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ABSTRACT

Likelihood-based parentage inference depends on the distribution of a likelihood-ratio statistic, which, in
most cases of interest, cannot be exactly determined, but only approximated byMonte Carlo simulation. We
provide importance-sampling algorithms for efficiently approximating very small tail probabilities in the
distribution of the likelihood-ratio statistic. These importance-sampling methods allow the estimation of
small false-positive rates and hence permit likelihood-based inference of parentage in large studies involving
a great number of potential parents and many potential offspring. We investigate the performance of these
importance-sampling algorithms in the context of parentage inference using single-nucleotide polymor-
phism (SNP) data and find that theymay accelerate the computation of tail probabilities.1millionfold.We
subsequently use the importance-sampling algorithms to calculate the power available with SNPs for large-
scale parentage studies, paying particular attention to the effect of genotyping errors and the occurrence of
related individuals among the members of the putative mother–father–offspring trios. These simulations
show that 60–100 SNPs may allow accurate pedigree reconstruction, even in situations involving thousands
of potential mothers, fathers, and offspring. In addition, we compare the power of exclusion-based parent-
age inference to that of the likelihood-based method. Likelihood-based inference is much more powerful
under many conditions; exclusion-based inference would require 40% more SNP loci to achieve the same
accuracy as the likelihood-based approach in one common scenario. Our results demonstrate that SNPs are
a powerful tool for parentage inference in large managed and/or natural populations.

GENETIC markers have been used to infer parent-
age in applications across a range of fields from

anthropology and ecology to forensics and law. Today
the molecular markers of choice for parentage in-
ference are highly polymorphic, repetitive loci such as
the short tandem repeat loci commonly employed in
human parentage testing (Hammond et al. 1994) and
the microsatellites used in the field of molecular ecol-
ogy (Queller et al. 1993). In contrast, single-nucleotide
polymorphisms (SNPs) have not been widely employed
for parentage inference and other forms of relation-
ship estimation, because, possessing only two alleles,
each SNP has lower resolving power per locus than
most microsatellites (Glaubitz et al. 2003). However,
SNPs have a number of features making them appro-
priate for large-scale genetic studies: they are abundant
in most genomes surveyed (Brumfield et al. 2003);
genotyping error rates are low (Ranade et al. 2001);
scoring SNP genotypes requires minimal human inter-
action, making them amenable to high-throughput,
low-cost genotyping; and SNP genotypes are easily stan-
dardized across laboratories. Indeed, because of these

attractive features, SNPs have recently been employed
for individual identification and paternity inference in
large herds of cattle (Heaton et al. 2002; Werner et al.
2004) and for human forensic purposes (Lee et al.
2005).
Recently, several articles have reported specifically on

the utility of SNPs for parentage inference, either for
inferring parent–offspring pairs (Glaubitz et al. 2003)
or for inferring paternity given an offspring, a known
mother, and a candidate father (Krawczak 1999; Gill
2001). All of these studies measured the power for par-
entage inference in terms of the probability of exclusion
(PE) (Chakraborty et al. 1988). The PE is an appro-
priate measure of power if the actual inference is done
on the basis of exclusion—that is, if candidate parents
are to be eliminated from consideration because of
Mendelian incompatibilities with the candidate off-
spring. Although the method of exclusion is widely
used, it has several important limitations. First, it uses
only a portion of the information available in the data,
and second, the method of exclusion is not easily ad-
justed to account for genotyping error. Amore powerful
method of parentage inference was introduced by
Thompson (1976). This method, based on a likelihood-
ratio statistic, is easily extended to allow for the pos-
sibility of genotyping error and has been implemented
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in various categorical assignment methods and com-
puter programs (Meagher and Thompson 1986; San-
Cristobal and Chevalet 1997; Marshall et al. 1998;
Gerber et al. 2000; Duchesne et al. 2002). For a recent
review of the different approaches and methods avail-
able for inference of parentage, see Jones and Ardren
(2003).

The level of confidence in inference from likelihood-
based methods depends on the distribution of L, the
log-likelihood ratio statistic, given the allele frequencies
and other details of the sampling design. In general, the
distribution of L is not analytically tractable, so its dis-
tribution is approximated by Monte Carlo simulation;
however, none of the currently available Monte Carlo
methods are suitable for estimating expected error rates
in parentage studies involving large numbers of poten-
tial parents and offspring. This is a consequence of the
large number of possible trios (putative mother, puta-
tive father, and putative offspring) that must be in-
vestigated in large studies. There can potentially be
billions of trios in such a study, and therefore per-trio
false-positive rates on the order of one in 1 billion are
relevant. Standard, ‘‘naive’’ Monte Carlo estimates of
such small probabilities are inaccurate and computa-
tionally impractical.

In this article, we develop importance-sampling
methods (Hammersley and Handscomb 1964) that
allow very small tail probabilities in the distribution ofL
to be estimated accurately and rapidly. These methods
make likelihood-based inference in large-scale studies
practical. We then assess the power of SNPs for likelihood-
based parentage inference from trios. The results are
presented in terms of per-trio false-positive and per-
trio false-negative rates, from which it is straightforward
to estimate expected studywide error rates (i.e., the ex-
pected absolute number of misassignments of offspring
to parents). In addition, we incorporate the effects of
genotyping error in the method by accounting for this
error in both the likelihood-ratio and the Monte Carlo
simulations, and we consider a wide range of possible
nonparental relationships that can occur among three
individuals. Our main interests are in situations where
neither the true mother nor the true father of the child
is known. However, cases where the true mother (or
father) is known are handled easily within the same
framework, and results are presented for such cases.
Ultimately we show that with only a moderate number—
�60–100—of SNPs, enough power is achieved to accu-
rately infer parentage in quite large populations.

In methods we describe likelihood inference of
parentage and the importance-sampling methods. In
results we provide calculations of per-trio error rates
for a variety of different trio relationship categories, and
we show that likelihood-basedmethods aremore power-
ful than exclusion-based methods. We then show how
such calculations can be used to provide expected study-
wide error rates, using a scenario from a hypothetical

salmon population. In the discussion, we address
several issues relevant to large-scale parentage studies
with SNPs. Most importantly we point out that, for many
scenarios, genetic linkage per se is not a great concern,
although linkage disequilibrium between SNP markers
can reduce power for parentage inference.

METHODS

The use of likelihood to infer relationships between in-
dividuals was proposed by Edwards (1967). Thompson
(1976) developed likelihood-based methods for recon-
structing human pedigrees by testing for parental rela-
tionships.WhileThompson (1976) reportedonmethods
for simultaneously inferring the parentage of large sib-
ships, we focus on the inference of parentage in what
Thompson refers to as ‘‘Q-triplets’’—trios of individuals
consistingof aputative offspring, a putativemother, and a
putative father.We denote these three individuals by y,m,
and f, respectively. Our methods section is organized as
follows. First, we present some notation for SNP markers
and briefly review likelihood inference of parentage.
Then, we show how false-positive and false-negative rates
can be computed. And finally, we present an efficient
Monte Carlo method for estimating probabilities of in-
correct parentage assignment.

We assume that the genetic data consist of L SNP
markers. There are typically only two states (alleles) that
each SNP locus takes in a population. For example, at
one locus the two alleles may be A and G; at a different
locus the two alleles may be C and A, and so forth.
Instead of using the letter names of the DNA bases at
each locus, we use 0 to denote theminor allele—the one
at lowest frequency in the population—and 1 to denote
the allele at higher frequency. We let q denote the fre-
quency of the minor allele and p ¼ 1 � q the frequency
of the other allele. Since there are only two alleles, there
are only three diploid genotypes possible at each locus.
We name these genotypes according to the number of 1
alleles that they contain. Hence a genotype of 0 is ho-
mozygous for the 0 allele, a genotype of 1 is a hetero-
zygote, and a genotype of 2 is homozygous for the 1
allele. The frequencies of these genotypes in the pop-
ulation, assuming Hardy–Weinberg equilibrium, are q2,
2pq, and p2, respectively. Throughoutmost of this article,
we assume that the SNP markers are unlinked and
are not in linkage disequilibrium (LD), but we briefly
consider the effects of linkage in the discussion.

Parent–pair likelihood inference: For a single trio of
individuals, inferring whether m and f are both parents
of y, an event that we denote byQ, or whether m, f, and y
are three entirely unrelated individuals (U) is princi-
pally done using the log-likelihood-ratio statistic:

L ¼ log
PðGm; Gf ; Gy jQ Þ
PðGm; Gf ; Gy jU Þ: ð1Þ
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P(Gm, Gf, Gy j Q ) is the probability of the observed
genotypes of m, f, and y at L loci under the assumption
that m and f are the parents of y. P(Gm, Gf, Gy j U) is
the probability of the observed genotypes under the
assumption that m, f, and y are mutually unrelated
individuals.

The above formulation of Thompson (1976) does not
account for genotyping error, which can be problem-
atic. For example, a single genotyping error among a
true parental trio could lead to P(Gm, Gf, Gy j Q ) being
zero, which would make L ¼ �‘, and one would
wrongly reject the possibility that m and f were the
parents of y. If independent estimates of the genotyping
rates are known (or can be assumed), the analysis can be
done conditional on those known (assumed) genotyp-
ing error rates. We assume that genotyping errors occur
at a rate of m‘ per gene copy, and that they are inde-
pendent between gene copies at a locus and between
loci. This is a two-allele case of the error model con-
sidered by SanCristobal and Chevalet (1997). Be-
cause there are only two allelic types, the genotyping
error model can be made simple and realistic—a geno-
typing error means that a 0 allele is observed as a 1 allele
or that a 1 allele is observed as a 0 allele—without in-
curring a large computational burden as with markers
having multiple alleles (Sieberts et al. 2002). It is
possible that genotyping errors at the two gene copies
at a locus would not occur independently of one another.
In such a case the error model would have to be altered,
which would not be difficult.

Assuming a genotyping error rate m‘ . 0 at the ‘th
locus, the calculation of L is much like that in (1),
except that P(Gm, Gf, Gy j Q ) and P(Gm, Gf, Gy j U ) are
replaced by P(Gm, Gf, Gy j Q, m) and P(Gm, Gf, Gy j U,m),
respectively, the latter two being probabilities computed
conditional on the locus-specific genotyping error rates
m¼ (m1, . . . ; mL). Calculation of P(Gm,Gf,Gy jQ,m) and
P(Gm, Gf, Gy j U, m) is straightforward. Details appear in
the appendix.

In parentage inference, as typically pursued, if the
statisticL is greater than some threshold value, Lc, then
the trio is declared to be of type Q. If the trios being
tested are all of either type Q or type U, then rejecting
hypothesis U is equivalent to accepting hypothesis Q,
and parentage inference of this sort is formally a hypo-
thesis test. If the genotyping error rate is known exactly,
then by the Neyman–Pearson lemma (Neyman and
Pearson 1933), a test based on L is the most powerful
test available (as noted by SanCristobal andChevalet
1997). In other words, among all possible parentage
tests, a test using the statistic in (1) will have the smallest
type II error rate for any chosen type I error rate. The
Neyman–Pearson lemma provides a theoretical justifi-
cation for what has been noted by previous authors
(Marshall et al. 1998) and is demonstrated later in this
article—that likelihood-based methods can be more
powerful than those based on parental exclusion.

If the trios being tested have some relationship other
thanQorU, however, then such an analysis is not formally
a hypothesis test, and the Neyman–Pearson lemma no
longer applies. This means that without knowing the
pattern of relatedness of themembers of the trio—which
is typically unknown—it is not possible to design a most
powerful test for parentage. Nonetheless, the test statistic
L, with the likelihood of U in the denominator, is still a
reasonable choice of test statistic, even when the true
relationship of the triomay be something other thanQor
U (Meagher and Thompson 1986).
We express the power for trio-based parentage as-

signment in terms of false-positive and false-negative
error rates. These are analogs of type I and type II errors
in hypothesis testing. A false-positive error occurs when
we declare a trio to be of type Q when, in fact, it is not. A
false-negative error occurs when we declare a trio to not
be of type Q when, in fact, it is. The probability a of a
false positive depends on the allele frequencies q ¼
(q1, . . . ; q‘), the genotyping error rates m, the true
relationship, T 6¼ Q, of the individuals within the trio,
and the chosen value ofLc. It is the probability that a trio
of type T yields L . Lc, which can be written as the
expected value

aðq; m; T ; LcÞ

¼ ET ;m I log
PðGm; Gf ; Gy jQ ; mÞ
PðGm; Gf ; Gy jU ; mÞ.Lc

� �� �
; ð2Þ

where Ifx.Lcg is the indicator function that takes the
value 1 if x . Lc and 0 otherwise, and the subscript ‘‘T,
m’’ signifies that the expectation over all values of (Gm,
Gf, Gy) is taken conditional on the trio being of type T
and the genotyping error rates of the loci being m. The
probability of a false-negative error is the probability
that a trio of type Q yields L , Lc, which is denoted by

bðq; m; LcÞ ¼ EQ ;m I log
PðGm; Gf ; Gy jQ ; mÞ
PðGm; Gf ; Gy jU ; mÞ,Lc

� �� �
:

ð3Þ

The quantities a and b are per-trio error rates. b(q, m,
Lc), when multiplied by the number of parental trios
compared in a study, gives the expected number of false
negatives in the whole study. Likewise a(q, m, T, Lc)
multiplied by the number of type T trios for which L is
evaluated gives the expected number of false positives
involving trios of type T. If reasonable estimates (based,
for example, on demography) can be made of the pro-
portion of different trio types, T, in a sample, then a rea-
sonable estimate of the total expected number of false
positives and false negatives in the entire study (i.e.,
when all possible parent pairs are tested against all pos-
sible offspring) may be made. Being able to compute a

and b makes it possible to choose a value of Lc that
provides a suitable trade-off between false-positive and
false-negative rates and to determine the number of loci
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necessary to reduce the total expected number of false
positives and false negatives to an acceptable level.

Relatedness between putative parents and the youth:
There are many ways in which the putative parents m
and f might be related to the youth y other than just as
the true parents (Q) or as unrelated individuals (U). For
example, in the forensics literature, there is consider-
able concern about situations in which a putative father
is actually a brother or a cousin of the true father (e.g.,
Fung et al. 2002). Similarly, biologists have seen their
attempts at pedigree reconstruction confounded by this
‘‘aunt and uncle effect’’ (Olsen et al. 2001). Because of
age differences between parents and offspring in hu-
mans it is unlikely that a putative parent will actually be a
sibling of the putative offspring. However, this situation
may arise frequently in populations of plants and
animals (Thompson and Meagher 1987), leading to
difficulty in parentage assignment. Many studies have
evaluated the effect of such relationships on parentage
and paternity inference (Salmon and Brocteur 1978;
ThompsonandMeagher1987;Goldgar andThompson
1988; Double et al. 1997; Marshall et al. 1998; Heaton

et al. 2002; Glaubitz et al. 2003; Sherman et al. 2004).
Most of these have investigated the effect of relatedness on
exclusion probabilities, and not on the distribution of L,
or are concerned exclusively with paternity inference or
the inference of parent–offspring pairs, and not with the
analysis of general Q-triplets, thus ignoring many of the
possible relationships among the members of a trio.

Here, we focus on 23 different relationships that cover
many cases of interest. These 23 relationships are di-
vided into eight basic types as shown in Figure 1. Figure
1a shows relationships in which the putative parents are
related, via common descent from unobserved ances-
tors, to the true parents, M and F. The pairwise relation-
ships between F and f, and M and m, are specified in
terms of the coefficients kf and km, respectively. In
general, k ¼ (k0, k1, k2), where ki is the probability
that the pair shares i gene copies identical by descent
at a locus and k0 1 k1 1 k2 ¼ 1 (Cotterman 1940;
Thompson 1975). This type of trio relationship has been
investigated in the context of parentage inference by
Goldgar and Thompson (1988). We refer to these as
C-type relationships. We consider 10 different variations
of the C-type of relationship (CU

U ; C
U
DFC; C

U
Si ; C

U
Se; C

DFC
DFC ;

CDFC
Si ; CDFC

Se ; CSi
Si ; C

Si
Se; andC

Se
Se ) corresponding to four

different degrees of pairwise relationship between F
and f and M and m: self (Se), k ¼ (0, 0, 1); full-sibling
(Si), k ¼ ð14; 1

2;
1
4Þ; double first cousin (DFC), k ¼

ð 9
16;

3
8;

1
16Þ; and unrelated (U), k ¼ (1, 0, 0). We denote

these different C relationships using super- and sub-
scripts for the relationships of f to F and of m to M,
respectively. For example, CSi

Se denotes the trio in which f
is a sibling of the true father (F) of y, and m is the true
mother (M) of y. We follow the convention that, in a
C-type relationship, m is always equally or more closely
related toM as f is to F. Of course, for autosomal loci, the

results are the same when the sex of the f and m in-
dividuals is reversed. Two special cases to note are CU

U ,
which corresponds to an unrelated (U) trio, and CSe

Se ,
which corresponds to a parental (Q ) trio. The B-type
relationships (Figure 1b) include cases in which one of
the putative parents is a full-sibling of y and the other is
not a descendant of M or F. The H-type relationships
(Figure 1c) are similar to typeB, except that one putative
parent is a half sibling of y. We investigate four different
variations of trio types B and H corresponding to the
four different levels of k investigated; for example, BSi

denotes a trio in which the putativemother is a sibling of
y and the putative father is a sibling of the true father.
Once again, it should be noted that the fact that the
mother is placed as the sibling of y in the B-type rela-
tionships or as the half-sibling of y in the H-type rela-
tionships is merely convention, and for an autosomal
locus, the properties of the trio would be identical if the
sexes of m and f were reversed. Finally, types D1–D5
(Figure 1, d–h) all include only a single case. They are
situations in which both m and f are direct descendants
of at least one of the true parents of y.

Paternity inference: Paternity inference is a special
case of parentage inference in which the true mother of
the child is known but the true father is unknown. We
consider the version of the paternity inference problem
in which all three members of a trio have been geno-
typed. Likelihood inference in this case proceeds much
as before, except that the null hypothesis for each trio is
no longer that they are all unrelated (U). Rather, the
null hypothesis is that the putative mother is the true
mother, but the putative father is unrelated to either of
them. The likelihood-ratio statistic thus becomes

Lpat ¼ log
PðGm; Gf ; Gy jQ ; mÞ
PðGm; Gf ; Gy jCU

Se; mÞ
: ð4Þ

The expressions for per-trio false-positive and false-
negative rates in paternity inference can be computed
for Lpat by making the appropriate modifications in (2)
and (3). We consider the power for paternity assign-
ment given five different scenarios that correspond to
trio types CU

Se, C
DFC
Se , CSi

Se, BSe, and HSe. These paternity
inference scenarios are denoted PU, PDFC, PSi, PF, and
PH, respectively. The first three are cases where the true
mother is known and the putative father is respectively
either unrelated to the true father or a double first
cousin or brother of the true father. The latter two are
cases where the mother is known, and the putative
father is a full-sibling or a half-sibling, respectively, of y.

Importance sampling methods for a and b: To sim-
plify notation, we define G¼ (Gm, Gf, Gy). To estimate b
by simulation, (3) suggests the Monte Carlo estimator

bðq; m; LcÞ �
1

N

XN
i¼1

I log
PðGðiÞ jQ ; mÞ
PðGðiÞ jU ; mÞ

,Lc

� �
; ð5Þ
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where G(i) denotes the ith triplet of L-locus genotypes
simulated from the distribution P(G j Q, m) and N is the
number simulated. As shown in results, the relation-
ship between a and Lc is typically such that it may be
impractical to reduce b below 0.1 or 0.05. Therefore,
estimating b using (5) can usually be easily done.

The naive Monte Carlo estimator for a is

aðq; m; T ; LcÞ �
1

N

XN
i¼1

I log
PðGðiÞ jQ ; mÞ
PðGðiÞ jU ; mÞ

.Lc

� �
;

ð6Þ

whereG(i) is simulated from the distribution P(G j T,m).
In many cases, this Monte Carlo estimator performs
poorly because the desired value of amay be very small.
For example, imagine that the potential parents include
3000 males and 3000 females and that 10000 offspring
will be compared to all potential parent pairs. The total
number of trios investigated in such a case is 90 billion.
Therefore, to have few false positives in the whole study,
a must be on the order of 10�10–10�8. Accurately esti-
mating such small probabilities using (6) is virtually
impossible: if a is 10�9, you might simulate 1 billion
randomtrios fromP(G jT,m) and, using (6), still estimate
a to be zero. In general, to estimate a with aMonte Carlo
standard error of X% using (6) requires N ¼ ð1� aÞ�
ð104=aX 2Þ. For example, if a¼ 10�9, using (6) to achieve
aMonteCarlo estimateofawith a standarderror of 1%of
its true value requires N � 104/(10�9 3 1) ¼ 1013, which
would be computationally impractical.

To accurately estimate small values of a, we use im-
portance sampling (Hammersley and Handscomb

1964), simulating G(i) from a distribution P*(G) (note
the superscript * to distinguish this distribution) called
the importance-sampling distribution. In this case, so

long as P *(G(i)) is nonzero for all possible values ofG(i),
and the values of G(i) are simulated from P*(G), a may
be estimated using

aðq; m; T ; LcÞ �
1

N

XN
i¼1

I

3 log
PðGðiÞ jQ ; mÞ
PðGðiÞ jU ; mÞ

.Lc

� �

3
PðGðiÞ jT ; mÞ

P*ðGðiÞÞ

� �
; ð7Þ

for all Lc. If P*(G) is chosen well, the Monte Carlo
variance of (7) can be much smaller than that of (6).
Furthermore, it can be shown (e.g., Hammersley and
Handscomb 1964) that the P*(G) that minimizes the
Monte Carlo variance of the estimator of a satisfies

P*ðGÞ} I log
PðG jQ ; mÞ
PðG jU ; mÞ.Lc

� �
PðG jT ; mÞ: ð8Þ

In other words, P*(G) should be chosen such that it
is zero for all values ofG for whichL # Lc, and it should
be proportional to P(G j T, m) for all other values of
G. In general, it is not possible both to simulate from
such a distribution and to compute the probability of
each realization from that distribution. However, a good
importance-samplingdistributioncan still beconstructed
by trying tomake P*(G) close to proportional to P(G j T,
m) for all values ofG yieldingL$Lc or, at least, by ensur-
ing that there are no values ofG having aberrantly large
values of the importance weights, IflogðPðGðiÞ jQ ; mÞ=
PðGðiÞ jU ;mÞÞ.LcgðPðGðiÞ jT ;mÞ=P*ðGðiÞÞÞ.Meeting the
latter condition helps to avoid a situation that is a com-
mon downfall for importance-sampling schemes—infre-
quent realizations ofG fromP*(G) that contributemuch
larger-than-average terms to the sum in (7).

Figure 1.—Eight basic types of relationships in trios investigated in this article. The solid lines denote pedigree (i.e., parent–
offspring) relationships and the dotted lines denote pairwise relatedness parameterized by km and kf. Shaded nodes are the m, f,
and y individuals whose genotype data are used to computeL. M and F represent the true mother and father of y. Unshaded nodes
represent individuals that are not observed in the current m, f, and y trio (except in the case of ‘‘self’’ pairwise relationships—see
text for more explanation).
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We consider two different forms for the importance-
sampling distribution. In the first, which we refer to as
I1, we use the distribution given that the trios are of type
Q ; that is, P *(G) [ P(G j Q, m). This works remarkably
well for cases where the members of the trio are mostly
unrelated. The apparent reason for this can be un-
derstood by considering the case where the trio is truly
unrelated (i.e., T¼U) as follows: ifG� P(G jQ,m) then
a large proportion (1 � b) of realized values G(i) will
yield values of L . Lc, and, in those cases, the im-
portance weights will be PðG jU ; mÞ=PðG jQ ; mÞ, which
is precisely exp(�L). Since all values of G yielding
importance weights greater than zero have L . Lc, the
upper limit to the importance weights is exp(�Lc), and
it turns out that a great many values ofG simulated from
P(G j Q, m) yield values of exp(�L) near that limit. As a
consequence, with T ¼ U (and with other trio relation-
ships with little relatedness between the members) this
importance-sampling distribution does not generate
any realizations of importance weights that are much
larger than the average. Therefore, it provides a fairly
stable importance-sampling distribution.

Unfortunately, for trios involving highly related mem-
bers, the importance-sampling distribution I1 may per-
form poorly. For such relationships we develop a more
ad hoc importance-sampling distribution, which we refer
to as I2. To construct this distribution we adjust the
probability of each of the 27 genotypic configurations at
each locus according to a logistic weighting function.
The goal is to increase the probability of the genotypic
states yielding high values ofL, so that the average value
ofL from the importance-sampling distribution is equal
to that under the relationship Q (this ensures that a
large proportion of the realizations from the impor-
tance-sampling distribution will have L . Lc). This
procedure is applied independently to each of the L
loci. To describe this at a single locus we let g denote the
genotypic configuration of the trio at a single locus,
and we denote the 27 configurations that g can take by
the set G. At this single locus, the log-likelihood-ratio
statistic is l(g) ¼ log[P(g j Q, m)/P(g j U, m)], and the
expected value of l under the hypothesis that the trio is

of typeQ is �lQ ¼
P

g2G lðgÞPðg jQ ; mÞ. The importance-
sampling distribution P *(g) is formed by scaling P(g j T,
m) for each value of g 2 G by a weight w(l(g)) that
depends on the value of l that the particular g yields. For
values of g that yield values ofl(g). �lQ , the weight is.1.
Otherwise it is #1 according to a logistic equation with
twoparameters: r. 0 andM (0,M, 1).Mathematically,

P*ðgÞ}Pðg jT ; mÞ

3 11
2M

11 expf�r ðlðgÞ � �lQ Þg
�M

� �
"g 2 G;

ð9Þ
and normalizing P*(g) is easily done.

From (9), we see that the weight w(g) is never.11M
and never ,1 � M. Since 0 , M , 1, this ensures that
P*(g) . 0 whenever P(g j T, m) . 0. For the relation-
ships investigated in this article, a value ofM ¼ 0.85 was
used, and r was adjusted so that the average value of l(g)
under the importance-sampling distribution was equal
to (or, in practice, slightly larger than) �lQ . Figure 2a
plots w(l(g)) as a function of l when M ¼ 0.85 and r ¼
0.72. Figure 2b shows the relationship between the
importance-sampling distribution P*(g) obtained by
weighting the original, true distribution—in this case
P(g j BSe, m)—using the weighting function depicted
in Figure 2a. It makes it clear that the importance-
sampling distribution is still highly correlated with the
true distribution of g, as desired. This means the vari-
ance of the importance weights is not high. Also, as is
clear from the absence of points above the y ¼ x line in
the left part of the graph, there are no values of g having
very low probability under P*(g) but having very high
importance-sampling weights. This is important since
rare realizations of enormous importance weights often
present difficulty for importance-sampling algorithms
(Gelman et al. 1996).

RESULTS

We begin by presenting the relationship between a,
b, and Lc, and we use that relationship to portray the

Figure 2.—The importance
sampling scheme I2. (a) The logis-
tic weighting function w(l(g)) as
a function of l for M ¼ 0.75 and
r ¼ 0.72. The dashed lines show
the minimum and maximum pos-
sible values of w(l(g)). (b) Plot of
P(g j BSe,m) for a single locus with
q¼ 0.2 on the x-axis against P*(g),
obtained by weighting values of
P(g j BSe, m) by the function in a,
on the y-axis. The dashed line is
the y ¼ x line.
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effect of genotyping error. Then we present three main
results in three subsections: we assess the accuracy of
the importance-sampling method for estimating false-
positive rates, present the false-positive rates for a num-
ber of scenarios, and compare the power achieved by
using a likelihood-based approach vs. relying solely on
an exclusion criterion. Finally, we give a brief example
in a hypothetical salmon population.

Figure 3 portrays the relationship betweena andb for
a hypothetical data set of 80 SNPs with minor allele fre-
quencies of 0.2. The different curves show the relation-
ship for different values of the genotyping error rate.
The graph shows that a increases sigmoidally as a func-
tion of 1 � b, which is the probability of not making a
false-negative error—also called the power. Between 1�
b values of �0.15 and 0.85, the logarithm of a increases
roughly linearly with 1 � b. Toward the ends of the
intervals, the increase of a is considerably steeper. Thus,
although you may be able to identify the offspring of
95% of genotyped parent pairs with an acceptably low
false-positive rate, the false-positive rate may climb
quickly to unacceptable levels if you decreaseLc enough
to expect to identify offspring of 99% of the genotyped
parent pairs. The other noteworthy feature of Figure 3 is
that, not unexpectedly, at any level of 1�b, lowering the
genotyping error rate reduces the false-positive rate.
The solid lines in the graph show the curves for values of
m starting at 0.25 and decreasing in factors of 2 to 2�20 ¼
9.5 3 10�7. The curves are clearly converging to the
limiting value of a that would be achieved if m ¼ 0. The
dashed line in Figure 3 corresponds to m¼ 0.005, which
is at the high end of the range of m (0.0001–0.005)
estimated in recent, large, SNP genotyping studies
(Gabriel et al. 2002; Kennedy et al. 2003; Barton et al.
2004; Hao et al. 2004; Mitra et al. 2004). Throughout
the rest of this study, we assume m ¼ 0.005. In the fol-
lowing two sections, we focus our attentionon values ofa
corresponding to 1� b¼ 0.90 (Figure 3, vertical dotted
line). In other words, when computing a, we set Lc so
that b ¼ 0.1.

Accuracy of the importance-sampling method: It can
be difficult to assess the performance of importance-
sampling algorithms because the true distribution of
the importance weights is typically unknown (Gelman
et al. 1996). If the importance weights are highly
variable, then the estimated variance of the Monte
Carlo estimator may not represent the true variance.
Here we assess how well the standard errors of estimates
of a reflect the true uncertainty in the estimates. First,
using a standard set of L ¼ 60 loci with minor allele
frequencies of q ¼ 0.2, we make 100 independent
importance-sampling estimates of a, corresponding to
a false-negative rate of b¼ 0.10, using different random-
number seeds. Then we compare the standard deviation
of the 100 estimates of a to the Monte Carlo standard
errors computed for each of the 100 estimates. If the
importance-sampling method works well, then the stan-

dard error of each estimate of a will be small and will
correspond well to the standard deviation of the esti-
mates obtained by repeating the procedure 100 times.
If it does not work well, then the standard errors will
be large and/or they will not correspond well to the
empirical distribution of the estimates.
We carried out this procedure for all 23 trio relation-

ships (except theCSe
Se case) and the 5 paternity inference

relationships. For each relationship, we estimated a

using both I1 and I2 with N ¼ 100,000 Monte Carlo
samples. The results are summarized in Table 1. For
each relationship and each importance-sampling
method we report the following: �a, the mean a esti-
mated over 100 replicate Monte Carlo simulations (this
is equivalent toa estimated withN¼ 10million); SD, the
standard deviation of the 100 estimates of a calculated
from their observed distribution; SDY, the minimum,
over the 100 replicate simulations, of the Monte Carlo
standard errors of the estimates of a computed from
the 100,000 Monte Carlo samples; SD[, the maximum
SD over the 100 replicate simulations; and ;C.I., the
number, out of 100 Monte Carlo simulations with N ¼
100,000, that failed to include �a in the 90% confidence
interval for the estimate of a. ;C.I. should be close
to 10.
The results (Table 1) show that, for most relation-

ships, at least one of either I1 or I2 performs well. For
each true relationship, the results for the best-performing
importance-sampling method appear in italics (i.e., for

Figure 3.—The relationship between false-positive rates, a,
and power, 1 � b, for minor allele frequency, q ¼ 0.2, and
number of loci, L ¼ 80, at different values of the genotyping
error rate, m. Note that the y-axis is on a log scale. Each solid
curve represents the relationship for a value of m ¼ 2�n with
n 2 f2, . . . ; 20g. For n ¼ 2, . . . ; 7, the value of m is printed
above the curve. The additional dashed curve plotted below
the m ¼ 0.0078 curve corresponds to m ¼ 0.005, which is
the value used for all subsequent analyses in this article. The
dotted, vertical line at 1 � b ¼ 0.90 shows the power used
in several analyses later in this article.
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each relationship type, the importance-samplingmethod
in italics is the one that should be used in practice). It
is apparent that I1 performs best in trios in which the
members are not highly related (i.e., when a putative
parent was related no more closely than as a full-sibling
to a true parent or as a half-sibling to y), and I2 out-
performs I1 when members of the trios are more closely
related (i.e., when only a single putative parent is a true
parent or when a putative parent is a full-sibling of y). In
most cases, the best importance-sampling method was
able to estimate a with a standard error of between 0.5
and 2% using N ¼ 100,000, which takes,10 sec of user
time on a 1.25-GHz G4 Apple laptop. The only excep-
tions were relationship CU

Se, which could only be
estimated to a standard error of 5%, but could still be
reliably estimated, and the relationships BU, D3, D5, and
PH, for which a could not be accurately estimated using
either I1 or I2. It is probable that a different importance-
sampling scheme tailored to those relationships could

be devised that would work better, but we do not pursue
that here. In the rest of this article, we either exclude
those relationships from subsequent analyses or note
results for them with caution.

The ‘‘ISI’’ column in Table 1 gives the approximate
factor by which importance sampling decreases compu-
tation time compared to the naive Monte Carlo estima-
tor of Equation 6. This value is obtained by calculating
the size of the Monte Carlo sample N that would be
needed if using the naive Monte Carlo estimator to
achieve the same Monte Carlo standard error for a and
then dividing that by 100,000. For the 60-locus condi-
tions we considered, the importance-sampling method
is between 3.9 times and 44million times faster, depend-
ing on the relationship. The speed improvement due to
importance sampling is greater for smaller values of a
and will hence be greater for larger numbers of loci, for
values of a corresponding to higher values of b, and for
more distantly related trio members. In many cases

TABLE 1

Assessment of the importance-sampling methods

I1 I2

T �a SD SDY SD[ ;C.I. �a SD SDY SD[ ;C.I. ISI

CU
U 5.23e-08 0.89 0.92 0.95 9 — — — — — 2.4e106

CU
DFC 7.82e-07 1.27 1.09 1.35 13 — — — — — 7.9e104

CDFC
DFC 1.29e-05 1.20 1.06 1.24 11 7.76e-06 104.26 3.07 608.03 49 5.4e103

CU
Si 8.76e-06 2.20 1.80 4.47 6 4.39e-06 142.90 3.24 772.98 60 2.4e103

CDFC
Si 1.49e-04 1.57 1.34 2.47 9 1.47e-04 18.52 3.95 129.35 17 2.7e102

CSi
Si 1.66e-03 1.46 1.29 2.08 6 1.67e-03 2.54 1.70 6.17 10 2.8e101

CU
Se 5.43e-04 14.72 4.34 67.70 24 5.53e-04 5.39 3.08 12.36 13 6.2e100

CDFC
Se 8.57e-03 6.02 2.76 30.61 12 8.59e-03 1.02 0.89 1.07 11 1.1e101

CSi
Se 7.49e-02 3.25 1.89 9.92 9 7.48e-02 0.49 0.54 0.56 5 5.2e100

BU 5.08e-04 24.40 4.82 137.21 27 5.58e-04 22.95 3.23 135.82 29 —
BDFC 2.76e-03 23.99 5.09 137.72 22 2.91e-03 2.10 1.52 4.83 10 7.8e100
BSi 1.14e-02 54.21 4.28 508.81 33 1.21e-02 0.74 0.85 1.07 4 1.5e101
BSe 1.04e-01 204.62 4.04 1859.42 58 1.18e-01 0.44 0.48 0.50 7 3.9e100
HU 8.75e-06 2.03 1.72 3.53 8 6.64e-06 256.77 1.78 2439.39 61 2.8e103
HDFC 1.48e-04 1.91 1.34 3.26 14 1.51e-04 50.34 4.45 472.74 38 1.9e102
HSi 1.67e-03 1.54 1.29 3.19 8 1.66e-03 2.22 1.66 3.96 11 2.5e101
HSe 7.45e-02 2.98 2.02 8.43 10 7.48e-02 0.54 0.54 0.57 8 4.2e100
D1 4.52e-02 79.70 3.89 468.64 41 7.27e-02 0.56 0.54 0.57 10 4.1e100
D2 1.42e-02 125.43 3.99 1052.07 59 1.17e-02 0.91 0.82 0.99 12 1.0e101
D3 1.93e-04 15.29 3.65 52.77 23 1.90e-04 20.17 4.13 161.01 23 —
D4 1.67e-03 1.36 1.30 3.41 5 1.67e-03 2.96 1.68 15.78 8 3.2e101
D5 7.03e-05 162.84 4.72 1293.03 55 8.05e-05 12.33 3.94 58.29 19 —
PU 1.29e-09 1.33 1.26 1.31 9 — — — — — 4.4e107
PDFC 8.79e-07 1.13 1.24 1.35 4 8.72e-07 2.46 2.15 4.84 9 8.9e104
PSi 1.08e-04 1.42 1.24 1.44 14 1.08e-04 1.17 1.04 1.10 11 6.8e102
PF 1.46e-04 285.69 3.04 2807.57 56 1.48e-04 1.21 1.06 1.11 14 4.6e102
PH 6.88e-10 117.31 3.21 709.76 48 1.06e-09 30.62 4.68 166.84 27 —

For different relationships, given in the T column, 100 independent Monte Carlo estimates of a corresponding to b ¼ 0.1 were
made using both methods I1 and I2. Results for I1 appear on the left and those for I2 on the right. The description of the quantities
given in the columns headed by �a, SD, SD Y, SD [, and ;C.I. is given in the text. Values for the best-performing importance-
sampling method are in italics. For four relationships—BU, D3, D5, and PH—neither I1 nor I2 provided an acceptable reduction in
Monte Carlo error. The ISI column gives the factor by which the best importance-sampling algorithm speeds up the estimation of
a relative to the naive Monte Carlo estimator of (6). All calculations were done assuming L¼ 60 loci with minor allele frequencies
of q ¼ 0.2.
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for which I2 is the best importance-sampling method,
the improvement from importance sampling is mar-
ginal, primarily because the false-positive rates are high
enough that estimating them with (6) is quite feasible.

Power of the likelihood-ratio method: For the 19 trio
relationships and four paternity inference scenarios for
which either I1 or I2 works well, we computed a at b ¼
0.1, assuming m¼ 0.005, using L loci with q¼ 0.2, where
L ranged from 20 to 120 in steps of 20. The results
appear in Figure 4, in which a is plotted against L for
each relationship. It is immediately clear that log a

decreases linearly with L, so a decreases exponentially
with L. In practical terms this means that, as more SNP
loci are available, it should be possible to perform
accurate parentage inference in ever larger popula-
tions. The slope of the line for each relationship tells
how much extra information is available from each
locus. For example, for CU

U trios, the slope of the line is
�0.125, which means that an additional 10 loci will
decrease the false-positive rate by a factor of 101030.125 ¼
17.8, and an additional 24 loci will decrease the false-
positive rate by a factor of 1000. As can be seen in the
plot, with L ¼ 100, the false-positive rate for CU

U trios is
extremely low—only 4.6 3 10�13. By contrast, the slope
of the line for trios of typeBSe is only�0.0126, so even an
additional 24 loci will decrease the false-positive rate for
such relationships only by a factor of 2. And, even with
100 loci, a¼ 0.037 for a trio in which the putative father
is the true father and the putative mother is a sister of
the putative offspring. This difficulty of distinguishing
siblings from parents is not unique to SNPs and has
been investigated by Thompson and Meagher (1987).

In general, a increases as the degree of relatedness
between the members of a trio increases (Figure 4), as

expected. The pairs D1 andHSe, D2 and BSi, and D4 and
HSi all have false-positive rates that are similar to one
another. For the first two pairs, this happens to be
coincidental, but for D4 andHSi, at all values of m and q,
the false-positive rates are identical. This is because,
with unlinked markers, P(G j D4) ¼ P(G j HSi) for all
genotypic configurationsG, although they are different
relationships.
For a particular b the false-positive rate is minimized

at aminor allele frequency of 0.5. This is a special case of
the well-known result that, on average, a locus is most
informative for relationship estimation when its alleles
are equifrequent (Thompson 1975). Were we to replot
Figure 4 using q¼ 0.5 we would find it to look much the
same as before, but the slopes of all of the lines would be
steeper. In Figure 5, the effect of allele frequency on a is
presented for eight different relationships. It is in-
teresting to note that the beneficial effect of increasing
theminor allele frequency of the SNPs used is greater at
low frequencies than at high frequencies. For example,
little additional power is gained by increasing q from 0.4
to 0.5 for all relationships.
Comparison to exclusion-based methods: We calcu-

lated the false-positive and false-negative rates achieved
by the exclusion method with 100 loci and then cal-
culated howmany loci would be required to achieve the
same a and b using the likelihood-based method. This
procedure was performed assuming that m ¼ 0.005 and
that the minor allele frequency of all loci was 0.20, 0.35,
or 0.50. It was repeated for all 22 trio relationship types.
The exclusion criterion used was that of declaring a

trio to be a parental trio only if ,2 of 100 loci were
observed to be incompatible with Mendelian inheri-
tance in the trio. This method of allowing a small

Figure 4.—a as a function of number of loci. The x-axis plots L, the number of loci having minor allele frequency q ¼ 0.2. The
y-axis gives values of a at b¼ 0.1 for the different relationships. Genotyping error rate m is assumed to be 0.005. a was computed by
importance sampling, using N ¼ 100,000, for values of L between 20 and 120 in steps of 20. Vertical bars at each value of L used
show the 90% confidence interval around the estimated a. For most relationships these vertical lines are imperceptible because
the importance-sampling algorithms work well (they are most apparent along the line for relationship CU

Se). Note that the y-axis is
on a log scale.
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number of incompatible loci, to account for mutations
or genotyping errors, is common practice in forensic
paternity inference (Fung et al. 2002). The calculation
of exclusion probabilities is standard, but is repeated
here for explicitness. Letting X denote the number of
loci, of L, exhibiting Mendelian incompatibilities in a
trio of relationship T, it is apparent that, if the allele
frequencies and genotyping error rates are constant
across all loci, then X � Binomial(L, v), where v is the
probability that a locus is incompatible with Mendelian
inheritance. In the notation of (A2) we have

v ¼
X

0#g
ð‘Þ
m ;g

ð‘Þ
f ;g

ð‘Þ
y #2

IfPðg ð‘Þ
y j g ð‘Þ

m ; g
ð‘Þ
f Þ ¼ 0g

3Pðg ð‘Þ
m ; g

ð‘Þ
f ; g ð‘Þ

y jT ; mÞ;

where Pðg ð‘Þ
m ; g ð‘Þ

f ; g ð‘Þ
y jT ; mÞ is computed assuming that

m ¼ 0.005, and IfPðg ð‘Þ
y j g ð‘Þ

m ; g ð‘Þ
f Þ ¼ 0g is computed as-

suming that m ¼ 0. Hence, it is straightforward to com-
pute bExc ¼ P(X . 1 j Q ) and aExc(T ) ¼ P(X # 1 j T ).
For m ¼ 0.005 and q ¼ 0.20, 0.35, or 0.50, bExc with 100
loci is 0.80, 0.82, or 0.83, respectively.

Table 2 contains the results of these comparisons. In
all cases, the number of loci required of the likelihood
method to achieve exactly the same a and b as the ex-
clusion approach would be a noninteger value. This
value was approximated by interpolating between the

nearest consecutive integer values of the number of loci,
and the results shown in Table 2 are rounded to the
nearest integer. Two important trends are apparent.
First, the likelihood method realizes greater improve-
ments over the exclusion method for trios in which
the individuals are not highly related to one another.
Second, the benefit of conducting likelihood inference
increases as the allele frequency decreases. For distin-
guishing CU

U trios from parental trios, it requires ,70
loci at q¼ 0.2 to achieve the same performance that the
exclusion method achieves with 100 loci.

For 13 of the 22 relationships, the likelihood method
usingL ¼ PðG jQ ; mÞ=PðG jU ; mÞ is clearly preferable to
the exclusion method. For the remaining 9 relation-
ships, however, the exclusion method performs as well
or better than the likelihoodmethod. The results for BSe

and D1 are particularly striking—the likelihoodmethod
may require as many as 144 or 161 loci to achieve the
same power as the exclusion method with 100 loci. This
can occur, because, asmentioned inmethods, when the
true relationship is notU (or CU

U, as we have been calling
it), then there is no guarantee that a likelihood-ratio test
basedonL ¼ PðG jQ ; mÞ=PðG jU ; mÞ is themostpower-
ful test available. This observation is related to the para-
doxical phenomenon encountered in the estimation of
pairwise genealogical relationships in which ‘‘bilateral
relatives such as full-sibsmay bemore likely parents than
the true parent individuals’’ (Thompson and Meagher

1987, p. 585).
Thompson and Meagher (1987) showed that the

discrimination of pairwise parent–offspring and sibling–
sibling relationships can be improved by jointly consid-
ering the two likelihood ratios that arise by using either
the likelihood of the parent pair or that of the sibling
relationship in the numerator. In a similar way, it is pos-
sible to use a combination of different likelihood ratios
to more efficiently discriminate parental trios from
other trios with closely related members. The Neyman–
Pearson lemma indicates that themost powerful statistic
for distinguishing a trio of type T from a trio of type Q
would be LT ¼ PðG jQ ; mÞ=PðG jT ; mÞ. Table 2 shows
that for BSe and D1—the two relationships for which the
likelihood method seems to work poorly relative to
exclusion—using LT allows the likelihood method with
as few as 21 and 34 loci, respectively, to perform as well as
exclusion with 100 loci. In general, usingLT seemsmost
advantageous in situations in which one (or both) of the
putative parents of the trio is a full sibling of the putative
offspring. It thus seems likely that a test statistic that
is a combination of both PðG jQ ; mÞ=PðG jU ; mÞ and
LT for one or a variety of trio relationships, T, could
offer a more powerful likelihood approach when some
of the trios are expected to include highly related in-
dividuals such as full siblings. Of course, as pointed
out by Thompson and Meagher (1987), the utility of
such an approach depends on the correlation between
L and LT.

Figure 5.—The effect of allele frequency on false-positive
rates. L¼ 60 SNPs with minor allele frequency as given on the
x-axis were simulated and a was computed for the eight rela-
tionships listed in the inset. The y-axis is the negative log to
the base 10 of the ratio between a at q ¼ 0.5 (the minimum
value of a) and a with q as given on the x-axis. For example,
for the CU

U relationship, the false-positive rate for 60 loci is
almost 100 times larger when all loci have q ¼ 0.2 than when
they have q ¼ 0.5.
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An example: To illustrate the scale of study that is pos-
sible, we consider the prospects for large-scale parent-
age inference to infer the mothers and fathers of a
cohort born in a large, hypothetical, chinook salmon
population. Using the program spip (Anderson and
Dunham 2005) we simulated a population of roughly
constant size in which an average of 3820 females and
3540 males return to their natal stream each year to
spawn and die. Of the male spawners, an average of 28,
57, and 15% were 3-, 4-, and 5-year-olds, respectively. Of
the females, on average, 79% were 4-year-olds, and the
rest were 5-year-olds. Female mate fidelity was set so that
most females had fewer than four male mates (thus
creating many more full-sibships than would occur if
mating were at random) and the variance in reproduc-
tive success of males and females was set so that the
effective number of spawners was roughly one-quarter
of the census number of spawners (Waples et al. 1993).
This serves to create larger families than expected
under Wright–Fisher-like reproduction, thus increasing
the degree of relatedness between individuals in the
population. The population was simulated forward in
time, starting at year �40. At year 0 we simulated the
nonlethal collection of genetic data from all males and
females returning to spawn (3825 females and 3450
males). Such sampling could occur, for example, if all
the fish had to pass through a weir or fish ladder before
spawning. At years 3, 4, and 5, we simulated genetic
sampling of all spawning adults—21,819 in all. Of those
fish, 7336 were offspring of the parents genotyped in
year 0, and the rest were offspring of fish that spawned in
years �2, �1, 1, or 2. We then imagined that parentage

was to be inferred by comparing each of the 21,819
fish from years 3 to 5 to all possible pairs of the 3825
females and 3450 males that spawned in year 0—a total
of 21,8193 38253 3450� 2.93 1011 trio comparisons.
We assumed 100 SNPs with q¼ 0.2 andm¼ 0.005. Our

goal was to estimate the total number of false-positive
and false-negative errors expected in conducting such a
study. To do this, we first had to calculate the number of
trios of different relationship categories that would be
encountered. This was achieved by enumeration of the
relationships between the putative parents at year 0 and
all the true parents of individuals spawning in years 3–5.
This approach explicitly takes account of the effects of
variation in family size on the distribution of such rela-
tionships. Any individuals sharing ancestors more than
two generations apart were considered to be unrelated—
a reasonable assumption given that the effect of such
distant relationships on the distribution ofL is minimal.
Because of the semelparous nature of salmon, and the
age structure of their populations, the only types of trios
that will be encountered are of the C category. Enumer-
ating the relationships between the true and the puta-
tive parents we found the vast majority, 99.8%, of trios to
be of type CU

U , with the remainder of the trio categories
involving pairwise relationships of Se, Si, half-sib (HS),
first cousin (FC), and half-cousin (HC). The latter three
relationships have not been previously considered in
this article, but are dealt with in a similar manner using
their coefficients: for HS, k ¼ ð12; 1

2; 0Þ; for FC, k ¼
ð34; 1

4; 0Þ; and for HC, k ¼ ð78; 1
8; 0Þ. A small proportion

of trios included putative parents related in aunt–niece
or other relationships. These relationships were not

TABLE 2

Number of loci required for the likelihood-ratio method to achieve the same a and b as 100 loci using an exclusion-based method

L ¼ PðG jQ ;mÞ
PðG jU ;mÞ LT ¼ PðG jQ ;mÞ

PðG jT ;mÞ L ¼ PðG jQ ;mÞ
PðG jU ;mÞ LT ¼ PðG jQ ;mÞ

PðG jT ;mÞ

T 0.2 0.35 0.5 0.2 0.35 0.5 T 0.2 0.35 0.5 0.2 0.35 0.5

CU
U 69 77 80 69 77 80 BSi 107 113 114 55 60 61

CU
DFC 73 80 83 71 80 82 BSe 144 142 141 24 22 21

CDFC
DFC 77 85 87 76 83 86 HU 77 84 86 72 81 84

CU
Si 76 84 86 72 81 84 HDFC 82 89 91 78 86 88

CDFC
Si 82 89 91 78 86 88 HSi 89 95 96 83 89 91

CSi
Si 89 95 97 83 89 91 HSe 111 113 114 78 85 88

CU
Se 88 92 94 63 76 80 D1 151 158 161 34 41 43

CDFC
Se 96 101 102 71 81 84 D2 100 100 100 57 62 64

CSi
Se 110 113 113 78 85 87 D3 89a 96a 98a 69 77 79

BU 85a 92a 95a 58 68 71 D4 89 95 97 83 90 91
BDFC 95 102 105 60 67 69 D5 102a 103a 108a 54 62 65

The T column denotes the true relationship of the trio. For each relationship, there are six columns. The first three columns
give the number of loci required to have a and b comparable to the exclusion method when using the test statistic
L ¼ PðG jQ ; mÞ=PðG jU ; mÞ and when q ¼ 0.2, 0.35, and 0.5 as indicated by the column headings. The fourth through sixth
columns to the right of each relationship show the number of loci required for a test of relationship T vs. relationship Q, based
on LT ¼ PðG jQ ; mÞ=PðG jT ; mÞ (the most powerful test statistic that could be used if all the trios were known a priori to be either
of type Q or of type T ), to have the same a and b as the exclusion-based method.

a Values that must be treated cautiously because the accuracy of the importance-sampling methods is questionable for these
relationships.
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only rare, but they also did not contribute to the overall
false-positive rate, so we do not include them in the
results. We used (5) to chooseLc¼ 22.79 to yield a false-
negative rate of b ¼ 0.051.

Overall, the prospects for parentage assignment in
such a large population are promising (Table 3). Of the
7336 sampled offspring of the males and females
genotyped at year 0, the expected number assigned to
their parents is (1� b)3 7336¼ 6962. Of the 2.93 1011

trios that were not of type Q , 226 are expected to have
L . Lc ¼ 22.79. All but approximately one of these
expected incorrect assignments will involve one correct
parent. Hence, 94.9% of 225 expected, misassigned
offspring are expected to also belong to correct Q trios
having L. Lc ¼ 22.79. To be conservative, all offspring
associated with .1 trio having L . Lc could be dis-
carded as having unidentified parents. This would leave
6748 offspring expected to be correctly assigned to their
parents and �13 offspring expected to be incorrectly
assigned; i.e., ,2 of 1000 assignments of offspring to
parents are expected to be incorrect.

Table 3 also provides the numbers of misassigned
offspring expected in the study if an exclusion-based
criterion is used. In this case, excluding trios if they carry
more than two loci with Mendelian incompatibilities
leads to a false-negative rate of bEXC ¼ 0.051—identical
to the false-negative rate used above in estimating error
rates using the likelihood-based method. Using this
exclusion-based criterion, 2465 of the CU

U trios are ex-
pected to be incorrectly classified as parental trios. The
other expected misassignments include 38 trios that do
not include either correct parent and 742 trios in which
there is at least one correct parent. If one were to apply
the same conservative rule of excluding offspring that
are nonexcluded from more than one parent pair, then
parentage would be assigned to �2465 1 38 1 6962 �
742 3 0.949 ¼ 8761 offspring. Of these, 742 3 0.051 1

2465 1 38 ¼ 2541 are expected to be incorrect. Thus,
�2541/8761 � 29% of assigned offspring would be
assigned to an incorrect parent pair using an exclusion-
based method. This number overestimates the true ex-
pected number, somewhat, because it does not account
for the fact that some fraction of the 2541 incorrectly
assigned offspring is expected to be assigned to more
than one incorrect parent pair. Nonetheless, it clearly
makes the point that the likelihood-based approach is
far more powerful than the exclusion-based approach
in a population where most parents are unrelated.

DISCUSSION

We predict that SNPs will quickly become the marker
of choice for parentage inference in populations of
heavily managed species, as well as for large populations,
because SNPs are well suited to the high-throughput
genotyping required of large studies and because SNP
genotyping error rates are low. The advantages of SNPs
are particularly apparent in situations where multiple
laboratories collaborate on the genotyping effort, and
standardization of microsatellite allele calls across all
the labs would be costly or infeasible. In this article we
provide several advances that allow the application of
likelihood-based methods to large-scale parentage in-
ference using SNPs. We describe two importance-
sampling algorithms that make the calculation of small
false-positive rates, in the presence of genotyping error,
computationally feasible. We show that the importance-
samplingmethods work well for a range of trio types, but
do not work well for some cases involving putative
parents that are full- or half-siblings of the youth. De-
veloping an efficient importance-sampling algorithm
for those cases (BU, D3, D5, and PH) remains an open
problem. For trios involving unrelated individuals, the
importance-sampling method is millions of times faster
than a naive Monte Carlo estimator, even with as few
as 60 loci. Although we have focused on SNPs, both
importance-sampling algorithms could be modified to
handle cases involving other, multiallelic loci.

TABLE 3

Numbers of trios of different types, per-trio false-positive
rates, and expected total numbers of false positives

for the hypothetical chinook salmon study
described in the text

T N a Err aEXC ErrEXC

CU
U 2.9e111 2.6e-12 0.75 8.5e-09 2465

CU
HC 2.7e108 8.9e-12 ,0.01 1.5e-08 4.05

CU
FC 1.0e108 2.7e-11 ,0.01 2.7e-08 2.70

CU
HS 7.8e107 2.4e-10 0.02 8.4e-08 6.55

CU
Si 3.1e107 1.3e-08 0.40 7.7e-07 23.9

CU
Se 1.4e107 1.2e-05 168 5.0e-05 700

CHC
HC 2.1e105 3.0e-11 ,0.01 2.8e-08 ,0.01

CHC
FC 7.9e104 8.4e-11 ,0.01 5.0e-08 ,0.01

CHC
HS 6.5e104 7.9e-10 ,0.01 1.6e-07 0.01

CFC
FC 3.3e104 2.8e-10 ,0.01 9.2e-08 ,0.01

CFC
HS 2.5e104 2.6e-09 ,0.01 3.1e-07 ,0.01

CHC
Si 2.4e104 4.1e-08 ,0.01 1.6e-06 0.04

CHS
HS 1.9e104 2.3e-08 ,0.01 1.1e-06 0.02

CHC
Se 1.5e104 4.1e-05 0.61 1.1e-04 1.65

CFC
Si 1.0e104 1.3e-07 ,0.01 3.2e-06 0.03

CHS
Si 7.3e103 1.3e-06 ,0.01 1.2e-05 0.09

CFC
Se 5.8e103 1.2e-04 0.70 2.5e-04 1.45

CHS
Se 4.1e103 9.9e-04 4.06 1.2e-03 4.92

CSi
Si 3.0e103 6.8e-05 0.20 1.7e-04 0.51

CSi
Se 1.7e103 3.0e-02 51.0 2.0e-02 34.0

Totals 2.9e111 — 226 — 3245

The T column gives the relationship of the trio. The N col-
umn gives the number of such trios among the 2.93 1011 trios
compared in the study. The a column gives the false-positive
rates, and the ‘‘Err’’ column gives the total expected number
of parental misassignments expected from each trio category
when using a likelihood-based assignment method. The value
in the Err column is the product of the values in the N and a
columns. The aEXC and ErrEXC columns show the results
when using an exclusion-based method.

2578 E. C. Anderson and J. C. Garza



Wepresent simulations demonstrating that likelihood-
based inference of parentage may be considerably more
efficient than a method based on the exclusion of trios
with an excess of Mendelian incompatibilities. In the
case of totally unrelated trios, the likelihood method
can achieve the same power and accuracy as the ex-
clusion method with 30% fewer loci. Another way of
stating this result is that, for distinguishing unrelated
trios from parental trios, the method of exclusion
could require up to 143 loci to perform as well as the
likelihood-based method with 100 loci. Since most of
the trios compared in a large study will likely be un-
related (as shown in the salmon example), this greater
efficiency of the likelihood method is particularly ger-
mane. However, for trios involving one correct parent
and a sibling of the other parent, as well as for trios in
which one putative parent is a full-sibling of the youth
itself, the method of exclusion performs better than the
likelihood method. This argues for the application,
when such situations are likely, of a hybrid approach in
which trios are initially compared on the basis of the
standard likelihood ratio for parentage [PðG jQ ; mÞ=
PðG jU ; mÞ], and all those having L greater than the
critical value, Lc, should be investigated further, per-
haps by applying an exclusion-based test or perhaps by
using a statistic like LT described in this article. The
latter would be a sort of sequential version of the
method recommended in Thompson and Meagher

(1987) for dealing with the case where full-siblings of
the youth are putative parents. Such a sequential pro-
cedure would have to be designed carefully so that the
overall false-positive and false-negative rates could still
be reliably calculated.

We have given a brief summary of the false-positive
rates that can be expected using different numbers of
SNP loci. We show that false-positive rates decrease
exponentially with the number of loci. The conse-
quence of this is that one typically requires only a
modest increase in the number of loci to accommodate
even a rather large increase in the number of potential
parents and offspring in a study. This feature, combined
with the fact that SNPs are abundant in the genome of
most organisms (Brumfield et al. 2003), is encourag-
ing. Our calculations show that false-positive rates for
unrelated trios can be extremely small with a moderate
and feasible number of SNP loci. Unfortunately, for
closely related trios, particularly those in which a full-
sibling of the offspring is a putative parent, the false-
positive rates, even with a large number of loci, can be
high, especially if one of the putative parents is, indeed,
the correct one. This problem is not unique to parent-
age inference with SNPs, but, in fact, exists for all
genetic marker systems (see, for example, Thompson
and Meagher 1987). Fortunately, in some contexts,
occurrence of such closely related trios will be quite
rare. This is particularly true in studies of large pop-
ulations, as our salmon population example demon-

strates. However, nonparental trios containing highly
related members may be a substantial problem in some
situations, such as small populations, species with ex-
tremely high variance in reproductive success, or pop-
ulations that have recently experienced a reduction in
effective size.
The method of parentage inference described here

requires that independent estimates of the genotyping
error rate be available for all loci or that some reason-
able genotyping error rates can be assumed. In the
absence of any prior knowledge about true parental
relationships, it would not be possible to jointly estimate
the genotyping error rate and the relationships. De-
creasing the genotyping error rate decreases the false-
positive rate at a given false-negative rate. The power
analyses described here were done assuming a per-gene-
copy genotyping error rate of 0.5%. This value is at the
very upper end of reported genotyping error rates for
SNPs, and it still provides ample power for parentage
inference. Also, SNPs with a minor allele frequency of
0.5 provide the most power for parentage inference,
although little additional power is gained above q¼ 0.4.
In many of the simulations, we used q¼ 0.2, so it should
be kept in mind that comparable power could be
achieved with fewer loci if they are selected such that
q . 0.2.
Throughout our simulations we have assumed that

the allele frequencies among the parents are known
without error. For large studies, involving thousands of
parents, this is a reasonable assumption because, unless
they are all descended from a small number of individ-
uals, the large sample of parents should provide an
excellent estimate of the allele frequencies. It should
also be pointed out that, since parentage inference is
not concerned with the inference of evolutionary his-
tory, the ascertainment of SNPs through discovery in
particular populations or genomic regions (Wakeley

et al. 2001) does not bias the results of parentage in-
ference in any way. In fact, SNP ascertainment leads to
an advantage in parentage inference because ascertain-
ment typically leads to an overrepresentation of SNPs at
intermediate allele frequencies—exactly the type of loci
that are most powerful for parentage.
In addition to being conditional on genotyping error

rates and allele frequencies, our estimates of false-
positive rates have also been made conditional on the
true, but unobserved, relationship of the members of
the trio. To obtain an estimate of the false-positive rate
for a trio randomly drawn from apopulation, it would be
necessary to know the distribution of all trio types in that
population. Since this distribution depends on a num-
ber of demographic and life-history features, including
age at first and last reproduction, age structure, and
distribution of family sizes, it will typically be unknown
and inference must be made by assuming the distribu-
tion of trio types. For this reason, large-scale parentage
inferencemay initially be useful in heavily monitored or
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managed species. Our example of a large salmon pop-
ulation reflects this—given good information about age
structure and family size variance, a reasonable approx-
imation of the distribution of trio relationships in a
population can be obtained. We reiterate here that
salmon populations are special in that all trio relation-
ships will be of a C f

m type. To efficiently compute false-
positive rates of randomly drawn trios from more
generally structured populations may require devising
specialized importance-sampling algorithms for the BU,
D3, D5, and PH relationships. This remains an open
problem.

An argument that has been made against the use of
SNPs in the estimation of relationships is that, since so
many SNPs are required, there is high probability that
some of them will be physically linked, and that genetic
linkage may not even be recognized because the mark-
ers may not be in linkage disequilibrium (see, for ex-
ample, Glaubitz et al. 2003). There are two important
points to be made with regard to the effect of linkage
and LD on parentage inference. First, as has been
pointed out previously (Chakraborty and Hedrick

1983; Jones and Ardren 2003), LD will always decrease
the per-locus power for parentage inference, because
each locus no longer provides independent informa-
tion. Consequently, whenever possible, SNPs used for
parentage inference should be chosen to have no sig-
nificant LD. This should not be difficult, even for
physically linked SNPs, since LD has been observed to
drop to low values over physical distances of ,200 kb
(Pritchard and Przeworski 2001). Second, in the
absence of LD, the effect of physical linkage on par-
entage inference depends on the true relationship of
the individuals in the trio. Most importantly, for all trios
of the C f

m type, physical linkage without LD does not affect
the distribution of L. Therefore, for example, physical
linkage (with no LD) is irrelevant in the analysis of
mother–father–youth trios in a salmon population,
where only trios of the C f

m type are possible. This is true
because, with no LD, the probability P(G j C f

m) is the
same whether or not alleles occur together on the same
haplotype, because there is no information available in
C f
m-type trios to infer the haplotypic phase of alleles that

are heterozygous in all trio members.
Physical linkage does, however, affect the distribution

of L for trios in which two members may have each
inherited genetic material from a single founder of the
pedigree that connects the trio members (i.e., the B, H,
andD trio types). Although themean of the distribution
of L remains unchanged, physical linkage increases the
variance of the distribution for such trios. Accordingly,
false-positive rates calculated for such trios under the
assumption of no linkage (as examined here) will
underestimate the true false-positive rate in the pres-
ence of linkage. One solution to this problem would be
to simulate the genetic data using a method that ex-
plicitly takes account of the linkage. However, develop-

ing an importance-sampling scheme tomake this type of
simulation efficient with many linked markers might be
difficult. Additionally, for trio types in which physical
linkage affects the distribution of L, a more powerful
test statistic than L could be derived that took account
of the linkage. Such a method could build upon the
framework of Sieberts et al. (2002), but requires that
estimates of the recombination fraction between
markers are available.

We have focused on the estimation of false-positive
rates and their use in calculating expected studywide
error rates. Such calculations are useful for guiding
study design and determining the number of loci re-
quired to achieve a certain degree of reliability. They do
not, however, address the actual practice of carrying out
the trio comparisons. As pointed out by Meagher and
Thompson (1986), comparing all offspring to all possible
parent pairs could be computationally prohibitive—
performing 1011 trio comparisons is extremely time con-
suming. Fortunately, this computational burden can be
reduced by a number of strategies. We will provide de-
tails in a separate article, but we note here that the num-
ber of trios for which the likelihood must be evaluated
can be significantly reduced by first excluding individ-
ual males and females from consideration by using a
nonstringent (i.e., having a low false-negative rate) ex-
clusion criterion based on large numbers of Mendelian
incompatibilities. This is computationally advantageous
with SNPs because assessing Mendelian incompatibility
for many loci at once can be done rapidly by employing
bitwise logic operations. Furthermore, for searches of
large databases of parents, a suffix tree (McCreight
1976) representation of the genotypes of males and
females would allow rapid identification of nonex-
cluded parents, and the problem of identifying parents
or parent pairs sharing zero, or a small number, of
Mendelian incompatibilities with any individual can
be translated into a special case of the approximate
keyword search problem, for which fast algorithms are
known (Myers 1994).

We also note that we have not addressed several other
improvements to the practice of large-scale parentage
inference that could be made. For example, in large
studies, it is likely that some males or females will have
more than one offspring assigned to them. After a pre-
liminary inquiry based on trios, larger family groups
could be analyzed as a unit to provide sharper parentage
inferences, reducing the false-positive rate. However, it
should be noted thatmany such comparisons (i.e., those
involvingmultiple potential children of the same parent
or parent pair) will be affected by physical linkage, even
in the absence of LD.

We distribute two computer programs written in C
implementing the calculations presented in this article.
snpSumPed calculates probabilities of the 27 configura-
tions of genotypes that m, f, and y might carry, given the
minor allele frequency, the genotyping error rate, and
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the true relationship between members of the trio. The
user specifies the trio relationship as a combination of
pedigree relationships and pairwise relationships. Trio
Tests implements the importance-sampling schemes I1
and I2, given the joint probabilities of trio configura-
tions computed by snpSumPed. Both programs are avail-
able for download from santacruz.nmfs.noaa.gov/staff/
eric_anderson/.

We thank Elizabeth Thompson, Robin Waples, and David Hankin
for discussion of statistical issues; Paul Moran and Tasha Belfiore for
discussion of genotyping issues; Kevin Dunham for assistance in
running large numbers of simulations; and three anonymous referees
for comments that considerably improved the manuscript.
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APPENDIX

For L loci that are not in LD, L is found by taking a product over loci:

L ¼ log
YL
‘¼1

Pðg ð‘Þ
m ; g

ð‘Þ
f ; gð‘Þy jQ Þ

Pðg ð‘Þ
m ; g

ð‘Þ
f ; g ð‘Þy jU Þ

 !
: ðA1Þ

Pðg ð‘Þm ; g ð‘Þf ; g ð‘Þ
y jQ Þ is the joint probability that, at the ‘th locus, m carries genotype g ð‘Þ

m , f carries genotype g ð‘Þ
f ,

and their offspring y carries genotype g ð‘Þ
y . This is equal to Pðg ð‘Þ

m ÞPðg ð‘Þ
f ÞPoðg ð‘Þ

y j g ð‘Þ
m ; gf

ð‘ÞÞ, where Pðg :ð‘ÞÞ is the frequency
of genotype g :ð‘Þ in the population and Poðg ð‘Þ

y j g ð‘Þ
m ; g ð‘Þ

f Þ is the probability that a child of parents with genotypes g ð‘Þ
m

and g ð‘Þ
f at locus ‘ has the genotype g ð‘Þ

y . Poðg ð‘Þ
y j g ð‘Þ

m ; g ð‘Þ
f Þ takes values of 0, 1

4, or
1
2 and is easily computed as a

consequence ofMendel’s laws (see, for example,Marshall et al. 1998 orNeff et al. 2001). Pðg ð‘Þ
m ; g ð‘Þ

f ; g ð‘Þ
y jU Þ is merely

Pðg ð‘Þm ÞPðg ð‘Þ
f ÞPðg ð‘Þ

y Þ.
The probability Pðg ð‘Þ

m ; g ð‘Þ
f ; g ð‘Þ

y jT Þ for a trio relationship T, like those in Figure 1, is computed as a sum over
genotypes of unobserved individuals. Writing U‘ for the genotypes at locus ‘ of the individuals in the pedigree that are
not m, f, or y, we have Pðg ð‘Þ

m ; g ð‘Þ
f ; g ð‘Þ

y jT Þ ¼
P

U‘ Pðg ð‘Þ
m ; g ð‘Þ

f ; g ð‘Þ
y ; U‘Þ. The joint probability Pðg ð‘Þ

m ; g ð‘Þf ; g ð‘Þy ; U‘Þ can
be expressed as a product over the genotypes of each member of the pedigree (Thompson 2000): founders of the
pedigree contribute a factor that is just the frequency of their genotype in the population; an individual with genotype
a in the pedigree that is the offspring of individuals with genotypes b and c contributes the factor Po(a j b, c) to the
product; and an individual with genotype d that shares a pairwise relationship with coefficients k (see text) with an
individual e contributes the factor P(d j e, k)—the probability that an individual has genotype d given that he is related
via identity coefficients k to an individual with genotype e (Li and Sacks 1954). Since pairwise relationships
parameterized by k define valid conditional probabilities only for noninbred pairs of individuals, they may be correctly
included in the joint probability of the genotypes of individuals on pedigrees if individuals in specified pairwise
relationships are: not inbred, not the offspring of any others in the pedigree, and not in specified pairwise
relationships to any others in the pedigree. As an example, referring to Figure 1a, lettingM and Fdenote the genotypes
at locus ‘ of the true mother and father of y, respectively,

Pðg ð‘Þ
m ; g

ð‘Þ
f ; g ð‘Þ

y jCDFC
Si Þ ¼

X
M ;F

Pðg ð‘Þ
m ÞPðg ð‘Þ

f ÞPðg ð‘Þ
y jM ; F ÞPðM j g ð‘Þ

m ; kDFCÞPðF j g ð‘Þ
f ; kSiÞ:

If loci are physically unlinked and not in LD, then PðGm; Gf ; Gy jT Þ ¼
QL

‘¼1 Pðg ð‘Þ
m ; g ð‘Þ

f ; g ð‘Þ
y jT Þ for all trio rela-

tionships, T. In the special case of Cm
f -type relationships, the above relation holds if the loci are not in LD, even if they

are physically linked.
Regardless of the true relationship, accounting for genotyping error of ratem‘ at locus ‘ is done by summing the trio

probabilities over all possible values of the true underlying genotypes, g.*(‘), of m, f, and y, each weighted by P(g.(‘) j
g.*(‘))—the probability of the observed genotypes, g.(‘), given the underlying, true genotypes. That is,

Pðg ð‘Þ
m ; g

ð‘Þ
f ; g ð‘Þ

y jT ; m‘Þ ¼
X

0#gm*ð‘Þ;gf*ð‘Þ;gy*ð‘Þ#2

Pðg ð‘Þm j gm*ð‘ÞÞPðg ð‘Þf j gf*ð‘ÞÞPðg ð‘Þ
y j gy*ð‘ÞÞPðgm*ð‘Þ; gf*ð‘Þ; gy*ð‘Þ jT Þ ðA2Þ

for all T. The sum involves only 27 terms, so it is easily computed. The probabilities Pðg :ð‘Þ j g :*ð‘Þ) may be specified to
accommodate any model of genotyping error in which genotyping errors are independent between individuals and
loci. Values of Pðg :ð‘Þ j g :*ð‘Þ) from the error model assumed in this article can be derived by standard probability
arguments. For example, Pðg :ð‘Þ ¼ 1 j g :*ð‘Þ ¼ 0Þ ¼ 2m‘ð1� m‘Þ and Pðg :ð‘Þ ¼ 1 j g :*ð‘Þ ¼ 1Þ ¼ m2

‘ 1 ð1� m‘Þ
2.
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