm
i¼1

D2
AiQ

=PAi
� D2

A1Q
=P 2

A1

" #
¼

2Na2
Q q1q2

s2 R2
AQ ¼

Ns2
ga

s2 R2
AQ :

APPENDIX E

For i¼ 1, 2, . . . , m, k¼ 1, . . . , n, let us denoteDAiBk
¼ PðAiBkÞ � PAi

PBk
, which are measures of LD between markers

A and B. Here P(AiBk) is frequency of haplotype AiBk. It can be shown that for i 6¼ j, k 6¼ l, j 6¼ j9, l 6¼ l9, (i, j) 6¼ (i9, j9),
(k, l) 6¼ (k9, l9),

ExAi ¼ 2PAi
; Ex2

Ai ¼ 2P 2
Ai
1 2PAi

; EðxAixAjÞ ¼ 2PAi
PAj

;

ExBk ¼ 2PBk ; Ex2
Bk ¼ 2P 2

Bk
1 2PBk ; EðxBkxBl Þ ¼ 2PBkPBl ;

EzAij ¼ 0; Ez2
Aij ¼ P 2

Ai
P 2
Aj
½PAi

1PAj
�2; EzBkl ¼ 0; Ez2

Bkl ¼ P 2
Bk
P 2
Bl
½PBk

1PBl
�2;

E ½xAixBk � ¼ 2DAiBk
1 4PAi

PBk
; E ½xAizAij � ¼ E ½xAizAjj9� ¼ E ½xAizBkl � ¼ 0;

E ½xBkzAij � ¼ E ½xBkzBkl � ¼ E ½xBkzBll9� ¼ 0; E ½zAij zAij9� ¼ ðPAi
PAj

PA9j Þ2;

E ½zAij zAi9j9� ¼ 0; E ½zBkl zBkl9� ¼ ðPBkPBl PB9l Þ2; E ½zBkl zBk9l9� ¼ 0;

E ½zAij zBkl � ¼ ½PAj
ðPBl

DAiBk
� PBk

DAiBl
Þ � PAi

ðPBl
DAjBk

� PBk
DAjBl

Þ�2;
E ½ yxAi � ¼ 2PAi

ðwg1mÞ1 2aQDAiQ ; E ½ yxBk � ¼ 2PBk
ðwg1mÞ1 2aQDBkQ ;

E ½ yzAij � ¼ dQ ½PAi
DAjQ � PAj

DAiQ �2; E ½ yzBkl � ¼ dQ ½PBk
DBlQ � PBl

DBkQ �2:

ðE1Þ
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The quantities in (E1) imply that

VA ¼ 2

PA1ð1 � PA1Þ �PA1PA2 . . . �PA1PAm�1 DA1B1 . . . DA1Bn�1

�PA1PA2 PA2ð1 � PA2Þ . . . �PA2PAm�1 DA2B1 . . . DA2Bn�1

..

. ..
.

. . . ..
. ..

.
. . . ..

.

�PA1PAm�1 �PA2PAm�1Þ . . . PAm�1ð1 � PAm�1Þ DAm�1B1 . . . DAm�1Bn�1

DA1B1 DA2B1 . . . DAm�1B1 PB1ð1 � PB1Þ . . . �PB1PBn�1

..

. ..
.

. . . ..
. ..

.
. . . ..

.

DA1Bn�1 DA2Bn�1 . . . DAm�1Bn�1 �PB1PBn�1 . . . PBn�1ð1 � PBn�1Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

Since EZA[B is a vector of 0’s by the quantities in (E1), it can be shown that VD ¼ Cov(ZA[B, ZA[B) ¼ E(ZA[BZA[Bt ).
Moreover, the quantities in (E1) imply that the covariance matrix Cov(XA[B, ZA[B) is a 0 matrix.

Taking variance–covariance between y and xAi, xBk, zAij, zBkl on the basis of relation (14), we may get the regression
coefficients (15) of models (13) and (14).

APPENDIX F

Multiplying both sides of expression (18) by Ij and taking the expectation lead to

wgE

I1
I2
..
.

IJ

0
BBB@

1
CCCA1E

I 2
1 I1I2 . . . I1IJ

I2I1 I 2
2 . . . I2IJ

..

. ..
.

. . . ..
.

IJ I1 IJ I2 . . . I 2
J

0
BBB@

1
CCCA

b1

b2

..

.

bJ

0
BBB@

1
CCCA ¼ E

yI1
yI2

..

.

yIJ

0
BBB@

1
CCCA: ðF1Þ

The elements of the matrix on the left-hand side of the above equation can be calculated as follows:

EðIjÞ ¼ Eð1hj Þ ¼ Phj ;EðIkIjÞ ¼
X
G1

. . .
X
GM

Pðhk jG1; . . . ;GM ÞPðhj jG1; . . . ;GM ÞPðG1; . . . ;GM Þ:

The elements on the right-hand side are given by

EðyIjÞ ¼ wgEðIjÞ1EðgIjÞ
¼ Phj wg1

X
G1

. . .
X
GM

Pðhj jG1; . . . ;GM ÞE ½g1ðG1;...;GM Þ�;

where

E ½g1ðG1;...;GM Þ� ¼ a
XJ
i¼1

XJ
k¼1

PðG1; . . . ;GM jhi ; hkÞ½PðQ1hkÞPðQ1hiÞ � PðQ2hkÞPðQ2hiÞ�

1 d
XJ
i¼1

XJ
k¼1

PðG1; . . . ;GM jhi ; hkÞ½PðQ1hiÞPðQ2hkÞ1PðQ2hiÞPðQ1hkÞ�

¼ mPðG1; . . . ;GM Þ1aQ

XJ
i¼1

XJ
k¼1

PðG1; . . . ;GM jhi ; hkÞ½PhiDhkQ 1PhkDhiQ �

� dQ
XJ
i¼1

XJ
k¼1

PðG1; . . . ;GM jhi ; hkÞDhiQDhkQ :

Plugging the above quantities into matrix Equation F1 gives Equation 19.
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