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ABSTRACT

Models of molecular evolution that incorporate the ratio of nonsynonymous to synonymous
polymorphism (dN/dS ratio) as a parameter can be used to identify sites that are under diversifying
selection or functional constraint in a sample of gene sequences. However, when there has been
recombination in the evolutionary history of the sequences, reconstructing a single phylogenetic tree is
not appropriate, and inference based on a single tree can give misleading results. In the presence of high
levels of recombination, the identification of sites experiencing diversifying selection can suffer from a
false-positive rate as high as 90%. We present a model that uses a population genetics approximation to
the coalescent with recombination and use reversible-jump MCMC to perform Bayesian inference on both
the dN/dS ratio and the recombination rate, allowing each to vary along the sequence. We demonstrate
that the method has the power to detect variation in the dN/dS ratio and the recombination rate and does
not suffer from a high false-positive rate. We use the method to analyze the porB gene of Neisseria
meningitidis and verify the inferences using prior sensitivity analysis and model criticism techniques.

AS an indicator of the action of natural selection in
gene sequences the ratio of nonsynonymous to syn-

onymous substitutions (dN/dS) is versatile and widely
used. An excess of nonsynonymous relative to synony-
mous polymorphism is a clear signal of diversifying se-
lection, whereas a lack of nonsynonymous relative to
synonymous polymorphism is indicative of purifying
selection imposed by functional constraint.

Nielsen and Yang (1998) proposed a maximum-
likelihood phylogenetic approach to estimating the dN/
dS ratio that employs a codon-based mutation model
(Goldman and Yang 1994) and treats the dN/dS ratio
as an unknown parameter v. This method has sub-
sequently been expanded (Yang et al. 2000; Yang and
Swanson 2002; Swanson et al. 2003), adapted into a
Bayesian setting (Huelsenbeck and Dyer 2004), and
approximated for the purposes of computational effi-
ciency (Massingham and Goldman 2005). Simulation
studies have shown that phylogenetic likelihood-based
methods can be substantially more powerful than alter-
native approaches (Anisimova et al. 2001, 2002; Wong

et al. 2004; Kosakovsky Pond and Frost 2005).
Estimating the selectionparametervusing thesemeth-

ods has become widespread (e.g., Bishop et al. 2000;
Ford 2001; Mondragon-Palomino et al. 2002; Filip
and Mundy 2004) and has been applied to many or-
ganisms. Analysis of pathogens such as viruses (Twiddy

et al. 2002; de Oliveira et al. 2004; Moury 2004) and
bacteria (Peek et al. 2001; Urwin et al. 2002) is par-
ticularly informative, because they typically have high
mutation rates and are consequently genetically diverse,
which lends greater statistical power to estimation. The
ability to observe these populations evolving in real time
makes them especially interesting for the study of evo-
lution (Drummond et al. 2003) and suggests that wemay
be able to make useful epidemiological inferences from
molecular sequence data (Wilson et al. 2005).
However, the use of phylogenetic techniques is ques-

tionable in organisms that are highly recombining,
because recombination leads to not one, but multiple
evolutionary trees along the sequence. If the recombi-
nation rate is of the same order as the mutation rate, as
has been found in some organisms (McVean et al. 2002;
Stumpf and McVean 2003), then there might be a new
evolutionary tree for every polymorphic site along the
sequence. In such a scenario, which is plausible for
many highly recombining microorganisms (Awadalla

2003) and eukaryotic genes containing recombination
hotspots (McVean et al. 2004; Winckler et al. 2005),
there is little hope of inferring any particular evolution-
ary tree along the sequence. When a single evolutionary
tree is inferred for a sample of gene sequences that have
in fact undergone recombination, the resulting tree is
likely to have longer terminal branches and total branch
length, yet a smaller time to the most recent common
ancestor, in a way that superficially resembles the star-
shaped topology of an exponentially growing popula-
tion (Schierup and Hein 2000). The effect on the
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identification of sites experiencing diversifying selection
is to cause a high number of false positives (Anisimova
et al. 2003), as high as 90% (Shriner et al. 2003).

In this article we present a new method that coes-
timates the selection parameter v and the recombination
rate along the sequence. We use a population genetics
approximation (Li and Stephens 2003) to the coales-
cent with recombination (Hudson 1983; Griffiths

and Marjoram 1997), rather than using a phyloge-
netic approach, and we adopt a Bayesian, rather than a
maximum-likelihood strategy, to incorporate evolution-
ary uncertainty. The method uses reversible-jump Mar-
kov chain Monte Carlo (MCMC) to obtain the posterior
distribution of parameters. We conduct simulation stud-
ies, which show that there is good power to detect
variation in v and the recombination rate and that the
method has a low false-positive rate. We use the method
to analyze the porB gene of the bacterial pathogen
Neisseria meningitidis and verify the inferences using
prior sensitivity analysis andmodel criticism techniques.

THEORY

In this article, the parameters of primary interest are
the selection parameter v and the population recom-
bination rate r, both of which are allowed to vary along
the sequence. The other model parameters are the
transition–transversion ratio k, the rate of synonymous
transversionm, and the insertion/deletion ratef. Key to
maximum-likelihood or Bayesian inference is the likeli-
hood function, PðHjQÞ, where H is the data (the
haplotypes) and Q represents our model parameters.
Phylogenetic methods typically estimate the maximum-
likelihood tree, Ĝ , and then calculate the likelihood
conditional on the tree, PðHjĜ ; QÞ, using the pruning
algorithm (Felsenstein 1981). When there is recombi-
nation there can be multiple trees along the sequence,
and there is typically little power to estimate those trees.
Therefore we treat the trees as a nuisance parameter
that we wish to average over, so

PðHjQÞ ¼
ð
PðHjG ; QÞPðGÞdG ; ð1Þ

where PðGÞ is the probability density of the ancestral
tree or trees, including branch lengths. There are various
ways to model PðGÞ. In the case of no recombination
Huelsenbeck and Dyer (2004) used a model in which
all unrooted tree topologies were uniformly likely, and
branch lengths had an exponential distribution. When
the sequences are from a single population a nat-
ural choice would be the coalescent (Kingman 1982;
Hudson 1983; Griffiths and Marjoram 1997), which
models a neutrally evolving, randomly mating popula-
tion of constant size, with or without recombination. In
this article we approximate Equation 1 in the case where
PðGÞ is the coalescent with recombination.

In a coalescent model the expected branch length
between a pair of sequences is 2PNe generations (where
P is the ploidy and Ne is the effective population size),
during which time there are uS synonymous mutations
on average. uS is twice the synonymous mutation rate
per PNe generations and, likewise, r is twice the re-
combination rate per PNe generations. We use the
codon model of Nielsen and Yang (1998), hereafter
NY98, which gives the mutation rate from codon i to j
(i 6¼ j) in units of PNe generations as

qij ¼ pjm

1 for synonymous transversion
k for synonymous transition
v for nonsynonymous transversion
kv for nonsynonymous transition
0 otherwise;

8>>>><
>>>>: ð2Þ

where the frequency of codon j is pj . The diagonal
elements of the mutation rate matrix are defined to be
qii ¼ �

P
j 6¼i qij . When there is equal codon usage,

us � ð61 5kÞm=155: ð3Þ

In appendix a we extend the NY98 model specified by
Equation 2 to incorporate an insertion/deletion rate f.

When there is no recombination, Equation 1 could be
computed using importance sampling or MCMC (e.g.,
Huelsenbeck and Dyer 2004). In the presence of re-
combination, importance sampling (Fearnhead and
Donnelly 2001) and MCMC (Kuhner et al. 2000) have
been applied to simpler mutation models. However,
these methods are highly computationally intensive. In
the context of the NY98 mutation model, such methods
are not feasible.

Instead we turn to an approximation to the likelihood
in the presence of recombination (Li and Stephens
2003) called the product of approximate conditionals
(PAC) likelihood. Their approach relies on rewriting
the likelihood as

PðHjQÞ ¼ PðH1jQÞPðH2jH1; QÞ
. . .PðHnjH1; H2; . . . ;Hn�1; QÞ; ð4Þ

where H ¼ ðH1; H2; . . . ;HnÞ is the sample of n gene
sequences (haplotypes). Li and Stephens approximate
the ðk1 1Þ th conditional likelihood:

PðHk11jH1; H2; . . . ;Hk ; QÞ
� p̂ðHk11jH1; H2; . . . ;Hk ; QÞ:

The approximate conditional likelihood, p̂, that they
use is a hidden Markov model that is designed to
incorporate some key properties of the proper likeli-
hood, notably that (i) the ðk1 1Þ th haplotype is likely to
resemble the first k haplotypes but (ii) recombination
means that it may be a mosaic of those haplotypes and
(iii)mutationmeans that itmay be an imperfect copy. In
terms of averaging over possible evolutionary trees, one
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can think of the hidden Markov model doing so im-
plicitly, but in an approximate way that is highly com-
putationally efficient.

As a result of the approximate nature of the PAC
likelihood, the ordering of the n haplotypes can in-
fluence the value of the likelihood (were it not for the
approximation, the haplotypes would be exchangeable).
Therefore, the likelihood is assessed by averaging over
multiple orderings of the haplotypes. We use 10 order-
ings throughout unless otherwise stated.

We modify the approximation of Li and Stephens to
incorporate the NY98 codon-based model with the ad-
dition of an insertion/deletion rate f (see appendix a

for details), and we adopt a Bayesian rather than a
maximum-likelihood approach. Thus, our object of
inference is the posterior distribution of parameters,
PðQjHÞ, where

PðQjHÞ } PðHjQÞPðQÞ: ð5Þ

Here PðHjQÞ is the likelihood function, described above
and in appendix a, and PðQÞ is the prior distribution on
the parameters.

Our primary aim is to obtain a posterior distribution
for v, allowing v to vary along the length of the se-
quence. The information regarding v at a given posi-
tion along the sequence is limited by the number of
mutations in the underlying evolutionary history. This is
a potentially serious limitation, particularly for sequen-
ces with low diversity. In an attempt to exploit to the full
the available information, we use a prior distribution on
v in which adjacent sites may share a common selection
parameter.

For a sequence of length L codons, our prior dis-
tribution imposes a ‘‘block-like’’ structure on the varia-
tion in v with two fixed and B ð0#B#L � 1Þ variable
transition points,

sðBÞ ¼ ðs0; s1; . . . ; sB11Þ;

where ðs0 ¼ 0Þ, s1 , s2 , . . . , sB , ðsB11 ¼ LÞ.
Block j is delimited by transition points ðsj ; sj 1 1Þ and

has a common selection parameter vj. We model the
number of variable transition points in the region as a
binomial distribution with parameters ðL � 1; pvÞ. Given
the number of transition points, the selection param-
eter for each block is independently and identically
distributed. For an exponential prior on vj with rate
parameter l, the prior distribution on the transition
points and selection parameters can be written

PðB; sðBÞ;vðBÞÞ ¼ pBvð1� pvÞL�B�1lB11

3 expf�lðv0 1v1 1 . . . 1vBÞg:
ð6Þ

In this model, the expected length of a block is
L=ðpvL � pv 1 1Þ � 1=pv. For pv ¼ 0 there is a single
block, producing a constant model for v along the

sequence, and for pv ¼ 1 every site has its own in-
dependent v. Therefore the user can choose not to
impose a block structure on the variation in v if desired.
This model for variation in v is based on the multiple

change-point model of Green (1995), which was adop-
ted by McVean et al. (2004) to estimate variable re-
combination rates along a gene sequence, although the
binomial model described here is designed specifically
so that transition points must fall between codons at a
finite (L � 1) number of positions. Multiple change-
point models have also been used in the context of
detecting parental and recombinant genomes in HIV-1
(Suchard et al. 2002; Minin et al. 2005). We implement
amodel for the variation in r of the same form as that for
v, but the block structure for r is independent of the
block structure for v, and the number of variable
transition points is binomially distributed with param-
eters ðL � 2; prÞ. We assume that recombination occurs
only between codons and not within them. In this way
we are able to perform inference jointly on variation in
v and r along the sequence. We use reversible-jump
MCMC to explore the posterior distribution of Q (see
appendix b).

SIMULATIONS

To investigate the performance of the method, we
undertook two simulation studies. In the first we
simulated data with variation in the selection parameter
along the sequence and a constant recombination rate.
In the second, we simulated data with variation in the
recombination rate along the sequence and a constant
selection parameter. Each of these two studies consisted
of simulating 100 data sets of n ¼ 20 sequences each of
length L ¼ 200 codons, using the coalescent with re-
combination (Hudson 1983; Griffiths andMarjoram

1997) and the NY98 mutation model.
To investigate the effect of the block model of

variation in v, a third simulation study was undertaken
in which a short sequence of length L ¼ 21 codons was
simulated with a single site experiencing diversifying
selection in the middle (v ¼ 5.0) against a background
of functionally constrained sites (v ¼ 0.2). One hun-
dred data sets of n ¼ 20 sequences were simulated and
analyzed, using both the block model for variation in v

(pv ¼ 1
20) and the independent model for variation in v

(pv ¼ 1).
In all three simulation studies, the MCMC was run

twice for each analysis over 250,000 iterations, with a
burn-in of 20,000 iterations. Initial values were chosen
randomly from the priors independently for the two
runs. The runs were compared for convergence and
merged to obtain the posterior distributions.
Simulation study A: This study was designed to sim-

ulate data with variation in v but not in r. We varied v

between 0.1 and 10, as shown by the red line in Figure 1a.
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The mutation parameters were set at m ¼ 0:7 and
k ¼ 3:0, which gives uS ¼ 0:1. The recombination rate
was set constant at r ¼ 0:1, giving a total recombination
distance for the region of R ¼

P
r ¼ 19:9. The muta-

tion and recombination parameters were chosen to
mimic those estimated for the housekeeping genes ofN.
meningitidis (Jolley et al. 2005). Exponential distribu-
tions were used for the priors on m, k, v, and r, with
means 0.7, 3.0, 1.0, and 0.1. A block model of variation
inv and rwas used with pv ¼ pr ¼ 1

20, so that the average
length of a block would be �10% of the sequence
length.

A permutation test based on the correlation between
physical distance and three measures of linkage dis-
equilibrium (LD), r 2, D9, and G4 (see, for example,
Meunier and Eyre-Walker 2001; McVean et al. 2002),
showed that phylogenetic analysis of these data sets was
inappropriate because of the presence of recombina-
tion. The numbers of data sets for which the P-value was
,0.05 were 99, 93, and 93 for the three test statistics,
respectively.

Figure 1a shows the average over the 100 simulated
data sets of the mean and 95% highest posterior density
(HPD) interval for the posterior distribution of v at
each site. The average mean posterior density follows
the truth closely. Likewise the average 95%HPD interval
generally encloses the true value of v. As expected, the
effect of fitting a prior with mean 1 was to cause the
posterior to underestimate v when v. 1 and over-
estimate v when v, 1. The effect is not great except for
the most extreme values where v ¼ 10.

However, even where the average 95% HPD interval
encloses the truth, that does not mean the 95% HPD

interval encloses the truth for all simulated data sets.
Figure 1b shows the relevant quantity, the coverage ofv,
for each site. Coverage is defined here as the proportion
of data sets for which the 95%HPD interval encloses the
truth. Half of sites have coverage .93%, and 95% of
sites have coverage.66%. If a false positive is defined as
the lower bound of the 95% HPD interval exceeding 1
when in truth v# 1, then the false-positive rate was
0.5%. The estimate of the synonymous transversion rate
m exhibits upward bias (average 0.90), with 63% cover-
age (Table 1), and the transition–transversion ratio k is
estimated to be 3.1 on average, with 91% coverage.

Consistent with the findings of Li and Stephens
(2003), we observe that the recombination rate estima-
tor has a small upward bias (Figure 1c). The average
mean posterior is almost flat, and the average 95% con-
fidence intervals enclose the truth completely, suggest-
ing that the estimator is good notwithstanding its bias.
The coverage is almost constant across sites at 95%.
Table 1 shows that the estimate of the total recombina-
tion distance, R, is also upwardly biased. Coverage of R,

Figure 1.—Results of simula-
tion studies A and B. (a) Average
posterior of v, (b) coverage of v,
and (c) average posterior of r in
simulation study A. (d) Average
posterior of r, (e) coverage of r,
and (f) average posterior of v in
simulation study B. (a, c, d, and
f) The red line indicates the truth,
theblack line indicates theaverage
mean of the posterior, and the
green lines indicate the average
95%HPD interval of the posterior.
The averages are taken over 100
simulated data sets. (b and e) Cov-
erage is defined as the proportion
of the 100 data sets for which the
95% HPD interval encloses the
truth.

TABLE 1

Summary of posteriors for simulation study A

Average posterior

Parameter Truth
Prior:
mean

Lower
95%
HPD Mean

Upper
95%
HPD Coverage

m 0.7 0.7 0.7 0.9 1.1 0.63
k 3.0 3.0 2.3 3.1 3.9 0.91
R 19.9 19.9 22.4 33.3 44.7 0.43
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however, was only 43%, suggesting that the good cover-
age for r at individual sites may be in part because of
poor information. Importantly, Figure 1, a–c, shows that
the effect of the selection parameter on the estimate
of r is negligible, indicating that inference on r is not
confounded by v.

Simulation study B: This study was designed to sim-
ulate data with variation in r but not in v. Along the
sequence we let r vary at 0.005, 0.1, 0.5, and 1, for which
one would expect 0.018, 0.35, 1.8, and 3.5 recombina-
tion events, respectively, per site in the ancestral history
under a coalescent model (Griffiths and Marjoram

1997). The total recombination distance was R ¼ 37:5.
We let m ¼ 3:6 and k ¼ 3:0, giving uS ¼ 0:5 and a con-
stant selection parameter of v ¼ 0:2. Exponential dis-
tributions were used for the priors on m, k, v and r, with
means 3.6, 3.0, 1.0, and 0.2. The samemodel of variation
in v and r was used as for simulation study A.

Permutation tests showed that these data sets were not
amenable to phylogenetic analysis because of the pres-
ence of recombination. All 100 data sets yielded P-values
,0.05 for all three measures of LD.

Variation in the recombination rate was detected by
the new method, as seen in Figure 1d. The average over
the 100 data sets shows that the mean and 95% HPD
interval for the posterior distribution of r at each site
pick up the rate variation, but not to the full extent. As a
result, the coverage shown in Figure 1e is generally
good, on average 85%, but performs worst for the most
extreme peak in rate between sites 41 and 55, where it
consistently underestimates the height. The properties
of the estimate of the total recombination distance R
(Table 2) are similar to those in simulation study A.
There is a tendency to overestimate (average 50.9) and
as a result coverage is 49%. This bias could be corrected
empirically, as in Li and Stephens (2003). Nevertheless,
there is power to detect rate variation on such fine
scales. The extent to which the posteriors underesti-
mate the deviations from the mean recombination rate
reflects the constraining effect of the prior when the
signal in the data is weak.

Figure 1f shows that on average the estimates of v are
very close to the truth, with the average 95% HPD inter-
vals completely enclosing the true value. Along the
sequence, the estimates are flat, with mean 0.21 and

coverage 90%. The false-positive rate was zero. Reflect-
ing simulation study A, there was no evidence that vari-
ation in the recombination rate confounded inference
on the selection parameter. Table 2 shows that there was
some upward bias in the mean estimate of m ¼ 4:1, with
58% coverage, and the transition–transversion ratio was
estimated to be 3.2 on average, with 89% coverage. Most
importantly, both simulation studies show that when
there is variation inv or r it can be detected, when there
is no variation none is detected, and there is little or no
confounding between v and r.
Simulation study C: This study was designed to inves-

tigate the smoothing effect of the block-like prior for
variation in v on the detection of diversifying selection
and functional constraint. As in simulation study A, the
mutation parameters were set at m ¼ 0:7 and k ¼ 3:0,
giving uS ¼ 0:1. A single codon in the middle of the L¼
21-codon sequence was simulated under diversifying se-
lection (v¼ 5.0) whereas all the surrounding sites were
functionally constrained (v ¼ 0.2). As in simulation
study A, the recombination rate was set constant at
r ¼ 0:1 and exponential distributions were used for the
priors onm, k, v, and r, withmeans 0.7, 3.0, 1.0, and 0.1.
All simulated data sets exhibited nonsynonymous poly-
morphism at the codon under diversifying selection.
Two analyses were conducted for each of the 100 sim-
ulated data sets: in one a block model on variation in v

was used (pv ¼ 1
20) and in the other each site had an

independent v (pv ¼ 1). In both a block model on
variation in r was used (pr ¼ 1

20).
Figure 2a shows the average over the 100 data sets of

the mean posterior of v along the sequence under the
block model (solid line) and the independent model
(shaded line).Themeanof theprior is also shown(dashed
line). In both models the mean value of v is estimated
to be .1 for the site under diversifying selection and
,1 for the functionally constrained sites. By combining
information across functionally constrained sites, the
block model has obtained an estimate of v closer to the
truth v ¼ 0:2ð Þ than the independent model. At the site
under diversifying selection, the effect of the blockmodel
is to smooth the variation inv, and as a result the estimate
is only just.1 v̂ ¼ 1:3ð Þwhereas the independentmodel
obtains an estimate closer to the true value of 5.0
v̂ ¼ 2:9ð Þ. Both are underestimates, which reflects the
effect of the prior when there is little information.
For functionally constrained sites, the coverage was

99% for both models, although this partly reflects the
widerHPD intervals for the independentmodel. For the
site under diversifying selection, coverage was 16% for
the block model and 67% for the independent model.
However, for both models there is an appreciable
increase in the estimate of v at the site under di-
versifying selection, which is seen more clearly in Figure
2b. The sitewise posterior probability of diversifying
selection ðv. 1Þ is plotted for the block model (solid
line) and the independent model (shaded line). The

TABLE 2

Summary of posteriors for simulation study B

Average posterior

Parameter Truth
Prior:
mean

Lower
95%
HPD Mean

Upper
95%
HPD Coverage

m 3.6 3.6 3.4 4.2 5.1 0.53
k 3.0 3.0 2.5 3.1 3.8 0.95
R 37.5 39.8 37.4 50.9 65.0 0.49
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prior probability of diversifying selection is also in-
dicated (dashed line). The posterior probability in-
creases by a similar amount at the middle site for both
models, although the increase is more abrupt for the
independent model. By combining information across
sites, the block model reports a lower posterior proba-
bility of diversifying selection at the functionally con-
strained sites, but the smoothing effect accordingly
produces a lower posterior probability of diversifying
selection at the middle site, compared to the indepen-
dent model.

As expected, the smoothing effect of a block model
for variation in v improves the estimates for series of
sites that share a common selection parameter, but dis-
favors lone sites with a very different selection param-
eter, compared to a model in which each site has an
independent v. The decision whether to use a block
model or an independent model for variation in v will
depend on the user’s prior beliefs as to the nature of
variation in the selection parameter and the relative
importance of obtaining improved estimates on average
at the expense of lone unusual sites. Figure 2b shows
that the strength of the block structure (1/pv) should be
taken into account when choosing a level above which a
site is deemed to undergo diversifying selection; the
signal of lone sites experiencing diversifying selection is
still apparent for the block model, but the absolute
posterior probability is lower.

APPLICATION TO MENINGOCOCCAL PORB

Using the porB locus ofN.meningitidis, wedemonstrate
the application of the Bayesian approach to inference of
selection and outline a coherent approach to model-
based analysis, from rejection of a model with no re-
combination through to prior sensitivity analysis and
model criticism. Finally, we look at the effect on in-
ference of assuming no recombination.

N.meningitidis is the bacterium responsible formenin-
gococcal meningitis and septicemia. Despite its notori-
ous pathogenesis, it is commonly found as a commensal
organism occupying the nasopharynx of �10% of the
population (e.g., Jolley et al. 2000). PorB is a porin ex-
pressed on the surface of the meningococcus and is
thought to be important for both proper cell growth
and pathogenesis. Two classes of PorB protein exist,
with somewhat different molecular structure and evo-
lutionary ancestry (Smith et al. 1995; Derrick et al.
1999), called PorB2 and PorB3. Urwin et al. (2002) used
a maximum-likelihood method (Yang et al. 2000) im-
plemented in the CODEML program of the PAML
package (Yang 1997) to infer selection in the porB locus,
taking the porB2 and porB3 allelic classes separately.
The CODEML method infers a maximum-likelihood
phylogenetic tree for the sequences and then makes
inference on the selection parameters on the basis of
that tree. Therefore it does not take account of recom-
bination that has occurred between those sequences
since their most recent common ancestor.

Data: Here we analyze the 79 porB3 alleles from
Urwin et al. (2002), using the new method imple-
mented in the program omegaMap. The 79 alleles do
not constitute a random sample of any population in a
meaningful sense, thus violating one of the assumptions
of the coalescent model. Instead the sequences are a
collection taken from an assortment of studies, includ-
ing 37 isolates from healthy carriers from England and
Wales obtained during swabbing programs at a military
recruit training camp (see Urwin et al. 2002 for details).
Of these 37 isolates, 19 were obtained from 5 of the
recruits and the remaining 18 were from 1 each. To
account for this sampling bias, we took only 1 isolate
from each recruit, yielding a sample size of 23. In the
discussion we explain the rationale behind this. We
called the sample of 23 the carriage study and the full
collection of 79 the global study. Whereas the global study
consisted of 77 unique haplotypes, the carriage study
consisted of 12 unique haplotypes. R. Urwin kindly pro-
vided us with her sequence alignments.

Preliminary analysis: To test the simpler model of no
recombination, we applied the permutation tests de-
scribed in simulation studies to the carriage and
global studies. Table 3 shows the results. For the carriage
study, there was a 0.1% probability of observing as ex-
treme a correlation between physical distance and LD
under the model of no recombination, regardless of

Figure 2.—Results of simulation study C. (a) Average pos-
terior of v when analyzed using the block model for variation
in v (pv ¼ 1

20, solid line) and the independent model (pv ¼ 1,
shaded line). The average prior of v is also shown (dashed
line). (b) Sitewise posterior probability of diversifying selec-
tion (v. 1) when analyzed using the block model (pv ¼ 1

20,
solid line) and the independent model (pv ¼ 1, shaded line).
The prior probability of diversifying selection (v. 1) is
shown (dashed line).
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choice of LD statistic. The result was the same for the
global study. Therefore these data are not amenable to
phylogenetic analysis. In the analyses that follow we
specified the codon frequencies using the observed co-
don frequencies (Nakamura et al. 2000) in the N. men-
ingitidis Z2491 serogroup A genome (Parkhill et al.
2000), excluding the stop codons.

Carriage study: We chose to use exponential distri-
butions for the priors on m, k, f, v, and r (Table 4, prior
A). The mean of the prior on m was 0.07, and the mean
for k was put at 3. The rate of insertion/deletion was
given a mean of f ¼ 0:1. For v, the mean of the prior
was set to 1, to represent our null model of selective neu-
trality, and for r, the mean was set at 0.1. The prior on
the number of blocks forv and r was binomial with pv¼
pr¼ 1

30, so that the length of a block would be on average
�10%of the sequence length (L ¼ 298 codons).We ran
three MCMC chains, each 500,000 iterations in length,
with a burn-in of 20,000 iterations. Having compared
the chains for convergence, we merged them to obtain
the posterior distributions.

Figure 3a shows a fire plot for the posterior distribu-
tion of v at each site. More intense colors (closer to
white) represent high posterior probabilities and less
intense colors (closer to red) low posterior probabili-
ties. The structure of PorB3 (Urwin et al. 2002) consists
of eight putative loop regions that extend out of the cell.
Of these, there is clear and strong evidence for di-
versifying selection at four of the eight loops. In these
loop regions the 95% HPD intervals for the peak v are
(3.58, 9.76), (3.01, 8.92), (3.26, 9.68), and (2.58, 7.57)
for loops 1, 5, 6, and 7, respectively. Taking the point
estimate of v at a site, v̂, as the mean of the posterior
distribution, then the average v̂ for the sequence is 0.90.

Excluding sites for which v̂. 1, this drops to 0.16. So
the majority of the sequence is under strong functional
constraint, but four of the eight loop regions are under
strong diversifying selection.
Superimposing v̂ onto the three-dimensional struc-

ture of the PorB3 protein (Figure 3b) illustrates the
external position of loops 1, 5, 6, and 7. Because PorB3 is
a cell surface protein, these outer loops are especially
exposed to the immune system and are prime sites for
recognition by antibody. It is striking that there is no
evidence for diversifying selection outside the loops.
Loops 2, 3, and 4 do not appear to be under diversifying
selection; the three-dimensional structure suggests that
theymay be less exposed than the other loops. However,
loop 8 is surprising because despite its prominent posi-
tion (Figure 3b), there is very little support for diver-
sifying selection between codons 280 and 295 (Figure
3a). The light blue shading in Figure 3b occurs at the N
and C termini, outside the nucleotide alignment we
analyzed. Therefore we have assigned to them themean
of the prior, v̂ ¼ 1.
There was some evidence for variation in the recom-

bination rate (Figure 4a). The posterior mean for the
total recombination distance, R̂ ¼ 37:7 (Table 5), was
twice the priormean of 19.9. The posterior onmwas very
different from the prior (m̂ ¼ 0:27), while there was
little discrepancy for k and f (k̂ ¼ 3:61, f̂ ¼ 0:09).
Prior sensitivity analysis: To determine the influence

of our choice of priors on the posteriors, we repeated
the analyses with alternative priors (Table 4, prior B).
For m and r we fit a uniform prior between 0 and 10 (10
being the highest value we considered plausible for
either parameter). Following Huelsenbeck and Dyer
(2004) we fit a prior distribution on k describing the
ratio of two independent and identically distributed
exponential random variables. Themoments, including
the mean, for this distribution are undefined, but the
median equals 1. For f we changed the mean of the
exponential prior from 0.1 to 1. Finally, for v we used a
gamma distribution still with amean of 1, but with shape
parameter 2, which gives the distribution a mode at 0.5.
This distribution retains the case of selective neutrality
for its mean, but it tails off toward zero rather than
increasing. We ran three MCMC chains, each 250,000
iterations in length, with a burn-in of 20,000 iterations.
The chains were merged to obtain the posteriors.
Ninety-five percent HPD intervals for the peak v in

loops 1, 5, 6, and 7 show that the magnitude of the
estimates has been reduced by the gamma prior to
(2.76, 6.80), (2.16, 5.79), (2.31, 6.70), and (2.16, 5.66),
respectively. Despite this, the relative height of the peaks
is conserved. The average v̂ for the sequence is 0.68,
reflecting the more conservative effect of the gamma
prior. Excluding sites for which v̂. 1, this drops to 0.17,
which is almost identical to the inference based on prior
A. This suggests that information about the absolute
magnitude of sites under functional constraint is less

TABLE 3

Permutation test for recombination

Carriage study Global study

Correlation P Correlation P

r 2 �0.18 0.001 �0.15 0.001
D9 �0.24 0.001 �0.16 0.001
G4 �0.23 0.001 �0.15 0.001

TABLE 4

Prior distributions

Prior A Prior B

m Exponential mean 0.07 Uniform 0–10
k Exponential mean 3.0 Exponential ratio
f Exponential mean 0.1 Exponential mean 1.0
v Exponential mean 1.0 Gamma shape 2, scale 0.5
r Exponential mean 0.1 Uniform 0–10
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influenced by the prior. Despite differences concerning
the magnitude of v, the priors strongly agree on which
sites are under diversifying selection (Figure 5). The
posterior probability of diversifying selection at a given
site is

Prðv. 1jHÞ ¼
ð‘
1
PrðvjHÞdv: ð7Þ

Prior A is represented in Figure 4 by the shaded line and
prior B by the dashed line. The two lines are virtually
indistinguishable from one another at every site, in-
dicating that our inference on diversifying selected sites
in porB3 is robust to the choice of prior.

Figure 4, a and b, compares the posterior probability
of r given priors A and B. Under prior B, the posterior
on r is somewhat flatter, with tighter credible intervals.
The average r̂ is largely the same for most of the
sequence, except at the far ends, where r̂ increases
sharply. This is an edge effect where, in the lack of
information about the recombination rate, the poste-
rior has been overwhelmed by the prior. The uniform
prior on r has mean 5, explaining the rapid increase.
The effect is reflected in the posterior on R (Table 5),
which has a similar lower bound, but a much increased
upper bound. This striking sensitivity to the prior at the

edges suggests that we should be cautious in interpret-
ing the rates at the extremes of the sequence.

The posterior on m is influenced by the high mean of
the uniform prior (Table 5), to the extent that m̂ ¼ 0:35
under prior B, which is only just inside the upper bound
of the credible interval under prior A. In contrast, k is
not particularly sensitive to the prior, with largely over-
lapping credible intervals.f shows a similar sensitivity to
m in responding to a considerable increase in the prior
mean. The lower bound is almost unaffected, but the
mean and upper bound show a marked increase.

Model criticism: An essential property of any statisti-
cal model is that it should be falsifiable. A useful
approach in Bayesian inference, and one that we use
here, is that of posterior predictive P-values (Rubin
1984; see also, e.g., Bollback 2002, 2005; Nielsen and
Huelsenbeck 2002). Here we take model to mean the
probability model together with the posterior distribu-
tion of themodel parameters. In essence, if themodel is
a good description of the data, then further data sets
simulated under that model ought to ‘‘look like’’ the
real data. If they do not, then the model is failing in
some important way. By look like we mean that with
respect to some statistic D, the observed value of that
statistic,DH should fall well within the range of values for

Figure 3.—Posterior distribution of v in the N.
meningitidis porB3 carriage study. (a) Fire plot of
the sitewise posterior distribution of v. More in-
tense colors (closer to white) represent high pos-
terior probabilities and less intense colors (closer
to red) low posterior probabilities. (b) Molecular
structure of PorB3 color coded according to v̂,
the mean of the posterior distribution of v. Dark
blue indicates strong functional constraint and
red indicates strong diversifying selection. This
image was produced using protein explorer
(Martz 2002; http://proteinexplorer.org). The
image is oriented with the surface-exposed re-
gions at the top. Arrows indicate the position
of loops I and V–VIII.

TABLE 5

Posterior distributions

Carriage study

Prior A Prior B
Prior A:
r ¼ 0

Global study:
prior A

m Mean 0.27 0.35 0.45 0.31
95% HPD (0.18, 0.36) (0.23, 0.48) (0.33, 0.58) (0.22, 0.40)

k Mean 3.61 3.09 3.69 3.34
95% HPD (2.38, 5.00) (1.94, 4.24) (2.69, 4.83) (2.41, 4.33)

f Mean 0.09 0.17 0.29 0.08
95% HPD (0.02, 0.19) (0.03, 0.37) (0.08, 0.56) (0.02, 0.16)

R Mean 37.7 46.8 — 78.0
95% HPD (27.2, 49.0) (26.2, 75.0) — (61.6, 94.5)
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the simulated data sets,DH9, where we useH9 to denote a
simulated data set.

The posterior predictive P-value is defined as the
probability under the model of observing a discrepancy
statistic D as large as that observed,

p ¼
ð
PðDH9 $DHjQ;HÞPðQjHÞdQ; ð8Þ

where the integration is approximated by

p � 1

M

XM
i¼1

I ðDH9i $DHÞ: ð9Þ

In this equation, M is a large number (we used
M � 15; 000), H9i is simulated from the posterior dis-
tribution PðQjHÞ, and I is the indicator function. It is
important to note that we simulated under the exact
probability model specified by the PAC likelihood and
used in inference, which is not the coalescent but an
approximation to it.

Discrepancy statistics have to be chosen that describe
some aspect of the data that should be fit well by the
model. This is important because it is unlikely that a
model will fit all aspects of the data well. Statistics that

are sensitive to mutation are S, the number of segregat-
ing sites and EðpÞ, the average number of pairwise
differences. For recombination, the variance in the
number of pairwise differences V ðpÞ and the minimum
number of recombination events Rm (Hudson and
Kaplan 1985) are useful statistics. We also used the
correlation between physical distance and LD (r 2, D9,
and G4) that we used previously in the permutation
tests. For selection we introduce U, which is sensitive to
any tendency for the simulated data to have toomany or
too few nonsynonymous changes on average,

U ¼
P

L
i¼1 I u

ðiÞ
H9 .u

ðiÞ
H

� �
P

L
i¼1 I u

ðiÞ
H9 6¼ u

ðiÞ
H

� �; ð10Þ

where uðiÞis the number of nonsynonymous pairwise
differences minus the number of synonymous pairwise
differences at site i. U should be centered around 0.5.
U . 0:5 indicates a bias toward diversifying selection
and U , 0:5 a bias toward functional constraint. Finally,
we use Tajima’s (1989) D, which is sensitive to di-
rectional selection, balancing selection, and demogra-
phy, not forces that we modeled explicitly.
As with a classical P-value, if P is very small then the

model does not fit the data well. Table 6 shows the ob-
served values of all the discrepancy statistics and the
two-tailed posterior predictive P-values for the carriage
study under priors A and B. Of all the discrepancy
statistics, the only posterior predictive P-value in the first
two columns ,0.05 is S for prior B. To obtain a single
posterior predictive P-value for each model we combined
information from one each of the mutation-sensitive,
recombination-sensitive, and selection-sensitive statis-
tics (S, r 2, and U). Accounting for the multiplicity of
P-values using Bonferroni would be too conservative
because the statistics are not independent. Instead we
use the procedure in appendix c. Table 6 shows that
the combined posterior predictive P-values for the car-
riage study under priors A and B are P ¼ 0:268 and
P ¼ 0:103, respectively. Neither one is in the 5% tail of
the distribution, suggesting that the model fit is ade-
quate with respect to mutation, recombination, and se-
lection insofar as the dN/dS ratio is concerned. Tajima’s
D was positive (D ¼ 1:05), whichmay indicate balancing
selection or population structure, but the P-value for
each prior was not in the 5% tail. So while we have not
attempted to model these forces, the model fit appears
to be adequate.
Global study: We analyzed the 79-sequence PorB3

data of Urwin et al. (2002) to investigate how the
violation of the coalescent model would affect infer-
ence, using prior A. For computational tractability we
used one randomly chosen ordering of the haplotypes.
We ran three MCMC chains, each 500,000 iterations in
length, with a burn-in of 20,000 iterations. The chains
weremerged to obtain the posteriors. Table 5 shows that

Figure 4.—Posterior distribution of r in the N. meningitidis
porB3 carriage and global studies. The sitewise mean (solid
line) and 95% HPD intervals (dotted lines) are shown for
(a) the carriage study under prior A, (b) the carriage study
under prior B, and (c) the global study under prior A.
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m̂ ¼ 0:31 was barely larger than that for the carriage
study, and the credible intervals overlapped almost
entirely. The rate of insertion/deletion, f was not
greatly affected (f̂ ¼ 0:08), nor was the transition–
transversion ratio (k̂ ¼ 3:34). But the total recombina-
tion rate doubled to R̂ ¼ 78:0 with no overlap in the
credible intervals. Across the sites, the recombination
map (Figure 4c) does not differ greatly in the left half of
the sequence (cf. Figure 4a), but thereafter rises rapidly
to �r ¼ 0:38. The low posterior predictive P-values
for the recombination-sensitive discrepancy statistics
(Table 6) suggest caution in the interpretation of r̂.

However, inference onvwas hardly affected. Loops 1,
5, 6, and 7 still have very high posterior probabilities of
diversifying selection. The magnitude of v inferred for
each loop is comparable, with the 95%HPD intervals for
the four loops (2.89, 7.28), (3.47, 8.17), (3.22, 8.79),
and (3.10, 7.60). The only substantive difference is in
loop 8, which now also has high posterior probability of

v. 1. The 95% HPD interval for the peak v in loop 8 is
(0.66, 2.87) and Prðv. 1Þ ¼ 0:92. This difference can
be explained by sites in loop 8 that exhibit amino acid
variation in the global study but not in the carriage
study. The average v̂ for the whole sequence is 0.91, and
excluding sites for which v̂. 1, it drops to 0.22, both
values comparable to those of the carriage study.

Effect of recombination on inference: Ancestral re-
combination can cause false positives in phylogenetic
methods (Anisimova et al. 2003; Shriner et al. 2003). If
this has had an important effect on the analysis of
meningococcal PorB3 then we should expect to see
those false positives when we compare the results of the
CODEML analysis (Urwin et al. 2002) to those pre-
sented here. Those sites identified as under weak (open
squares) and strong (solid squares) diversifying selec-
tion by CODEML are illustrated in Figure 5. All of the
strongly selected sites and all but five of the weakly
selected sites fall within loops 1 and 5–8. With the

TABLE 6

Posterior predictive P-values

Carriage study
Global study

Observed Prior A Prior B
Prior A:
r ¼ 0 Observed Prior A

S 67 0.236 0.039 0.008 92 0.391
EðpÞ 25.3 0.340 0.179 0.003 26.9 0.068
V ðpÞ 94.0 0.268 0.391 0.000 98.2 0.118
Rm 15 0.293 0.658 0.070 12 0.036
r 2 �0.13 0.247 0.265 0.002 �0.07 0.002
D9 �0.24 0.440 0.353 0.000 �0.10 0.059
G4 �0.22 0.443 0.332 0.000 �0.09 0.144
U 0.5 0.543 0.878 0.711 0.5 0.621
D 1.05 0.121 0.058 0.567 0.97 0.398

Combined 0.268 0.103 0.001 0.013

Figure 5.—Sitewise posterior probability of di-
versifying selection (v. 1) for the N. meningitidis
porB3 carriage study, under prior A (shaded solid
line), prior B (shaded dashed line), and prior A
with the recombination rate forced to equal zero
(dotted line). The loop regions are numbered
above. Those sites identified as under weak (open
squares) and strong (solid squares) diversifying
selection by Urwin et al. (2002) are shown.
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exception of loop 8 all these sites had high posterior
probability of diversifying selection for the carriage
study (Figure 5). When the global study is analyzed,
loop 8 also has high posterior probability of diversifying
selection. Therefore there are just five sites where
CODEML inferred diversifying selection but omega-
Map did not. These are candidates for false positives.

There are a number of possible explanations for
discrepancies of this kind, including the following:

1. The approximation in omegaMap has given rise to
false negatives. The PAC likelihood does not explic-
itly model the genealogy and this might have un-
expected effects.

2. The block-like prior in omegaMap caused false
negatives. Imposing a model in which adjacent sites
share a common selection parameter might disfavor
isolated sites under diversifying selection.

3. Recombination has caused CODEML to give false
positives.

In an attempt to distinguish between the explanations,
we performed an analysis of the carriage study in which
we forced the recombination rate to equal zero. Using
prior A, we ran three chains for 500,000 iterations each.
After a burn-in of 20,000 iterations the chains were com-
pared for convergence and merged to give the posterior.

In Figure 5 the sitewise posterior probability of diver-
sifying selection is plotted (dotted line) for comparison
with the other analyses. The false-positive candidates are
located at sites 55, 143, 161, 198, and 201. Of these, the
first two are located in loops 2 and 4, respectively. The
remaining three are not in loops. Comparison of our
Figure 3b to Urwin et al.’s (2002) Figure 2b shows that
these latter three disputed sites are located in a cytoplas-
mic region of the protein. The sitewise posterior proba-
bility of diversifying selection is very similar to our other
analyses (Figure 5), except at two positions. These two
positions correspond to two of the five false-positive can-
didates: sites 143 and 161. Although we cannot be certain
that these sites are false positives, the results are suggestive.

The posterior predictive P-values (Table 6) show that
the deleterious effect of assuming no recombination is
not confined to recombination-sensitive discrepancy
statistics. The mutation-sensitive parameters also have
extremely low P-values [0.008 and 0.003 for S and E pð Þ,
respectively]. The combined test shows that the model
as a whole is a very poor description of the data
(P ¼ 0:001). Although the selection-sensitive parame-
ters do not have significant P-values, the consequence of
the model inadequacy is to cast doubt on all inferences
made from it.

The PACmodel in the absence of recombination does
not default to the coalescent with no recombination
because the tree is still not modeled explicitly. There-
fore it is unlikely that the assumption of no recombina-
tion will affect a PAC model and a phylogenetic model
in an exactly equivalent fashion. Nevertheless, when we

assume there is no recombination, sites that otherwise
had low posterior probability of diversifying selection
attained high posterior probabilities. This outcome is
exactly what is predicted by the work of Shriner et al.
(2003) and Anisimova et al. (2003).

DISCUSSION

In this article we have presented a new method for
estimating the selection parameter v and the recombi-
nation rate r from a sample of gene sequences. Un-
certainty in the evolutionary history was taken into
account using a coalescent-based approximate (PAC)
likelihood. Variation in v and r was modeled as a block-
like structure with a variable number of blocks. We aver-
aged over the number and position of the blocks using
reversible-jump MCMC to obtain the posterior distribu-
tion of the parameters. Using simulations, we showed
that the newmethod has good power to detect variation
in v and r, and that the two do not appear to be con-
founded. The method has a low false-positive rate for
detecting sites under diversifying selection. We applied
the method to the porB locus of N. meningitidis and
performed prior sensitivity analysis and model criticism
to verify the results.
In addition to the ability to coestimate v and r, there

are several advantages to the newmethod. Some of these
are a consequence of the Bayesian approach, and all of
them rely on the computational tractability of the PAC
model. First among these is that our posterior probabil-
ities of diversifying selection are fully Bayesian, so they
incorporate uncertainty about the evolutionary history,
as well as uncertainty in the other parameters. In the pres-
ence of recombination, there is likely to be a great deal of
uncertainty in the evolutionary history. The computa-
tionally efficient PAC likelihood means that in the poste-
rior,v can takeonanypositive value, rather thanhaving to
constrain it to a discrete numberof points or approximate
a continuous distribution in a similar manner.
In any Bayesian approach it is necessary to specify a

prior distribution on all parameters. It is possible to
represent a lack of prior knowledge with relatively flat
priors, although we note that in reversible-jump MCMC
it is not possible to use an improper prior (Green 1995).
However, in this article we have taken a different ap-
proach, that of prior sensitivity analysis. Prior sensitivity
analysis reveals which aspects of the posterior distribu-
tion, if any, are unduly influenced by the choice of prior.
This in turn reveals which aspects of the model the data
are uninformative about. For example, Figure 4b shows
that the data contained very little information about
recombination rates at the extremes of the sequence. In
contrast, inference about diversifying selection in porB3
(Figure 5) was robust to the prior.
In a Bayesian setting it is entirely natural to impose a

block-like structure on the joint distribution of v across
sites. At sites where the data are compatible with a block
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structure this allows information about v to be com-
bined across sites, but when the signal in the data is
strong enough it will overwhelm the block model. The
sensitivity to the signal is controlled by pv. The user can
also specify an independentv for every site ðpv ¼ 1Þ or a
single v for the whole sequence ðpv ¼ 0Þ. Imposing a
block-like structure is biologically justifiable insofar as
adjacent sites in the primary sequence will be closely
juxtaposed in the tertiary structure and, as such, are
more likely to perform similar functional duties. If any-
thing, the model is overly simplistic because the tertiary
structure could in principle be used to impose longer-
range dependencies on the prior. In a maximum-
likelihood setting, implementing the block structure
described here would be computationally unfeasible.

On the basis of previous work (Schierup and Hein

2000; Anisimova et al. 2003; Shriner et al. 2003) and
because of clearmodelmisspecificationwehave claimed
that it is inappropriate to analyze data that show evi-
dence for recombination using phylogenetic methods.
Yet neither the coalescent nor the approximation to the
coalescent we use here inevitably fits data from a recom-
bining population. That is why we have advocated the
use of goodness-of-fit testing. Posterior predictive P-values
allow for goodness-of-fit testing in a Bayesian setting
when no explicit alternative model is specified. The
posterior predictive P-values in Table 6 showed that the
modelwithno recombination is a very poorfit to thedata,
and Figure 5 showed that in the PACmodel the assump-
tion of no recombination leads to an increase in the
number of sites experiencing diversifying selection, which
would be expected if this assumption increases the false-
positive rate. Posterior predictiveP-values have been crit-
icized for being conservative in the sense that the true
discrepancy between the model and the data is sup-
pressed by using the samedata for both fitting themodel
and evaluating its goodness-of-fit (see, e.g., Meng 1994).
However, in the absence of truly independent subsets of
thedata, causedby sharedevolutionary ancestry in thegene
sequences, posterior predictive P-values are a pragmatic
choice for the important task of goodness-of-fit testing.

Posterior predictive P-values (Table 6) suggested that
the coalescent approximation was not a good fit to the
N. meningitidis global study. This was not unexpected
because the global study did not represent a random
sample from any population in a meaningful sense. In
constructing the carriage study we were careful not to
include more than one haplotype from any one host.
The idea was to envisage the bacterial population as a
metapopulation in which each deme corresponds to a
host; colonization and extinction correspond to in-
fection and clearing of infection.Wakeley and Aliacar
(2001) have shown that a metapopulation model with
many demes converges to a coalescent model when
migration (transmission) events are random and each
deme is represented by nomore than a single haplotype.
Consistent with this model, the posterior predictive

P-values showed that the coalescent approximation did
provide an adequate fit to the carriage study (Table 6).
There is more work to be done on formalizing the rela-
tionship between genetic models, such as the coalescent,
and epidemiologicalmodels, but itmay bepossible in the
future to use models such as the one presented here to
estimate parameters of epidemiological relevance.
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APPENDIX A: MUTATION MODEL

Li and Stephens (2003) use a hidden Markov model (HMM) to model the sampling distribution of haplotypes in
the presence of recombination. Under the model, the ðk1 1Þth haplotype is a mosaic copy of the first k haplotypes.
The latent variable of the HMM records which of the first k haplotypes the ðk1 1Þth is a copy of at a given site.
Conditional on the latent variable, the emission probability gives the probability of observing state Hk1 1;i at site i.

Informally, we think of the latent variable as recording the haplotype that is the least distant in the evolutionary tree
at that site (call this haplotype x, x ¼ 1; 2; . . . ; k). Under a coalescentmodel (Kingman 1982;Hudson 1983), the time
(in units of PNe generations) to the common ancestor of haplotypes x and k1 1 is known (R. C. Griffiths,
unpublished data) and to the order of the approximation is exponentially distributed with rate k.

Let a ¼ Hk11;i and b ¼ Hx;i . The probability of observing a pair of states ða; bÞ given the time t to their common
ancestor for a reversible mutation rate matrix is
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Pða; bjtÞ ¼ dabpap
ð2tÞ
ab ; ðA1Þ

where

dab ¼
1 for a ¼ b
2 for a 6¼ b;

�
ðA2Þ

and pðtÞ is the transition probability matrix. The transition probability can be solved numerically (e.g., Grimmett and
Stirzaker 2001), so

Pða; bjtÞ ¼ dabpa

X
c2C

vacv
ð�1Þ
cb expf2dctg; ðA3Þ

whereC represents the possible states (in our case 61 codons), v is amatrix of eigenvectors of themutation ratematrix,
v�1 is its inverse, and d is a vector of the corresponding eigenvalues. Thus using the coalescent model for the time t, we
can obtain an expression for the HMM emission probability under any reversible mutation model:

Pða; bÞ ¼
ð‘
0
Pða; bjtÞPðtÞdt ¼ dabpa

X
c2C

vacv
ð�1Þ
cb

k

k � 2dc
: ðA4Þ

To be able to handle indels, we use a very simple extension of NY98 in which there is an extra indel state. This model
is applied only to sites in the alignment that are segregating for an indel. Codons mutate to the indel state at rate
pindelfv and back at rate ð1� pindelÞfv. Here pindel is the equilibrium frequency of indels (in sites segregating for
indels), f is the rate of insertion/deletion, and v is the selection parameter for the block containing that site. The
motivation for using this model is to capture the information regarding the underlying tree structure and mode of
selection at sites segregating for indels, in the simplest possible way.

APPENDIX B: MCMC MOVES

In theMCMC scheme we use standardMetropolis–Hastings moves to changem and k, which are of the same form as
move A below. To explore the block structure for the variation in the selection parameter we have fourmoves. Moves A
and B areMetropolis–Hastingsmoves, whilemoves C andD are complementary reversible-jumpmoves (Green 1995).
The moves for exploring the recombination rate are of the same form as those described here. For the purpose of
illustration, we use an exponential prior for v with rate parameter l.

Move A—change v within a block: Anew valuev9 is chosen so thatv9 ¼ v expðU Þ, whereU�Uniform(�1, 1). The
acceptance probability is

aAðQ/Q9Þ ¼ min 1;
PðHjQ9Þ
PðHjQÞ expf�lðv9� vÞgv9

v

� �
: ðB1Þ

Move B—extend a block 59 or 39: The block to extend is chosen uniformly at random, and for each block the
direction is chosen with equal probability. If the 59-most or the 39-most block is chosen to be extended 59 or 39,
respectively, the move is rejected. The number of sites to extend the block, g 2 ½1; ‘Þ is chosen from a geometric
distribution with some parameter. If extending the block g sites in the chosen direction would cause it to merge with
the adjacent block, the move is rejected. The acceptance probability is

aBðQ/Q9Þ ¼ min 1;
PðHjQ9Þ
PðHjQÞ

� �
: ðB2Þ

Following Green (1995), when there are B transition points, moves C andD are proposed with relative probabilities cB
and dB , where

cB
dB

¼ min 1;PðB1 1Þ=PðBÞf g
min 1;PðB � 1Þ=PðBÞf g:

Move C—split a block: A position s* is chosen uniformly at random to create a new transition point. The block
spanning position s*, which we denote block j and has parameter vj, is split and the two new blocks are assigned
parameters v9j and v9j11, respectively, such that
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v9
ðs*�sj Þ
j v9

ðsj11�s*Þ
j11 ¼ v

ðsj11�sj Þ
j

and

v9j11

v9j
¼ 1� U

U
;

where U � Uniform(0, 1). The acceptance probability is

aCðQ/Q9Þ ¼ min 1;
PðHjQ9Þ
PðHjQÞ

pvle
�lðv9j 1v9j11Þ

ð1� pvÞe�lðvj Þ
dB11ðL � B � 1Þ

cBðB1 1Þ
ðv9j 1v9j11Þ2

vj

( )
: ðB3Þ

Move D—merge a block: One of the 59-most B blocks is chosen uniformly at random to merge with its 39 neighbor.
The parameter for the merged block v9j is chosen from the current blocks’ parameters vj and vj11 so that

v9
ðsj12�sj Þ
j ¼ v

ðsj11�sj Þ
j v

ðsj12�sj11Þ
j11

and the acceptance probability is

aDðQ/Q9Þ ¼ min 1;
PðHjQ9Þ
PðHjQÞ

ð1� pvÞe�lðv9j Þ

pvle
�lðvj 1vj11Þ

cB�1B

dBðL � BÞ
v9j

ðvj 1vj11Þ2

( )
: ðB4Þ

APPENDIX C: COMBINING P-VALUES

From the posterior distribution of parameters we simulate a large number of data sets, M. For any particular
discrepancy statistic we can calculate amarginal posterior predictive P-value using Equation 9. The P-value ismade two-
tailed in the usual way. To combine two-tailed P-values for N different discrepancy statistics, denote the vector of
discrepancy statistics for data set j:

Dj ¼ ðD1j ;D2j ; . . . ; DNjÞ: ðC1Þ

Transform the marginal distribution of each discrepancy statistic i (Di1;Di2; . . . ;DiM ) into a standard normal
distribution, so that

Zij ¼ F�1 Wij 1 1

M 1 1

� �
; ðC2Þ

whereWij is the marginal rank (with respect to j) of discrepancy statistic Dij , andF�1 is the quantile function (inverse
cumulative distribution function) for the standard normal distribution. We then assume that the joint distribution of
Zj ¼ Z1j ;Z2j ; . . . ;ZNj

� �
is multivariate normal with zero mean and variance–covariance matrix S, where

Skl ¼
rkl if k 6¼ l
1 if k ¼ l ;

�
ðC3Þ

where rkl is the correlation coefficient between the transformed discrepancy statistics k and l (Zkj and Zlj) over data sets
j. Next transform Zj to remove the correlation structure

Yj ¼ L�1Zj ; ðC4Þ

where L is obtained from the matrix factorization

S ¼ LLT: ðC5Þ

Include the observed values of the discrepancy statistics DH in the above procedure to obtain YH. Assuming that the
uncorrelated transformed discrepancy statistics are independent, then

Xj ¼
XN
i¼1

Y 2
ij ðC6Þ

has a chi-squared distribution with N degrees of freedom. This can be verified by a histogram of the Xj’s. A one-tailed
chi-square test of XH combines the two-tailed posterior predictive P-values.
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