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ABSTRACT

The evolution and maintenance of the phenomenon of postsegregational host killing or genetic addiction are
paradoxical. In this phenomenon, a gene complex, once established in a genome, programs death of a
host cell that has eliminated it. The intact form of the gene complex would survive in other members of
the host population. It is controversial as to why these genetic elements are maintained, due to the lethal
effects of host killing, or perhaps some other properties are beneficial to the host. We analyzed their
population dynamics by analytical methods and computer simulations. Genetic addiction turned out to be
advantageous to the gene complex in the presence of a competitor genetic element. The advantage is,
however, limited in a population without spatial structure, such as that in a well-mixed liquid culture. In
contrast, in a structured habitat, such as the surface of a solid medium, the addiction gene complex can
increase in frequency, irrespective of its initial density. Our demonstration that genomes can evolve
through acquisition of addiction genes has implications for the general question of how a genome can
evolve as a community of potentially selfish genes.

ONE of the impressive features of genomes, which
became evident through decoding, is their fluid-

ity within the evolutionary timescale. By fluidity, we
mean acquisition of genes and genetic elements from
outside the cell (horizontal transfer); internal genome
rearrangements; or continuous loss, duplication, and
allelic substitutions. The genomes are full of mobile,
symbiotic, or parasitic genetic elements. Genome com-
parison and evolutionary analysis have revealed exten-
sive horizontal transfer of genes between organisms,
especially in bacterial and archaeal worlds (Faguy and
Doolittle 2000). Rather than being a well-designed
blueprint, a genome appears to be a temporary com-
munity of potentially mobile genes that essentially act
selfishly. Given this feature of the genome, how are
symbiosis and a cohesive social order, within a genome,
ever achieved?

At the first glimpse inside the genomes, there are
many genes, whose immediate advantage to the organ-
ism carrying them is unclear. An extreme and, therefore
interesting, case is provided by the phenomenon of
postsegregational killing or genetic addiction (Kobayashi
2004). In this phenomenon, the removal of a particular
genetic element from the genome of an organism

causes the product to induce death of the organism
(Figure 1A), although the organism lived normally be-
fore acquisition of this genetic element. An intact form
of the genetic element would survive in other members
of the host population.

As shown in Figure 1B, a gene complex responsible
for postsegregational killing (called an addiction gene
complex here) consists of a set of closely linked genes
that encodes a toxin and an antitoxin. The toxin’s attack
on a specific cellular target is blocked by the antitoxin
at one of various steps. After loss of the gene complex
(or some sort of disturbance in the balance between the
two gene products), the antitoxin becomes ineffective,
thereby permitting the toxin to attack its target.

Several type II restriction–modification systems (Fig-
ure 1C) have been experimentally proven to represent
simple examples of postsegregational killing (Naito

et al. 1995). Here, the toxin is a restriction enzyme that
attacks specific recognition sequences on the chromo-
some, while the antitoxin is a modification enzyme that
protects these sequences by methylating them. The loss
of the gene complex, followed by cell division, eventu-
ally dilutes the antitoxin level, causing the target sites on
the newly replicated chromosomes to be exposed to
lethal attack by the toxin (Naito et al. 1995; Kobayashi
2004). In the second type of postsegregational killing
system, called the classical proteic killer system or the
toxin–antitoxin system, and labeled type A in Figure 1B,
the antitoxin counteracts the toxin action through
direct interaction. When cells fail to retain the gene
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complex, degradation of the antitoxin by a specific pro-
tease leads to release of the toxin. Some of these toxins
turned out to be sequence-specific mRNA endonucle-
ases (Gerdes et al. 2005). In the third type of postse-
gregational killing system, labeled type C in Figure 1B,
expression of the toxin gene is inhibited by its own
antisense RNA, which is encoded by the same locus and
serves as the antitoxin. However, after the gene is lost,
the antisense RNA decays faster due to digestion by
an RNase. This allows the toxin to become expressed
(Gerdes et al. 1997). Homologs of the postsegregational
killing genes are found on mobile genetic elements and
on the chromosomes and are quite abundant in some
of the sequenced eubacterial and archaeal genomes
(Pandey and Gerdes 2005). They are believed to have a
role other than maintenance of plasmids (Gerdes et al.
2005).

The evolution and maintenance of the postsegrega-
tional killing process appear paradoxical. It is main-
tained in spite of its toxic effect of host killing (see
Cooper and Heinemann 2000 for a discussion of con-

ditions for plasmid maintenance). Bacterial cells some-
times lose their plasmid that carries an addiction gene
complex upon, for example, cell replication resulting in
postsegregational host killing. The killing decreases the
numbers of both the responsible gene complex and its
host, which seems to be detrimental for both of them. In
fact, plasmids carrying a postsegregational killing gene
complex did not outcompete in the liquid media, where
equal numbers of cells, containing either a plasmid with
or another plasmid without a postsegregational kill-
ing gene complex, were placed in direct competition
(Cooper and Heinemann 2000). Thus, if plasmid main-
tenance depends on postsegregational host killing, se-
lective pressure would eventually lead to a population
that is free of the addiction gene complex and the
plasmid. Indeed, a bacterial line carrying an addiction
gene complex on its plasmid will eventually lose this gene
complex after prolonged growth (Naito et al. 1995).

There have been repeated arguments that these
addiction gene complexes are maintained because of
properties beneficial to the host, despite their toxic effect

Figure 1.—Postsegregational host killing or
genetic addiction. (A) Principle. Once trans-
ferred and established in a cell (or organism,
in general), the addiction gene complex is dif-
ficult to eliminate because its loss, or some
sort of threat to its persistence, leads to host-
cell death. Intact copies of the gene complex
survive in the other cells. (B) Simplest mech-
anisms. The addiction gene complexes consist
of a set of closely linked genes that encodes a
toxin (or killer) and an antitoxin (or antidote
or anti-killer). The toxin’s attack on a specific
cellular target is inhibited by the antitoxin.
After loss of the gene pair (or some sort of dis-
turbance in the balance between the two gene
products), the antitoxin becomes ineffective,
thereby permitting the toxin to attack its tar-
get. Addiction systems can be classified into
three types depending on which step leading
to the toxin action is inhibited by the anti-
toxin. (C) Restriction–modification systems as
addiction gene complexes. Several restriction–
modification systems represent the only known
example of the type B system (target protection
by the antitoxin). Here, the toxin is a restriction
enzyme (such asEcoRI) that attacks specific rec-
ognition sequences on the genome, while the
antitoxin is amodification enzymethatprotects
these sequences by methylating them.
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of host killing (see, for example, Gerdes et al. 2005). An
advantage of postsegregational killing, however, can be
seen in the presence of a competitor genetic element. A
plasmid carrying an addiction gene complex is difficult
to replace by an incompatible plasmid because its loss
leads to host death (Naito et al. 1995). A chromoso-
mally located addiction gene complex likewise resists
replacement by an allelic gene (Handa et al. 2001;
Sadykov et al. 2003). Plasmids carrying a postsegrega-
tional killing gene are advantageous only when cell
death is accompanied by the ‘‘death’’ of a competing
plasmid (Cooper and Heinemann 2000). If this nega-
tive impact on the competing genes is great enough
to overcome the cost of postsegregational host killing,
the process will be maintained. Thus, addiction gene
complexes would gain an advantage, not because they
spitefully kill their host, but because they eliminate
competing plasmids or genes.

Mongold (1992), in a study employing ordinary dif-
ferential equations, theoretically analyzed this advan-
tage and demonstrated that postsegregational killing
might provide an advantage in competitive exclusion be-
tween incompatible plasmids. An increase in the post-
segregational killing plasmid occurred when host killing
was coupled with horizontal transfer of the plasmid, al-
though conditions were restrictive, especially in that the
plasmid had to have a high initial density. If the initial
density was low, the plasmid-bearing cells were unlikely
to invade any other population. In contrast, if the initial
density was high and the plasmid was already established
in a bacterial population, it was resistant to invasion by
any other cell and the effect became greater when in-
vading plasmids were incompatible with the postsegre-
gational killing plasmid. According to this theoretical
work, evolution of addiction gene complexes at the early
stage (from a low density) remains unclear.

In the above work (Mongold 1992), the model did not
include a spatial structure of the population, although
the author mentioned its importance. In a spatially
structured population, population density, measured
in a local area, can be much higher than the average
density and might provide an advantage for invasion of
the minority type. In this work, we demonstrate that
spatial structure indeed allows invasion of an addiction
gene complex in the very early stage of evolutionary
dynamics. Our population dynamics analysis employs a
lattice model for spatial structure, through both math-
ematical analysis with pair approximation and computer
simulation.

MODELS

We consider two cases in which the addiction gene
complex does not have a competitor (Figure 2A) and
where it does have a competitor (Figure 2B). For each
case, we consider a model without and with a spatial

structure. Each of these four models is studied, both by
mathematical analysis and by numerical (computer)
simulation, within one of the four sections below.

We consider two types of bacterial population, ar-
ranged on a two-dimensional regular square lattice, as
applied in other spatially structured models of bacterial
population dynamics (Frank 1994; Durrett and Levin
1997; Nakamaru et al. 1997; Iwasa et al. 1998). Each site
is either occupied by a bacterial cell or vacant. One type
of cell does not possess an addiction gene complex (type
1), while the other type does (type 2), as shown in Figure
2. The addiction gene complex resides on a plasmid,
although it can also reside on the chromosome.

There are two models according to the states of type 1
bacteria. In the ‘‘single-plasmid model’’ (Figure 2A),
type 1 bacteria have no competitor genetic element. In
the ‘‘plasmid competition model’’ (Figure 2B), type 1
bacteria have a competitor genetic element, which is in
a relationship of competitive exclusion with the addic-
tion gene complex of type 2 bacteria. When the addic-
tion gene complex is on a plasmid, an incompatible
plasmid in type 1 is in this type of competitive exclusion.
Due to conflicts in replication machinery, two incom-
patible plasmids cannot be stably maintained in the same
host over a long period of time. When the addiction
gene complex is on the chromosome, an allelic gene is
regarded as such a competitor. The allelic genes will
compete for the same locus during replacement through
homologous recombination following transformation,

Figure 2.—Diagrams of gene transfer and postsegregational
host killing. (A) In the absence of a competitor. The addiction
gene complex is transferred to a host that does not carry its
competitor. (B) In the presence of a competitor. There are
four possible outcomes. The addiction gene complex may
be transferred to a cell carrying its competitor. Alternatively,
the competitor genetic element may be transferred to a cell
carrying the addiction gene complex at the same rate ((1/
2)m). The two incompatible gene complexes may stay to-
gether for a while, but one of them will be eventually ex-
cluded. Loss of the addiction gene complex leads to cell
death through the process of postsegregational host killing.
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general transduction, or any other forms of gene
transfer.

Let r1 and r2 be the fraction of sites occupied by bac-
teria that do not carry an addiction gene complex (type
1) and that carry an addiction gene complex (type 2),
respectively. Let r0 be the fraction of vacant sites. These
satisfy r0 1 r1 1 r2 ¼ 1 and are called global densities
(Matsuda et al. 1992). For brevity, we call a site occu-
pied by a type i cell an i-site (i ¼ 1, 2) and a vacant site a
0-site from now on.

Let z be the number of neighbors for each site in the
lattice (z ¼ 4 in this study). The symbol b is the intrinsic
birth rate for a neighboring pair of a vacant site and an
occupied site. Bacterial reproduction to the 0-site oc-
curs at rate b/z. We assume the same birth rate between
type 1 and type 2 bacteria. Let d be the intrinsic death
rate of bacteria type 1. The death rate of the cell type 2 is
assumed to be d 1 c, which is larger than that of type 1
because the type 2 cell would die when it loses its addic-
tion gene complex. We call the difference c in death rate
between type 1 and type 2 ‘‘cost of host killing,’’ which is
caused by occasional natural segregation of the addic-
tion gene complex resulting in postsegregational kill-
ing. Growth cost is ignored here because it should be
much smaller than cell death. Note that the effect of
host killing caused by competitive exclusion of the plas-

mid carrying the addiction gene complex is not in-
corporated into c. The effect is, instead, incorporated
into the ensuing transition events and changes in bac-
terial density, as is explained later. Therefore, the value
of c is assumed to be very small.

We assume that neighboring bacteria will be involved
in gene transfer at a constant rate, m. In the case of
plasmids, this represents the rate of plasmid transfer
between neighboring cells through conjugation. In the
case of chromosomal genes, it represents the rate of
successful establishment of an addiction gene complex
by transformation. Because gene transfer between bac-
teria of the same type results in no recognizable change,
only transfers between type 1 and type 2 bacteria were
analyzed. The transfer may change the type of either or
both bacteria. The effect of gene transfer is different
between the two models, i.e., the single-plasmid model
(model A, without competitor) and the plasmid com-
petition model (model B, with competitor). Definitions
of variables, parameters, and terms are summarized in
Table 1.

Model A as a single-plasmid (without competitor)
model: In this model (Figure 2A), the addiction gene
complex is always transferred from type 2 into type 1
bacteria, because type 1 bacteria do not carry any com-
petitor genetic element.

TABLE 1

Definitions

Symbol Definition Comment

Model A Single-plasmid model Without competitor, Figure 2A
Model B Plasmid competition model With competitor, Figure 2B
Type 1 A bacterial cell not carrying an addiction gene complex It carries a competitor gene in the case with

competitor
Type 2 A bacterial cell carrying an addiction gene complex
0-Site A vacant site
1-Site A site occupied by a type 1 cell
2-Site A site occupied by a type 2 cell
r0 Fraction of 0-sites Global (or unconditional) density (r01 r11 r2 ¼ 1)
r1 Fraction of 1-sites Global (or unconditional) density
r2 Fraction of 2-sites Global (or unconditional) density
qi=j Conditional probability that a neighbor of a randomly

chosen j-site is an i-site
Local (or conditional) density of i-sites among

neighbors of a j-site
qi=jk Conditional probability that a neighbor of a j-site of a

randomly chosen jk-pair is a type i cell
Local (or conditional) density of i-sites among

neighbors of a j-site of a randomly chosen jk-pair
z No. of neighbors for each site in the lattice z ¼ 4 in this study
b Intrinsic birth rate of each bacterium Reproduction to a 0-site occurs at rate b/z
d Intrinsic death rate of type 1 cell Death rate of a type 2 cell is d 1 c
c Cost of host killing The difference in death rate between type 1 and

type 2 by natural segregation of the addiction
gene complex

m Rate of gene transfer between neighboring cells Rate of plasmid transfer between neighboring cells
through conjugation in the case of plasmids;
rate of successful establishment of an addiction
gene complex by transformation in the case of
chromosomal genes; we analyze only transfer
between type 1 and type 2 bacteria
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In Equation 1a, each number refers to each type of
neighboring bacterial cell. The number attached to the
arrow indicates the rate of transition of bacterial types
triggered by gene transfer. We assume z ¼ 4 from now
on. The type 1 bacterial cell, thus, becomes a type 2
bacterial cell when gene transfer between it and a
neighboring type 2 cell takes place:

ð1; 2Þ/
m=z

ð2; 2Þ: ð1aÞ

The pair of numbers in parentheses shows the doublet
state of the nearest neighboring pair. This model should
apply to any mode of gene transfer and any status of
the addiction gene complex. These include plasmid
transfer by conjugation and gene integration into the
chromosome by any process, i.e., homologous recombi-
nation, transposition, or any form of nonhomologous
recombination.

Model B as plasmid competition (with competitor)
model: In this model (Figure 2B), type 1 bacteria carry a
competitor genetic element that is incompatible with
the addiction gene complex. This model applies to two
plasmids of the same incompatibility group, one of which
carries an addiction gene complex (Naito et al. 1995).
Another case involves an addiction gene complex on
the chromosome and its allele. They would compete
for the same locus in homologous replacement during
natural transformation (Handa et al. 2001; Sadykov
et al. 2003) and during other forms of gene transfer.

When a type 1 and a type 2 bacterial cell are in con-
tact, the competitor gene complex is assumed to be
transferred from a type 1 into a type 2 cell with the
probability of (1/2)m/z. On the other hand, the ad-
diction gene complex is transferred in the opposite
direction with the probability of (1/2)m/z (Figure 2B).
In each case, the recipient bacterial cell temporarily
possesses both the addiction gene complex and its com-
petitor. However, one of them will soon be lost from the
bacterial cell. If the addiction gene complex is lost, the
host bacterial cell will die through the process of post-
segregational host killing. If the competitor is removed,
the host bacterial cell changes into type 2. It is assumed
that this process takes place over a short time period.
Then, the transition of bacterial types triggered by
gene transfer in this model (Figure 2B) is summarized
as follows:

ð1; 2Þ /
m=4z

ð1; 0Þ

ð1; 2Þ /
m=4z

ð1; 2Þ

ð1; 2Þ /
m=4z

ð0; 2Þ

ð1; 2Þ /
m=4z

ð2; 2Þ:

ð1bÞ

Equation 1b is similar to Equation 1a, but differs in that
0 means a vacant site created after cell death and each
transition rate is divided by 4 because type 1 or type 2

bacterial cells, temporarily carrying a pair of incompat-
ible plasmids, are assumed to lose one of them with an
equal probability. The sum of these transition rates ism/z.

RESULTS

Equations: The basic equations used here are based
on those employed by Mongold (1992), while some
parts are simplified to enable mathematical analysis with
the inclusion of spatial structure. In computing tem-
poral changes in global densities, we have to consider
the correlation between neighbors. Due to the spatial
pattern formed automatically by the demographic pro-
cesses of reproduction, mortality, and interaction occur-
ring between neighbors, the temporal change in global
density cannot be expressed in terms of global densities
only. The dynamics of r1 and r2 in model A are

dr1

dt
¼ br1q0=1 � dr1 � mq2=1r1

dr2

dt
¼ br2q0=2 � ðd1 cÞr2 1mq1=2r2;

ð2aÞ

where q0=1 is the conditional probability that a neighbor
of a randomly chosen 1-site is vacant (0-site). It is called
local (or conditional) density of 0-sites among neigh-
bors of a 1-site (Matsuda et al. 1992; Sato et al. 1994).
In general, it is different from r0, the global (or un-
conditional) density of 0-sites. In the last term of the first
equation, mq2=1 indicates the rate of loss of type-1 bac-
teria by gene transfer. The variable q2=1 is the local den-
sity of 2-sites among neighbors of a 1-site. The variables
q0=2 and q2=1 are defined similarly.

Similarly, the dynamics of r1 and r2 in model B are

dr1

dt
¼ br1q0=1 � dr1 �

m

2
q2=1r1

dr2

dt
¼ br2q0=2 � ðd1 cÞr2;

ð2bÞ

where the termmq2=1=2 of the former equation indicates
the loss of type 1 following gene transfer, which is the
sum of the third and fourth transitions from type 1 in
expression (1b). On the other hand, the effect of gene
transfer is canceled in the dynamics of type 2, as shown
in the latter equation.

Population dynamics in the absence of spatial
structure

These models were analyzed at different levels of ap-
proximation. We first summarize the population dy-
namic behavior of the two types of bacterial cells in the
absence of spatial structure. This can be calculated sim-
ply by replacing a local density (qi=j) by a global density
(ri) in Equations 2a and 2b. This is called the ‘‘mean-
field approximation’’ of the lattice model (Iwasa et al.
1998). This approximation is valid if there is an
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additional process mixing the spatial configuration, as
in a well-mixed liquid culture.

Considering r0 1 r1 1 r2 ¼ 1, dynamics (2a) and (2b)
become:

dr1

dt
¼ bð1 � r1 � r2Þr1 � dr1 � mr2r1

dr2

dt
¼ bð1 � r1 � r2Þr2 � ðd1 cÞr2 1mr1r2

ð3aÞ

and

dr1

dt
¼ bð1 � r1 � r2Þr1 � dr1 �

m

2
r2r1

dr2

dt
¼ bð1 � r1 � r2Þr2 � ðd1 cÞr2;

ð3bÞ

respectively.
Next, we consider the case in which the lattice popu-

lation is close to equilibrium, in which only one type
(type 1 or type 2) predominates, and we ask whether the
other initially rare type (type 2 or type 1) can increase. In
other words, we consider invasion conditions under
which a rare type can invade an environment dominated
by another type. This is our general definition of ‘‘in-
vasion condition.’’ Using the assumption that the in-
vading type is rare, we can simplify the dynamics.

Without competitor: In the model without a compet-
itor (3a), we first calculate the condition for invasion of
type 2. If we consider an equilibrium population con-
sisting only of type 1 bacteria, a rare type 2 carrying an
addiction gene complex will invade and become estab-
lished only if per capita growth rate ðdr2=dtÞ=r2 is
positive. From Equation 3a, this condition is

1

r2

dr2

dt
¼ bð1 � r1 � r2Þ � ðd1 cÞ1mr1 . 0:

By neglecting the density of the rare invader (r2 ¼ 0),
this condition becomes

1

r2

dr2

dt
¼ ðb � dÞ � r1ðb � mÞ � c. 0:

Since the dynamics satisfy dr1=dt ¼ bð1 � r1Þr1 � dr1 ¼ 0
at equilibrium with type 1 bacteria alone, we calculate
the density of type 1 bacteria at nontrivial equilibrium
to r1 ¼ 1 � ðd=bÞ. We substitute this for the above in-
equality to arrive at the following condition:

mðb � dÞ � bc. 0: ð4Þ
Similarly, we can also calculate the condition for a type 1
invasion:

mðb � c � dÞ, bc:

Under these conditions, we illustrate the parameter
region on a m � c plane in Figure 3A, which is divided
into three regions. The first region (labeled I) is a ‘‘type
2 extinct (type 1 win)’’ region, in which bacteria without
the addiction gene complex (type 1) always win and
drive those with the gene complex (type 2) to extinc-
tion. The second region (labeled II) is a ‘‘type 1 extinct
(type 2 win)’’ region, in which type 2 always wins and
drives type 1 to extinction. In the third narrow region
(labeled C), both the conditions for type 1 and type 2
invasion are satisfied. Therefore, the two types can in-
vade each other and coexist in the population to main-
tain equilibrium densities. Isocline diagrams are shown
in Figure 4.

We also carried out computer simulations (seeappendix
a for details). The results for different m- and c-values are
shown, together with the analytical results, in Figure 3A. In
the single-plasmid model (model A), the predicted behav-
iors (type 1 extinction, type 2 extinction) for the differ-
ent values of m and c are observed under the predicted
conditions.

These results mean that, even when there is no
competitor, the addiction gene complex can evolve to
increase in frequency within the bacterial population

Figure 3.—Phase diagram in the absence of
spatial structure (complete mixing). An over-
lay of the results of analytical solutions and nu-
merical simulations is shown. The lines show
the boundaries where the analytically pre-
dicted dynamic behavior changes on the
parameter space. The analytically predicted
behavior in each region is: type 1 drives type
2 to extinction (I); type 2 drives type 1 to ex-
tinction (II); the winner is either type depend-
ing on the initial density (bistable, B); and the
two types of bacteria coexist (coexistence, C).
The results of computer simulations are
shown by each symbol: (s) type 1 drives type
2 to extinction $90%; (d) type 2 drives type 1
to extinction $90%;(h) either type extinct
$90% depending on the initial density; and

(4) extinction of either type is ,90%. Division rate of bacteria b is 2.0 times per generation. The intrinsic death rate d is assumed
to be 0.001 per generation. The gene transfer rate m and cost of host killing c varied from 0.0001 to 1.0 per generation. (A) In the
absence of a competitor. Either type 1 or type 2 drives the other type of bacteria to extinction. (B) In the presence of a competitor.
The result is either bistable or dominance of type 1. Even when the transfer rate is very high, type 2 bacteria cannot invade the
initial population.
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and maintain itself under the condition that the transfer
rate is higher than the cost of host killing. However,
Equation 4 and Figure 3A indicate that host killing by
the addiction gene complex (represented as c, cost of

host killing) does not help its increase. The addiction
gene complex increases its frequency only when the
above condition is satisfied, although it is disadvan-
tageous to the host. Therefore, this model does not
provide an answer to the question as to why genetic
addiction systems persist.
With competitor: On the other hand, analysis of the

plasmid competition model (3b) reveals that there is
no condition for invasion of the type 2 bacteria in the
absence of spatial structure. Instead, the dynamics show
type 2 extinction or bistability, depending on parameter
values (Figure 3B). Bistability is defined as the ability of
the system to exist in two stable equilibrium configu-
rations; selection of a particular equilibrium depends
on the initial state.

The condition for invasion of type 2 into a population
of type 1 dominant equilibrium is

1

r2

dr2

dt
¼ bð1 � r̄1Þ � d � c. 0;

where r̄1 is the density of type 1 at equilibrium. By
substituting ðb � dÞ=b for r̄1 in the above inequality, the
invasion condition for type 2 is �c. 0, which is never
satisfied. Similarly, the condition for invasion of type 1
into type 2 dominant equilibrium is

1

r1

dr1

dt
¼ bð1 � r̄2Þ � d � m

2
r̄2 . 0;

where r̄2 is the density of type 2 at equilibrium. By
substituting ðb � d � cÞ=b for r̄2 in the above inequality,
the invasion condition for type 1 is mðb � d � cÞ=2, bc.

That is, type 1 always wins, if

m

2
ðb � d � cÞ � bc, 0; ð5aÞ

and bistability takes place, if
m

2
ðb � d � cÞ � bc. 0: ð5bÞ

The parameter space in Figure 3B is, thus, divided into
two regions. In the first region (labeled I), type 1 always
wins and drives type 2, carrying the addiction gene
complex, to extinction. In the second region (labeled
B), the final winner is type 1 or type 2, depending on the
initial density of the two types. In this region, neither
one of the invasion conditions for type 1 or type 2 is
satisfied. Both bacteria resist invasion by the rare oppo-
nent type: the system is bistable. The addiction gene
complex of type 2 can never invade the equilibrium
population dominated by type 1 bacteria with its com-
petitor. This result means that the addiction gene
complex cannot increase in the early stage of evolution
if there is any competitor gene complex. Isocline dia-
grams are shown in Figure 5.

Computer simulation results for different m and c are
shown, together with the analytical results, in Figure 3B.
The simulation results follow very well the prediction of

Figure 4.—Isocline diagram without competitor in the ab-
sence of spatial structure. Population dynamics of both bacte-
ria are shown by arrows, and the resulting equilibrium is
shown by dots. The solid circle (d) represents a stable equi-
librium. (A) Type 1 extinction (type 2 win). Type 2 bacteria
always win and the equilibrium is globally stable. The param-
eter values are m ¼ 0.5, c ¼ 0.02. (B) Coexistence. Both bac-
teria always coexist and the equilibrium is globally stable. The
parameter values are m¼ 0.99, c¼ 0.95. (C) Type 2 extinction
(type 1 win). Type 1 bacteria always win and the equilibrium is
globally stable. The parameter values are m ¼ 0.001, c ¼ 0.2.
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mean-field analysis in the absence of spatial structure.
We also show the dynamical change in the density of
type 2 in Figure 6. When the initial density of type 2
bacteria is small, they cannot invade the type 1 bacterial
population. This result confirms the result of Mongold

(1992). Her study was the first to claim that a postse-
gregational killing plasmid cannot increase against
competition from an incompatible plasmid in the early
stage of evolution.

Population dynamics in the presence of spatial
structure

Under these two conditions corresponding to the
absence of spatial structure, we were unable to identify
a definitive evolutionary advantage of genetic addic-
tion. However, the results change dramatically when we

include spatial structure in our model. To analyze the
effects of the spatial localization of interactions, we
focused on the dynamics of conditional local densities
in addition to those of global densities ri . The ‘‘pair
approximation’’ is a method of explicitly constructing a
dynamical system, including changes in pair-state den-
sities of neighboring sites and ignoring the dynamics of
triplet, quadruplet, or larger states (Matsuda et al.
1992; Harada and Iwasa 1994; Iwasa et al. 1998). In
this method, long-range spatial correlations are re-
placed by short-range correlations (conditional local
density qi=j), and it can predict population dynamic
behavior with spatial structure very well (Harada and
Iwasa 1994; Iwasa et al. 1998), although we could not
construct isocline diagrams as in the case with the
absence of spatial structure. Here, we follow the method
of Iwasa et al. (1998).

Without competitor: We consider invasion conditions
from the dynamics of Equation 2a similarly to analysis
in the absence of spatial structure. This time, we do not
approximate conditional density qi=j by local density qi=j.
Instead, we consider q0=1, q0=2, and q1=2 as dynamical
variables and describe the changes by differential equa-
tions, as shown in appendix b. Note that q2=1 ¼ q1=2r2=r1,
and we do not have to consider the dynamics of either
q1=2 or q2=1. The dynamical system considered here
includes five independent variables: r1; r2; q0=1; q0=2,
and q1=2. The condition for type 2 invasion into the type
1 dominant population in this system is calculated by
the following procedure. First, we consider the equi-
librium population, _r1 ¼ 0; _q0=1 ¼ 0; _q0=2 ¼ 0, and
_q1=2 ¼ 0 under the condition of r2 ¼ 0. Second, we
substitute the equilibrium values of q0=2 and q1=2 into the
per capita growth rate of the type 2 cell derived from
Equation 2a. Then, type 2 can invade into a population
dominated by type 1, if

bq̂0=2 � d � c1mq̂1=2 . 0; ð6aÞ

Figure 5.—Isocline diagram with competitor in the ab-
sence of spatial structure. Symbols are the same as those in
Figure 4, except that the open circle (s) represents an unsta-
ble equilibrium. (A) Type 2 extinction (type 1 win). Type 1
bacteria always win and the equilibrium is globally stable.
The parameter values are m ¼ 0.1, c ¼ 0.9. (B) Bistability.
The final state of the dynamics is either extinction of type
1 or extinction of type 2, depending on their initial density.
Either equilibrium is locally stable. The parameter values
are m ¼ 0.5, c ¼ 0.5.

Figure 6.—Bistability in population density in the absence
of spatial structure and in the presence of a competitor. The
final state of the dynamics is either extinction of type 1 or that
of type 2, depending on the density in the initial state. The
parameter values are m ¼ 0.1, c ¼ 0.02. Any other parameter
set in the B region of Figures 3B and 9B should produce the
same dynamics.
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where q̂0=2 and q̂1=2 are the equilibrium values of q0=2 and
q1=2 in a type 1 dominant population. We cannot deter-
mine the analytical form of the equilibrium q0=2 and that
of q1=2 due to the nonlinearity of the dynamics. We
calculated the left-hand side of Equation 6a by numer-
ically changing ðm; cÞ and determined the boundary
line that satisfies the left-hand side of Equation 6a equal
to 0. We show the lines on the ðm; cÞ plane in Figure 7.
Details of the analysis are shown in appendix b.

The invasion condition of type 1 into a population
dominated by type 2 was determined similarly. We cal-
culated equilibrium values of q0=1 and q2=1 by solving
_r2 ¼ 0; _q0=1 ¼ 0; _q0=2 ¼ 0, and _q2=1 ¼ 0 under the con-
dition that r1 ¼ 0 and substituted them into the per
capita growth rate of type 1. Then, type 1 can invade into
a population dominated by type 2, if

bq̂0=1 � d1mq̂2=1 . 0; ð6bÞ

where q̂0=1 and q̂2=1 are the equilibrium values of q0=1 and
q2=1 in a type 2 dominant population. Figure 7A shows
the result. In this single-plasmid model (model A, in the
absence of a competitor), the phase diagram is almost
the same as that derived from the mean-field analysis
(Figure 3A). The dynamical behavior is labeled as type 1
extinction, type 2 extinction, or ‘‘coexistence,’’ and the
condition for each behavior is almost the same as that in
the mean-field analysis. In this model of no competitor,
the effect of spatial structure appears small, if existent.

We also carried out computer simulations of the dy-
namical model. The results for different m- and c-values
are shown, together with the analytical result, in Figure
7A. In this single-plasmid model (model A), the results
are almost the same as the analytical prediction by pair
approximation. The predicted behaviors (type 1 extinc-
tion, type 2 extinction, or coexistence) for the values of
m and c are observed by computer simulations under the
predicted conditions.

With competitor: Similarly, we calculated the dynam-
ical results of model B (in the presence of competitor)
in the presence of spatial structure by the pair-approx-
imation method. The invasion condition of type 2 into a
population dominated by type 1 is as follows:

bq̂0=2 � d � c. 0; ð7aÞ

where q̂0=2 was calculated by solving _r1 ¼ 0; _q0=1 ¼ 0;
_q0=2 ¼ 0, and _q1=2 ¼ 0 under the condition that r2 ¼ 0.

The invasion condition of type 1 into a population
dominated by type 2 is

bq̂0=1 � d � m

2
q̂2=1 . 0; ð7bÞ

where q̂0=1 and q̂2=1 were calculated by solving _r2 ¼ 0;
_q0=1 ¼ 0; _q0=2 ¼ 0, and _q2=1 ¼ 0 under the condition

that r1 ¼ 0. The lines in Figure 7B show the boundaries
where the left-hand sides of (7a) and (7b) equal 0,
respectively. The lines are determined numerically, as
in model A. The result for the plasmid competition
model (model B in the presence of a competitor) in the
presence of spatial structure, as analyzed by the pair-
approximation method (Figure 7B), is dramatically
different from that obtained by mean-field approxima-
tion (Figure 3).

In the pair-approximation analysis, type 2 bacteria
carrying the addiction gene complex can invade,
irrespective of its initial density, when transfer rate m is
sufficiently larger than the cost of host killing c. Under
such conditions, the bacteria carrying the addiction gene
complex (type 2) always win and drive the other bacteria
with the competitor (type 1) to extinction. Them–c plane
is divided into three regions, type 1 extinction, type 2
extinction, or ‘‘bistable’’ as shown in Figure 7B; only the
latter two are observed in the mean-field analysis.

The predicted behaviors (type 1 extinction, type 2
extinction, or bistable) are observed also by computer
simulation, whenm and c are varied. Figure 7B shows the
good match of analysis and simulation. We also illustrate
the dynamical change of density of type 1 and type 2 bac-
teria under the condition of type 1 extinction (Figure 8).

From the above results, we can say that the addiction
gene complex can invade into the bacterial population,
increase in frequency, and maintain itself under the
condition where the ratio of m (the rate of gene trans-
fer) to c (the cost of host killing) is large enough. By
considering the spatial structure, the early evolution of

Figure 7.—Phase diagram in the presence
of spatial structure. Methods and parameters
are the same as those in Figure 3. (A) In the
absence of a competitor. Either type 1 or type
2 drives the other type of bacteria to extinc-
tion. (B) In the presence of a competitor.
The type 2 bacteria can invade into the popu-
lation when the transfer rate m is higher than
the cost of host killing c.
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the addiction gene complex is possible when there are
any competitor genetic elements.

Transfer and postsegregational host killing in the
natural environments could be very rare. Figure 9 shows
analytical results obtained by the pair approximation
when the transfer rate m and the cost of host killing c are
as small as 10�5–10�10 and 10�5–10�10 per generation,
respectively. Even with these parameters being much
smaller than those in the previous analysis, we obtained
qualitatively the same results as in Figures 3 and 7.

DISCUSSION

We studied evolution of genetic addiction in the pres-
ence and absence of spatial structure using mathemat-
ical models and computer simulations of population

dynamics. This is the first study analyzing the contribu-
tion of spatial structure in postsegregational killing or
genetic addiction systems, although the method of pair
approximation for spatial structure (Nakamaru et al.
1997; Iwasa et al. 1998) and a basic model analyzing
evolution of postsegregational killing in the absence
of a spatial structure (Mongold 1992) were already
developed. We demonstrated that the property of ge-
netic addiction itself allows the responsible gene com-
plex to increase in frequency in a bacterial population
irrespective of its initial density. If we consider the
spatial structure by the pair approximation and com-
puter simulation of a spatially structured model, no
matter how low the initial density is, an addiction gene
complex is able to invade into a bacterial cell population
with its competitor and maintain itself under dynamical

Figure 8.—Increase of cells carrying the addic-
tion gene complex in the presence of spatial
structure and of a competitor. (A) The type 2 bac-
teria always drive type 1 to extinction, irrespective
of their initial density. (B) The density of type 1
bacteria is included as a dashed line, which results
in its extinction. The parameter values are m ¼
0.1, c ¼ 0.001. Any other parameter in the II re-
gion of Figures 7B and 9D should produce the
same dynamics.

Figure 9.—Phase diagram with lower parame-
ter values. Analytically predicted dynamic behav-
iors are shown in the regions on the parameter
space as in Figures 3 and 7. Methods and param-
eters are the same as those in previous analyses,
except that the values of transfer rate m and
the cost of host killing c are much smaller. The
four diagrams are those without (A and C) and
with (B and D) competitor and in the absence
(A and B) and presence (C and D) of spatial
structure, respectively.
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conditions, where the rate of gene transfer is higher
than the cost of host killing.

The intuitive interpretation of this result is as follows.
Cell death caused by horizontal transfer of the addiction
gene complex and competitive exclusion makes an
occupied site temporarily vacant. Whether type 2 can
spread to this site or not is most important for evolution.
In the presence of a spatial structure, the spatial pattern,
in which the same types of bacterial cells are present
close together, is formed automatically. This pattern pro-
duces a higher probability that the bacterial cells neigh-
boring the dead cell are of type 2, which enables them
and the addiction gene complexes to spread to the site.

In a preceding theoretical study (Mongold 1992),
the plasmid carrying a postsegregational killing gene
was able to evolve due to an advantage in competitive
exclusion between incompatible plasmids. The condi-
tions are that it has a high initial density, a high transfer
rate into cells carrying the competing plasmid, and
strong incompatibility resulting in a high segregation
rate in the cells carrying both the plasmids.

Our models are based on Mongold’s (1992), while
some parts are simplified to enable mathematical anal-
ysis of spatial structure. For example, she considered
both growth and segregational effects for the cost of a
plasmid carrying a postsegregational killing gene. She
also considered a segregation rate for each plasmid
separately, quoting that the value could be no more than
0.5 (Simonsen 1990) and assuming that the rate of plas-
mid transfer to other cells carrying the other plasmid
became lower because of surface exclusion. In contrast,
our model neglects the effect of surface exclusion and
growth cost of the plasmid to its host. In addition, our
model assumes that the segregation rate in cells carrying
two competing plasmids is 1.0, although bacterial cells
carrying pairs of incompatible plasmids indeed may
carry both plasmids for a few generations before one of
them is lost. However, her model did not include spatial
structure at all. Our model instead includes spatial
structure explicitly.

These simplifications in our model seem to make the
evolution of type 2 and the addiction gene complex
easier. However, our model, in the absence of a spatial
structure and with a competitor, which corresponds to
her model, produced essentially the same result as her
model. That is, addiction gene complexes cannot evolve
without their high initial density. Only after taking the
effect of spatial structure into account is evolution from
their low initial density made possible in our simplified
model. Therefore, it is revealed mathematically that the
most important factor enabling the addiction gene
complex to evolve in the very early stage of evolutionary
dynamics is the spatial structure. The spatial structure
causes the major difference in the invasion conditions
between our model and Mongold’s.

In fact, in an experimental population of bacteria
with and without a bacteriocin, the dynamics of the bac-

terial population were shown to be affected by spatial
structure (Chao and Levin 1981). In an experimental
fluid culture, the result of the dynamics was bistable and
depended on the initial ratio of the bacteria. The co-
licinogenic cells could not increase from a low initial
frequency. On the other hand, if bacteria were cultured
on a solid surface, the result of the dynamics did not
depend on the bacterial ratio. The colicinogenic cells
were able to increase from a very low frequency. This
experimental result is analogous to our modeling, al-
though it does not completely correspond to our model
in that the two bacterial populations are competing as
colonies, not as individual cells.

Our lattice model was never meant to be a physically
realistic and an accurate analog of bacteria in surface
culture. The purpose of this type of model is not to
reflect the reality but to examine the qualitative differ-
ence caused by an important novel factor. Our model
indeed revealed that spatial structure, in which the same
types of bacteria naturally get close together, causes the
dramatic change in invasion condition for addiction
gene complexes. Simplifying the model made mathe-
matical analysis much easier and demonstrated the
effect of spatial structure more clearly.

In fact, in surface culture or other physically struc-
tured habitats, bacteria exist as colonies or microcolo-
nies. On the other hand, our model assumes that each
lattice site is occupied by a bacterial cell. This situation
might seem to be unrealistic, and one can interpret a
cell in our model as a colony by replacing values m, c, b,
and d with those concerning colony-level events. How-
ever, more unrealistic assumptions are needed for this
interpretation because it requires that all bacteria in
each colony change (experience gene transfer or post-
segregational killing) all at once. In reality, plasmid
(and gene) transfer occurs first on the interface be-
tween two colonies (Molin and Tolker-Nielsen 2003),
which better corresponds to our model, in which most
sites are occupied by either type and the same types of
bacteria naturally get closer together.

We analyzed our model using a wide range of param-
eter values of m and c, as small as 10�5–10�10 per gen-
eration. The corresponding region in Figure 9, B and D,
indeed shows the most important result of this research,
i.e., the major difference in the invasion conditions
in the presence of a competitor genetic element. With-
out spatial structure, addiction gene complexes cannot
evolve without a high initial density (bistable region, B,
in Figure 9B). With spatial structure, their evolution is
possible, irrespective of their initial density (type-2 win-
ning region, II, in Figure 9D).

Intuitively, evolution of the addiction gene complex
gets easier if the transfer rate is higher and the cost of
host killing is lower. The rate of plasmid transfer in the
natural environments could be much higher than ear-
lier estimates. According to a recent compilation of the
experiments in aquatic microcosms (Van Elas et al.
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2000), the rates can be as high as 5 3 10�2 and 4 3 10�2

transconjugants/recipient. The cost of host killing by
natural segregation in the absence of competitor ge-
netic elements could be very rare. When an addiction
gene complex establishes itself in a new host cell, it
attempts to avoid cell killing by expressing its antitoxin
first and then its toxin (Nakayama and Kobayashi
1998; Kobayashi 2004). In the maintenance phase, the
antitoxin, together with the toxin, has tight autoregula-
tion of the gene complex, so that they can suppress
toxin activity until they receive a signal to attack the host
(de Feyter et al. 1989; Kobayashi 2004). In addiction,
many of the plasmids carrying addiction gene com-
plexes often have other means of stable maintenance to
minimize host killing. For example, the F plasmid car-
ries machinery (Sop) for active portioning of plasmid
molecules to daughter cells and a site-specific recombi-
nation system to resolve a dimeric plasmid molecule
into monomers, in addition to two addiction gene com-
plexes (Ccd and SrnB) (Funnell and Phillips 2004).
Therefore, the parameter values for the evolution of
addiction genes may well be present in the natural
environments.

A testable prediction of our theoretical results would
be that an addiction gene complex should be able to
increase in frequency from near zero in a mixed culture
of its carrier and noncarrier on a solid surface. The
principle of postsegregational killing or genetic addic-
tion was first identified by bacteriologists as a mech-
anism used by several bacterial extrachromosomal
genetic elements (plasmids) to stably maintain them-
selves within their bacterial host. Yarmolinsky called
this phenomenon plasmid addiction (Lehnherr et al.
1993). However, similar genetic elements and phenom-
ena have also been identified, in addition to plasmid-
related ones. Consequently, programmed cell death in
bacteria was proposed to be often mediated through
these ‘‘addiction modules’’ (Engelberg-Kulka and
Glaser 1999; Zhang et al. 2003). The term genetic addic-
tion, which we propose (Kobayashi 2004), is based on
preceding terms, but more generalized. It is possible
that, rather than being a curious exception to the gen-
eral rules governing symbiosis of genes in a genome,
genetic addiction may represent a general principle in
itself. When knockout of a gene leads to death of an
organism, the gene is called essential. However, these
genes may have evolved to be good at causing host death
at their loss after their appearance in the genome.
Therefore, this phenomenon may have implications for
the general issue of genome evolution.

Several theoretical works have shown that otherwise
costly behaviors can evolve in spatially structured
populations (Nakamaru et al. 1997; Iwasa et al. 1998;
Keller 1999). However, postsegregational host killing
does not represent costly and spiteful behavior by an
organism. Instead, it represents a strategy of a gene
complex, as analyzed here. Postsegregational killing

may represent a ‘‘green beard effect,’’ which is a form of
genetic self and nonself recognition, resulting in di-
recting benefits to individuals with the relevant (self)
gene or rejecting individuals that do not possess the
(self) gene (Haig 1997).

Although our results demonstrate that genetic addic-
tion is sufficient only for evolution of addiction gene
complexes, they do not exclude the possibility that these
addiction gene complexes may also have beneficial
traits for their hosts. For example, some restriction–
modification gene complexes may serve as a defense
against bacteriophages. In other words, genome evolu-
tion, through acquisition of beneficial genes, may be
assisted by genetic addiction.

The computer simulation was run on a UNIX workstation of the
National Institute of Basic Biology and Human Genome Center at the
Institute of Medical Science, the University of Tokyo. This work was
supported by a grant from 21st Century Center of Excellence program
(genome and language) to Ichizo Kobayashi; by grants-in-aid for
scientific research by the Ministry of Education, Science, Sports, and
Culture, Japan (genome biology, genome homeostasis) to Ichizo
Kobayashi; and by a grant from the Foundation for the Fusion of
Science and Technology to Koji Yahara.
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APPENDIX A

Details of the simulation are as follows (Durrett and Levin 1997; Nakamaru et al. 1997). We have chosen a lattice
of size 100 3 100 with a periodic boundary condition so that the lattice is mapped onto a torus by identifying its
opposite edges. In the case without spatial structure, each bacterium is on a lattice point but can interact with another
bacterium wherever it is on the lattice. In each computation step, two sites of the lattice are randomly selected. If one of
these two sites is vacant and the other is occupied by a bacterial cell, then the cell reproduces at the rate b/z, and the
new bacterial cell occupies the vacant site. In the same way, randomly selected type 1 and type 2 bacterial cells will be
engaged in gene transfer at rate m=z. The bacterial death occurs with a given rate of d. The initial density of both types
of bacteria ðr1 1 r2Þ was 0.05. The initial distribution pattern was randomly selected and the local densities were the
same as the corresponding global ones. The cases in which r1=ðr1 1 r2Þ is 0.01, 0.02, 0.05, 0.1, 0.5, 0.9, 0.95, 0.98, and
0.99 were examined. (We tried the extreme fraction of 0.9998 in some cases.) We stopped the computation when the
time reached 1,000,000 steps or if either bacterium became extinct. We iterated the calculation 10 times for each initial
pattern.

If either bacterium drives the other to extinction $90% (9 or 10 times out of 10 times), we decide this type is the
winner. If the final winner is type 1 or type 2 depending on the initial ratio r1=ðr1 1 r2Þ, we decide that the result is
bistable. In bistable systems, both bacteria resist invasion by the rare opponent type.

In the case with spatial structure, each bacterium can interact only with the nearest neighbor lattice site. In each
computational step, a randomly chosen bacterial cell can reproduce only when there is a vacant site among the z
nearest neighbors. The newly born bacterial cell would be set on the vacant site. In the same way, a randomly selected
type 1 bacterial cell can be engaged in gene transfer with a nearest neighbor type 2 cell when there is one. Other
methods are the same as in the case without spatial structure.

APPENDIX B

To analyze the effects of the spatial localization of interactions, we introduce the dynamics of conditional local
densities in addition to those of the global densities ri (Matsuda et al. 1992; Harada and Iwasa 1994; Iwasa et al.
1998). There are nine different local densities (q1=1; q2=1; q0=1; q1=2; : : .), although not all of them are independent.
The number of variables can be reduced, leaving five independent variables without loss of generality. When we
analyze the condition for type-2 invasion into a population dominated by type 1, we choose r1; r2; q0=1; q0=2, and q1=2 as
the five independent variables and express all the other variables in terms of these five.

Each conditional density may be expressed as a ‘‘pair’’ probability (doublet density) (Matsuda et al. 1992) divided
by a global density. For example, the local density of a vacant site (0-site) in the neighborhood of a randomly chosen
type 1 cell is q0=1 ¼ r01=r1, i.e., the ratio of r01, the probability for a randomly chosen nearest neighbor pair to be type 1,
divided by the global density r1. The higher-order conditional probability qi=jk is defined as the probability that a
neighbor of the j-site of a randomly chosen jk-pair is a type i cell.
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Let us consider the dynamics of q0=1 in the single-plasmid model (without competitor). We first calculate the
dynamics of summation of ‘‘01’’ pairs and ‘‘10’’ pairs:

dðr01 1 r10Þ
dt

¼ ðr01 1 r10Þq0=01
z � 1

z
b

� ðr01 1 r10Þ
1

z
1

z � 1

z
ðq1=01 1 q2=01Þ

� �
b1 d1

z � 1

z
q2=10m

� �

1 2r11d

1 ðr12 1 r21Þðd1 cÞ

1 2r00

z � 1

z
q1=00b:

ðB1Þ

The first two lines of the right-hand side indicate the transition from 01 or 10 pairs: increase and decrease of the pairs
by the birth-and-death process. The third line indicates increase of 01 or 10 pairs by the death of either cell of the 11
pair. The fourth line indicates increase of 01 or 10 pairs by the death of the type 2 cell of 12 or 21 pairs. The fifth line
indicates transition from the 00 pair to the 01 pair by the reproduction of possible neighboring type 1 cells that may
exist in the 2ðz � 1Þ sites neighboring the 0-site.

To calculate the rate of the latter event, we need a higher-order conditional probability, such as q0=01 or q1=01. Pair
approximation assumes that q1=01 can be replaced by q1=0, on the assumption that the indirect dependence is weak
(Matsuda et al. 1992). This approximation is more accurate than the mean-field version. Under this simplification, we
can calculate the dynamics of the doublet density in terms of global and local densities:
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¼ r1q0=1 1 � q0=1

r1

r0

� q0=2
r2

r0

� �
z � 1

z
b

� r1q0=1
1

z
1

z � 1

z
q0=1

r1

r0

1 q0=2
r2

r0

� �� �
b1 d1

z � 1

z
q1=2

r2

r1

m

� �

1 r1 1 � q0=1 � q1=2
r2

r1

� �
d

1 r2q1=2ðd1 cÞ

1 ð1 � r1 � r2Þ 1 � q0=1
r1

r0

� q0=2
r2

r0

� �
z � 1

z
q0=1

r1

r0

b:

ðB2Þ

Here, we used the formulas qi=jrj ¼ qj=iri and r01 ¼ r10 to derive (B2) from (B1) and removed the coefficient 2. By
differentiating q0=1 ¼ r01=r1 with respect to time t, we have

dq0=1

dt
¼ 1

r1

dr01

dt
� q0=1

r1

dr1

dt
:

Using (2a) and (B2), we have the dynamics of the local density as

dq0=1
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¼ q0=1 1 � q0=1
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ðB3Þ

In a similar way, we can calculate the dynamics of the other doublet densities, such as r02 and r12, from which we
derive the dynamics of local densities, such as q0=2 and q1=2. The right-hand side of all the differential equations can be
written in functions of r1, r2, q0=1, q0=2, and q1=2; i.e., it is a closed system.
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Pair approximation dynamics allow us to analytically derive conditions for successful invasion of one type of cell into
a population dominated by the other type. Here, we consider the case in which the lattice population is near the
equilibrium in which only type 1 cells exist, and we ask whether type 2 cells (which are initially rare) can increase in the
system. The values of the densities r1, q0=1, q0=2, and q1=2 can be calculated at the type 1 dominant equilibrium by
solving _r1 ¼ 0; _q0=1 ¼ 0; _q0=2 ¼ 0, and _q1=2 ¼ 0 under the condition that r2 ¼ 0, although we cannot determine the
equilibrium formulas explicitly. We determined them numerically. It is important to note that the invader typically
develops a clumped spatial distribution and, therefore, that the density of the invader in the neighborhood of another
invader (i.e., local density q2=2) is not negligible.

Invasion condition is determined by the sign of its per capita growth rate. From (2a), we have that r2

increases; if bq0=2 � d � c1mq1=2 . 0;

or decreases; if bq0=2 � d � c1mq1=2 , 0:

Note that it depends on the equilibrium values of local densities q0=2 and q1=2 only. As we do not have the explicit
solutions of these equilibria, we calculated numerically the left-hand side of the above inequality for each pair of
ðm; cÞ.

The invasion condition for the type 1 cell is also determined. The procedure is just the same as that for the type 2
invasion, except that we use r1; r2; q0=1; q0=2, and q2=1 (instead of q1=2) as the independent variables.
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