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ABSTRACT

Presenilin is the enzymatic component of y-secretase, a multisubunit intramembrane protease that pro-
cesses several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human
Presenilins lead to altered APP cleavage and early-onset Alzheimer’s disease. Presenilins also play an es-
sential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling
pathway that functions during the development of multicellular organisms, including vertebrates, Dro-
sophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in
subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that
regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of
Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers,
including nicastrin and several genes with previously undescribed involvement in Notch biology. The
predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular
trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for y-tubulin in

the pathway.

HE Presenilin genes encode eight-pass transmem-
brane proteins found in most metazoans, includ-

ing mammals, Drosophila, and Caenorhabditis elegans
(reviewed in SELKOE 2000; WoLFE and Koran 2004). In
humans, mutations in the two Presenilin genes, PS1
and PS2, account for the majority of familial early-onset

'These authors contributed equally to this work.

*Present address: Department of Discovery, EnVivo Pharmaceuticals,
Watertown, MA 02472.

*Corresponding author: Biology Department, Boston College, 140
Commonwealth Ave., Chestnut Hill, MA 02467.
E-mail: annette.parks.1@bc.edu

*Present address: Oncology Targets and Biomarkers, Novartis Institutes
for BioMedical Research, Cambridge, MA 02139.

®Present address: Department of Molecular Pharmacology, Stanford
University, Stanford, CA 94305.

©Present address: Department of Biostatistics, Johns Hopkins Bloomberg
School of Public Health, Baltimore, MD 21205.

"Present addyess: ITHAKA Academic Cultural Program in Greece, San
Francisco, CA 94102.

8 Present address: Merck Research Laboratories, Boston, MA 02115.

9Present address: Donald Danforth Plant Science Center, St. Louis,
MO 63132.

""Present address: Life Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720.

" Present address: Biocompare, South San Francisco, CA 94080.

“Present address: Developmental and Molecular Pathways, Novartis
Institutes for BioMedical Research, Cambridge, MA 02139.

3Present address: Renovis, South San Francisco, CA 94080.

Genetics 172: 2309-2324 (April 2006)

Alzheimer’s disease (reviewed in TaNzI and BERTRAM
2001). Presenilin is the catalytic component of the +y-
secretase complex that is responsible for the cleavage of
the transmembrane protein, amyloid precursor protein
(APP) (reviewed in DE STROOPER 2003). APP cleavage,
first by B-secretase and subsequently by +y-secretase,
results primarily in the release of the 40-amino-acid am-
yloid B-peptide (AB40). Alzheimer’s disease-associated
mutations in PS1 or PS2 subtly alter this cleavage pat-
tern, causing increased production of a longer, more
cytotoxic form of the amyloid B-peptide (AB42). ApB-
peptides are the major component of amyloid plaques
in the brains of Alzheimer’s disease patients. Higher
AB42 levels are thought to accelerate the aggregation
of AB into toxic oligomers and the deposition of extra-
cellular plaque material (reviewed in WoLrFE and Haass
2001; SELKOE 2004).

The y-secretase complex is composed of at least three
proteins in addition to Presenilin: nicastrin, aph-1, and
pen-2 (Yu et al. 2000; FrRANCIS et al. 2002; GOUTTE el al.
2002). These four transmembrane proteins constitute
the y-secretase core complex, yet little is known about
its regulation and activity. y-Secretase recognizes and
cleaves a growing list of transmembrane proteins with
very short extracellular domains generated by prior
processing (STRUHL and ADACHI 2000; reviewed in
DE StrOOPER 2003; WorreE and Koran 2004). A
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functional role for y-secretase cleavage has not been
demonstrated for most substrates. In such cases, -
secretase may serve simply to eliminate transmembrane
stubs of proteins after extracellular domain shedding
(STRUHL and ApacHr1 2000). However, in the case of the
Notch family of receptors, y-secretase plays an essential
role in signaling. Genetic studies in C. elegans initially
established that Presenilin is required for Notch path-
way signaling (LEVITAN and GREENWALD 1995; L1 and
GREENWALD 1997), and this has now been confirmed in
Drosophila, mouse, and human systems (reviewed in
WoLrE and KoraN 2004). Following ligand binding and
subsequent cleavage of Notch by ADAM/TACE pro-
teins, y-secretase cleavage of Notch results in the release
of the Notch intracellular domain (NICD). NICD trans-
locates to the nucleus where it activates transcription
of target genes in conjunction with the Suppressor of
Hairless [Su(H) ] and mastermind proteins (reviewed in
BaronN 2003; KapeEscH 2004; WENG and ASTER 2004).
Notch signaling is involved in a wide variety of cell signal-
ing events in development and in the regeneration and
homeostasis of adult tissues. Defects in Notch signaling
have been linked to a number of human developmental
syndromes and cancers, including Alagille syndrome,
CADASIL (cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy),
and Tcell acute lymphoblastic leukemia/lymphoma (re-
viewed in GRIDLEY 2003; WENG and ASTER 2004).

In Drosophila, Notch signaling is required during
most stages of development and functions in many cell
fate specification events in the wing, bristle, and eye
(reviewed in MUSKAVITCH 1994; ARTAVANIS-TSAKONAS
et al. 1999; PorTIN 2002). Presenilin (Psn) and nicastrin
(nct) loss-of-function mutations in Drosophila have been
shown to cause similar developmental defects (Guo et al.
1999; STRUHL and GREENWALD 1999; YE et al. 1999; Hu
et al. 2002; LOPEZ-SCHIER and ST. JOHNSTON 2002).

Genetic screens in Drosophila and C. elegans have
identified many proteins in the Notch pathway. These
include Delta/Serrate/Lag-2 type ligands, cytoplasmic/
nuclear proteins such as Su(H) and mastermind, and
Notch-regulated target genes such as the Enhancer of split
complex genes (KIMBLE and SIMPSON 1997; GREENWALD
1998; reviewed in BArRON 2003). Recently, proteins
involved in modification, trafficking, and degradation
of Notch pathway components have begun to be elu-
cidated, including proteases (furin, kuzbanian, TACE),
enzymes involved in glycosylation and/or in chaperone
function (fringe, O-fut), members of the ubiquitin ma-
chinery (neuralized, mindbomb, deltex, fat facets), and
clathrin-coated pit components (dynamin, clathrin, epsin,
a-adaptin) (reviewed in HALTIWANGER and STANLEY
2002; BARON 2003; ScHWEISGUTH 2004; LE BORGNE ¢t al.
2005; see also CADAVID et al. 2000; OKAJIMA et al. 2005).
Notch signaling appears to be particularly sensitive to
alterations in subcellular trafficking. Genes involved in
vesicular trafficking have been implicated in the activa-

tion of Delta, in Notch dissociation and transendocytosis,
and in Notch degradation (reviewed in LE BORGNE et al.
2005). The molecular mechanisms that underlie the
requirements for these genes in Notch signaling remain
largely unknown.

We have performed two screens in Drosophila to
identify genes that interact with Presenilin and the
Notch signaling pathway. By screening for modifiers of
Psn hypomorphic alleles, we hoped to isolate genes that
might directly regulate Presenilin activity. The first
screen employed a small deletion within Psn (Psn'”)
to identify genes that result in dominant Notch path-
way mutant phenotypes in the presence of the Psn'”’
heterozygote. In this screen we recovered a Psn hypo-
morphic allele, Psn’, as well as several other second-site
modifiers. The second screen utilized the viable Psn hy-
pomorphic genotype, Psn’/ Psn'”, to screen for second-
site enhancers and suppressors of the Psn’/ Psn'” small,
rough eye. We recovered a total of 23 complementation
groups and successfully identified 19 genes. These genes
include nct, other known Notch interactors, and several
genes with previously undescribed involvement in Notch
or Presenilin biology, including genes with roles in the
extracellular matrix (ECM), Notch transcriptional ac-
tivity, and vesicular trafficking.

MATERIALS AND METHODS

Drosophila handling and isolation of the Psn'” allele: All fly
stocks and crosses were handled using standard procedures
at 25°, unless otherwise noted. Psn'” was generated from a
lethal screen performed against deficiency Df(3L)rdgC-co2
[77A1;77D1; Bloomington Stock Center (BSC) stock 2052], which
uncovers the region containing Psn (77C3) (data not shown).
The Psn'” allele contains a 268-bp deletion that removes
amino acids 136-224. There are no associated phenotypes in
Psn'” heterozygotes; homozygotes exhibit pupal lethality,
which can be rescued by a wild-type Psn transgene (data not
shown).

Screen A: Isogenic w''’® males were mutagenized by over-
night feeding of 25 mm EMS in a 10% sucrose solution after a
2-hr starvation period. Mutagenized males were mated to w''*%;
Psn'” FRT(w" )(2G)/TM6B Hu Tbvirgin females (Figure 1A). F,
Psn'?/+ progeny were scored for dominant Notch pathway
phenotypes. This screen generated a Psn hypomorph allele,
Psn’. The Psn’ chromosome carries an extraneous lethal mu-
tation uncovered by deficiency Df(3R)Antpl7 (84A6-D14;
BSC stock 1842).

Screen B: I; screen (Figure 1B): w'''S; Psn'*/TM6Bmales were
mutagenized with EMS as above or by exposure to X-ray
irradiation (4000 rad) using the Faxitron X-ray cabinet system.
Mutagenized males were mated with winscy (y* s¢® s¢*' w'); sp*;
Psn® ¢'' /TM6B virgin females. Reverse crosses were also con-
ducted [mutagenized w'’®; Psn’/TM6B males were crossed to
winscy; sp’; Psn'” FRT (w*) ¢''/TM6B virgin females]. Psn’/
Psn'” F, progeny were scored for modification of the Psn’/
Psn'” small, rough eye and for other Psn-dependent Notch
pathway phenotypes.

I screen (Figure 1B): Balanced Fy male siblings (winscy; +/
sp?; Psn'” or Psn® /TM6B) carrying mutagenized chromosomes
were collected and mated as above to the reciprocal Psn allele.
A small number of F; female siblings were also collected and
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mated to recover modifiers on the X chromosome. Fy progeny
were scored for Psn modifier phenotypes. These crosses
enjoyed a much higher rate of fertility than did the F; crosses
and resulted in the retention of increased numbers of
modifiers, including lethal interactors in the Psn’/Psn'”
background.

Complementation analysis and mapping procedures: Mu-
tations on chromosomes 2 and 3 that were homozygous lethal
or homozygous viable with a visible phenotype were analyzed
in standard complementation matrices. Complementation for
modifiers on the third chromosome (which also carries a copy
of either Psn’ or Psn'”) could be assessed only as Psn trans-
heterozygotes, because both Psn’and Psn'* chromosomes are
homozygous lethal.

Two representatives from each complementation group
were mapped via recombination with P-element-containing
chromosomes to identify a candidate region of 8-10 Mb. This
was followed by sequence analysis of single-nucleotide poly-
morphisms (SNPs) to narrow the region to 1-2 Mb (HoskiNs
et al. 2001). High-resolution mapping using SNP analysis on
recombinants generated between two flanking P elements
(each marked with a miniwhite gene) usually narrowed the
candidate region to 25-200 kb (HoskiNs et al. 2001). Re-
combinant chromosomes were scored for lethality with other
complementation group members and for the original mod-
ification phenotype in the Psn’/Psn’” or + /Psn'* background.
The length of the SNP-defined intervals containing each
modifier gene is indicated in Table 2. We sequenced most or
all genes within these regions. For complementation groups,
gene identification was considered valid if mutations were
identified in at least two members and were not present in the
parental strain. For the two genes represented by single alleles,
identification was considered valid if mutations were not
present in the parental strain and were confirmed by noncom-
plementation with known alleles. Additional evidence for
candidate regions came from deficiency mapping and, when-
ever possible, candidate genes were confirmed by lack of com-
plementation with known alleles.

Some X-ray-induced modifiers were identified cytologically
by utilizing in situ hybridization on polytene chromosomes
to molecularly define rearrangements and generate narrow
regions of interest (PARDUE 1986). dp alleles were meiotically
mapped and identified by their notal pit phenotypes and via

ell

lack of complementation with known alleles. H and § were
identified by their dominant phenotypes and by lack of
complementation with known alleles (see Table 2 for details).

Scanning electron microscopy: Adult flies stored in 70%
ethanol were dehydrated through an ethanol series, dried
using hexamethyldisilazane (BRAET ¢t al. 1997), mounted on
stubs, and sputter coated with a 20-nm coat of gold/palladium
in an E5400 Sputter Coater. Prepared tissue was viewed and
photographed on either an Electroscan E3 ESEM or an ISI DS-
130.

Immunohistochemistry: mAb22C10, which recognizes
futsch, a cytoplasmic protein primarily expressed in neuronal
cells, was the kind gift of Seymour Benzer (California Institute
of Technology, Pasadena, CA). For antibody staining of pupal
wings, pupae were removed from their cases at ~30 hr after
puparium formation and fixed in 4% paraformaldehyde for 30
min. Pupal wings were then removed from the cuticle and
fixed for an additional 30 min before washing and staining
with mAb22C10 diluted 1:100 (as in PARKS et al. 1995 without
silver enhancement).

RESULTS

Psn modifier screens identify 19 genes: We con-
ducted two screens to identify enhancers and suppres-
sors of Presenilin-dependent Notch-like phenotypes.
Flies heterozygous for the null allele Psn'” display no
visible phenotypes. In screen A (Figure 1A), we screened
for mutations causing dominant Notch mutant pheno-
types in the +/Psn'” background. These phenotypes
include eye reduction and roughness, wing margin loss,
ectopic wing veins and vein thickening, and gain or loss
of sensory bristles. Twenty-four modifiers of Psn'*’ were
recovered from 18,332 F; progeny screened (Table 1).
We sequenced the Psn genomic region from viable third
chromosome mutants and identified a missense muta-
tion, L499Q), in one allele, which we named Psn’. Psn°/
Psn'” flies have a reduced and roughened eye (Figure
2D) and distal wing vein thickening (Figures 3E and 4C),
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TABLE 1

Summary of screen hits

No. No. No.
Screen screened” primary hits’ final hits*
Screen A 18,332 295 24
Screen B (F,) 67,079 1,266 73
Screen B (F9) 8,821 366 171
Totals 94,232 1,927 268

“Number of critical class (screen A, Psn'”/+; screen B,
Psn’/Psn'?) flies screened.

’Number of initial modifiers recovered during primary
screening.

“Number of viable, fertile modifiers that retested.

consistent with reduced Presenilin function and Notch
signaling in eye and wing development. The Psn’ muta-
tion resides in the eighth transmembrane domain of
Presenilin, which forms part of the C-terminal PAL do-
main thatis critical for y-secretase activity. This domain is
highly conserved in the Presenilins and in homologous
transmembrane proteases (reviewed in BRUNKAN and
GoATE 2005). Missense mutations in the residues di-
rectly flanking 1.425 (equivalent to Drosophila 1.499)
have been observed in human PS1 in familial Alzheimer’s
disease patients. In subsequent experiments, the eye
phenotype associated with Psn” was mapped via meiotic
recombination to the interval 73A-83A that contains
the Psngene. Together, these observations implicate the
Psn’ allele as a hypomorphic allele responsible for the
reduced eye phenotype observed in Psn’/Psn'”. Addi-
tional modifiers from screen A that did not carry Psn
mutations were characterized along with the modifiers
from screen B (see below).

In the F; generation of screen B (Figure 1B), we
screened for enhancement or suppression of the small,
rough eye phenotype presentin Psn’/ Psn'?’ as well as for
the presence of any other Notch-like phenotypes. In
addition, an Fy screen was performed by crossing Fy
generation Psn~/TM6B males heterozygous for muta-
genized chromosomes (Figure 1B) to females carrying
the reciprocal Psn allele. Their progeny were scored for
Notch-like phenotypes as well as lethality. We recovered
244 modifiers from 75,900 total transheterozygous prog-
eny from the F; and Fy portions of screen B (Table 1).

From these modifiers, we identified 21 lethal com-
plementation groups and two complementation groups
displaying phenotypic interactions. In total, 19 modifier
genes were successfully mapped and identified, includ-
ing 17 defined by complementation groups and two
genes represented by single alleles (Table 2). Addition-
ally we recovered secondary mutations in the Psn gene
in cis to the Psn’ mutation. These mutations, like Psn
deficiencies, are lethal in trans to Psn'”, suggesting that
they are severe hypomorphic or null alleles.

Nicastrin, a y-secretase core complex member: We
recovered seven alleles of the y-secretase core complex

Ficure 2.—Enhancers of Psn’/Psn'* have smaller and/or
rougher eyes. Scanning electron micrographs of adult eyes from
control, Psn’/Psn'*, and a selection of modifiers are shown. (A)
Wild type. (B) Psn'®/+. (C) Psn’/+. (D) Psn’/Psn'”. (E) Psn'”
nct***/Psn’. (F) Psn'® AP-47"" /Psn’. (G) y-Tub""*/+; Psn’/
Psn'”. (H) Spt5%/+; Psn’/Psn'”. (1) opa®™'°/+; Psn’/Psn'®.

gene, nct, from screen B. These nct alleles enhance the
Psn®/ Psn' reduced eye (Figure 2E) and wing vein thick-
ening and also exhibit wing notching (data not shown).
They show no phenotype as heterozygotes in cis with
either Psn allele alone. Two alleles, nct*“*? and nct¥=2,
have missense mutations that result in substitutions in
two adjacent amino acids (Table 2). This region is located
two amino acids upstream of an aspartate conserved in
the bacterial zinc aminopeptidase and glutaminyl cyclase
G-protein families. These two amino acids may be critical
for nicastrin function as part of a putative catalytic or
structural domain involved in either assembly of the
active Presenilin complex or interactions with y-secretase
substrates such as Notch, Delta, or APP.

Although this screen isolated nct alleles, we note that
the background is not sensitive enough to recover all
vy-secretase complex members. Heterozygosity for a re-
cessive lethal aph-1 allele, aph-1"*, does not modify Psn’/
Psn'®. However, aph-1"” did show interactions with nc**’
Psn’/Psn'?, including slightly smaller, rougher eyes and
severe loss of abdominal bristles (data not shown).
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Future screens using modifiers of this genotype or a
clonal screen to recover recessive modifier mutations
may yield additional regulators of Presenilin and the
Notch pathway.

Modifiers with established roles in Notch signaling:
In addition to nct, we identified a number of genes with
well-characterized roles in Notch signaling. Nine alleles
of Delta (Dl), one of the two Drosophila Notch ligands,
were isolated either as enhancers of the Psn’/Psn'” eye
or wing phenotype or as lethal interactors. All display

FIGURE 3.—Reductions in AP-47
function enhance Psn loss-of-
function phenotypes in multiple
tissues. (A, D, and G) Wild type.
(B, E, and H) Psn’/Psn'”. (C, F,
and 1) Psn® AP-47%1°/Psn'? AP-
475851 In addition to a smaller,
slightly rougher eye (H), Psn’/
Psn'” flies display slight wing vein
thickening (E); the notum is rela-
tively normal (B). In contrast,
Psn®  AP-47¥10/Psp'®  AP-4 7541
flies have much smaller and
rougher eyes (I) (the w+ eye is de-
rived from a recombinant chro-
mosome carrying a w+ P element
generated during mapping). They
also display dorsal and ventral wing
notching (F), enhanced wing vein
thickening (F), and notal bristle
(microchaetae) loss (C).

dominant vein thickening at the wing margin, a com-
mon DI mutant phenotype, in a Psn’/+ or a Psn'”/+
background. Interestingly, mutations in a number of
alleles affect cysteine residues in epidermal growth
factor (EGF)-like repeats (ELRs) 4, 6, 7, 8, and 9. Pre-
vious results indicate that mutations in many of the DI/
ELRs are correlated with loss-of-function phenotypes
and abnormal subcellular Delta distribution (PARKS
et al. 2000; J. R. StouT, A. Dos SaNTOs and M. A. T.
MUSKAVITCH, personal communication).

F1cure 4.—Wing phenotypes caused by loss of Presenilin, Notch, or Delta function are enhanced by mutations in y-Tub23C. (A)
Wild type. (B) y-Tub23C"**/+ wings display small- to moderate-sized bumps (arrow points to small bump), usually along wing veins,
and occasional nicking (not shown). (C) Psn’/Psn’'” wings show slight vein thickening at the wing margin. (D) y-Tub23C""*/+;
Psn’/Psn'” wings display notching and enhanced vein thickening compared to C. (E) N**'/+ wings have distal notching and wing
vein thickening. (F) N**/4; y-Tub23C™"?/+ wings have enhanced notching (dorsal, ventral, and distal) compared to E and
both thickened and ectopic veins. (G) DI7/4+ wings show some vein thickening as well as small amounts of ectopic vein. (H)
v-Tub23C™*/+; DF*7/+ wings develop more ectopic vein and have mildly enhanced wing vein thickening compared to G.
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Six alleles of Hairless (H) were identified. H encodes
a negative regulator of Notch signaling (BANG et al.
1995; LymMAN and YEDVOBNICK 1995; SCHWEISGUTH and
LeEcourTois 1998) and, consistent with this, two of our
alleles suppressed the Psn’/Psn'” reduced eye (Table
2). All display dominant phenotypes associated with
reduced Hairless activity (e.g., transformation of the
bristle shaft to a socket cell and shortening of the fourth
wing vein) in a Psn’/+ or a Psn'”/+ background.

Alleles of vestigial (vg) were recovered as wing modi-
fiers, exhibiting wing notching in the Psn’/Psn'” back-
ground; vg™*” also exhibits mild wing nicking in the
presence of Psn'” alone. All transheterozygous combi-
nations of these alleles result in severe reduction or loss
of wings. Two alleles, vg**"* and vg*"’, also display a
slightly smaller eye with Psn’/ Psn'”. Notch signaling, in
addition to wingless signaling, is required for vgexpres-
sion (Couso et al. 1995; Kim et al. 1996; NEUMANN and
CoHEN 1996). The genetic interactions in our screen
suggest that vg is an important Notch pathway down-
stream effector in the eye as well as in the wing.

Modifiers involved in eye development: We recov-
ered alleles of eight genes with known roles in eye devel-
opment: dachshund (dac), sine oculis (s0), eyes absent (eya),
Star (S), Ras85D, Roughened (R), glass (gl), and hedgehog
(hh). All alleles, with the exception of A7 (see Table
2), exhibited a small rough eye in the presence of Psn'*
or were enhancers of the Psn’/ Psn'” reduced eye pheno-
type. Eyes absent, sine oculis, and dachshund function
downstream of eyeless during early eye development
and positively regulate specification of the eye (re-
viewed in SILVER and ReBAy 2005). The small GTPase
Ras85D functions downstream of multiple receptors
during eye development, including the EGF receptor
and Sevenless, and plays roles during many different
stages of eye development (SIMON et al. 1991; HALFAR
et al. 2001; KuMAR and Mosks 2001b; YANG and BAKER
2001, 2003; StruTT and STRUTT 2003). Star is required
during eye development (HEBERLEIN and RuBIN 1991;
HEBERLEIN et al. 1993) for the correct trafficking of the
EGF receptor ligand, spitz, to the cell surface (BaNG
and KiINTNER 2000; LEE ef al. 2001; TsruvA et al. 2002).
The Notch and EGF receptor signaling pathways have
been shown to act together and/or in opposition dur-
ing the specification of most retinal cell fates (FLORES
et al. 2000; KuMAR and Mosks 2001a,b; Tsuba et al.
2002; reviewed in Voas and REBAay 2004). However,
we note that Star may also be required directly by the
Notch pathway for proper transport of Notch, its li-
gands, or components of the Presenilin complex, in
a manner analogous to that of spitz. R encodes a Ras-
related Rap GTPase that has been implicated in the
regulation of the development of cell morphology dur-
ing eye imaginal development (HARIHARAN et al. 1991;
ASHA et al. 1999). The transcription factor, glass, is re-
quired for photoreceptor development (MOSEs et al.
1989; DicksoN and HAFEN 1993; O’NEILL et al. 1995),

while hedgehog is involved in both specification of the
early eye primordium (ROYET and FINKELSTEIN 1997)
and the progression of the morphogenetic furrow (re-
viewed in HEBERLEIN and Mosks 1995). The eye phe-
notypes associated with these eight genes in the Psn
mutant background are likely due to additive effects on
eye development or to reduced Notch induction re-
sulting from alterations in these pathways.

Odd-paired: Six alleles of odd-paired (opa) were re-
covered as mild enhancers of the Psn’/Psn'” eye phe-
notype (Figure 2I) and all display tufted vibrissae (data
not shown). Opa is homologous to the Zic family of
transcription factors, which function prominently in
vertebrate neuronal development (reviewed in ARUGA
2004). During embryonic development in Drosophila,
opa is required for the correct level and temporal pat-
tern of wingless (wg) and engrailed expression (BENEDYK
et al. 1994 and references therein) as well as for the
expression of the proneural gene, achaete (ac) (SKEATH
et al. 1992). In vertebrates, Zicl has been shown to affect
the expression levels of several members of the Notch
pathway (ARUGA et al. 2002). Our data demonstrate a
novel function for opa in the development of adult eyes
and head bristles. We propose that opa plays a role in
determining the positioning and number of vibrissae via
regulation of wg, ac, and N. This phenotype and subtle
changes in eye size are likely the result of the additive
effects of altering Wingless, Achaete, and Notch signaling.

Spt5: We recovered two alleles of Spt5 as enhancers of
the Psn’/Psn'” reduced eye phenotype (Figure 2H).
Sptb is one of a group of transcriptional regulatory fac-
tors named after their initial isolation in yeast genetic
screens as suppressors of Ty insertions. Sptb appears to
play both positive and negative roles during transcrip-
tion, possibly by forming a complex with Spt4 and by
interacting with both a positive transcription elonga-
tion factor (P-TEFb) and RNA polymerase II (Pol II)
(HARTZOG et al. 1998; WADA et al. 1998a,b).

In yeast, Sptb forms a physical complex with another
elongation factor, Spt6, and in humans, Spt6 can stim-
ulate transcription in conjunction with the Sptb/Spt4
complex (LINDSTROM et al. 2003; ENDOH ef al. 2004). In
Drosophila, Sptb and Spt6 may play both positive and
negative roles in transcription elongation. They coloc-
alize to actively transcribed regions of the chromosome
and are recruited to the heat-shock genes following heat
shock. Sptb mutant embryos display reduced levels of
heat-shock proteins following heat shock, suggesting
that Sptb plays a positive role in the transcription of
these genes (ANDRULIS et al. 2000, 2002; KAPLAN et al.
2000; JENNINGS et al. 2004). In contrast, even-skipped
transcription increases in Sptb mutant embryos, sug-
gesting that Sptb acts to negatively regulate expression
of this gene (JENNINGS et al. 2004).

Genetic and biochemical studies suggest that Spt6
may interact with histones H3 and H4 and may help
regulate chromatin structure (BorTvIN and WINSTON
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1996). Interestingly, the C. elegans homolog of Spt6,
EMB-5, has mutant phenotypes and genetic interactions
consistent with arole in Notch signaling (HUBBARD et al.
1996). It has also been shown by yeast two-hybrid
analysis to associate with the intracellular domains of
the C. elegans Notch homologs, LIN-12 and GLP-1, and
to biochemically contribute to NICD transcriptional
activity (HUBBARD et al. 1996). FRYER et al. (2004) ob-
served that human SPT6 is present at Notch-regulated
promoters and increases upon Notch stimulation, al-
though a physical interaction of NICD and SPT6 was not
detected. The genetic interactions of Sptb and Spt6 with
Notch signaling implicate regulated transcriptional
elongation by the Pol II transcriptional machinery in
the function of the NICD transcription complex

Novel Presenilin-dependent Notch interactions in
the ECM: We recovered four alleles of dumpy (dp) from
screen B. dp™” was recovered as a modifier causing
Psn’/ Psn'* lethality. dp”**® enhances the Psn’/ Psn'” eye
phenotype and two alleles, dp"™' and dp™'’, exhibit
Psn’/ Psn'*-dependent dp-like pits in the anterior of the
notum. dp™'? also displays mild dp-like pits in a Psn’/+
background.

dp encodes a very large protein predicted to contain
308 EGF-like repeats, a zona pellucida (ZP) domain,
and a membrane anchor sequence and likely functions
as part of the ECM (WILKIN et al. 2000). Dumpy appears
to play roles in the organization of the cuticle, tracheal
development, attachment of epithelial cells to overlying
cuticle, and in cell growth and differentiation (WILKIN
et al. 2000 and references therein; DENHOLM and SKAER
2003; JazwiNskaA et al. 2003). Recent studies have also
suggested that ZP-containing proteins, including dumpy,
may be involved in cell adhesion to the apical extracel-
lular matrix (BokEL et al. 2005). Dumpy may be involved
in mediating cell-cell interactions in the ECM between
Notch and its ligands or possibly in localizing the
Presenilin complex to specific regions of the membrane.
Alternatively, loss of dumpy activity may cause cell adhe-
sion abnormalities that, in addition to reductions in
Notch signaling, result in the observed modifications.

A total of three alleles of krotzkopf verkehrt (kkv) were
isolated from the two screens. Two alleles cause smaller
eyes in the presence of Psn'” and one enhances the
Psn’/Psn'” eye phenotype. kkv encodes one of two chi-
tin synthases found in Drosophila. It is a multipass
transmembrane protein that converts UDP-N-acetyl-p-
glucosamine into UDP and chitin, an insoluble polymer
consisting of 1,4-linked N-acetylglucosamine residues. It
has two conserved aspartates and a QXXRW sequence
motif necessary for substrate binding and catalysis
(SAXENA et al. 1995). In mammals, these same motifs
are conserved in hyaluronan synthase (HAS), and recent
studies have demonstrated that insects can produce
hyaluronan when the murine HAS2 gene is introduced,
suggesting that the chitin and hyaluronan synthetic
pathways are highly related (TAKEO et al. 2004). All three

mutations in the kkv gene lie within conserved stretches
of amino acids in this region of HAS homology. We
propose that alterations of chitin synthesis adversely
affect cell-cell adhesion in the ECM, thereby disrupting
the interactions of Notch with its ligands, although al-
ternative models in which altered ECM integrity disrupts
general cell-cell interactions independently of Notch
cannot be ruled out.

Nsf2 and AP-47 implicate vesicular trafficking in
Notch signaling: We recovered two Psn modifiers with
known functions in subcellular protein and vesicular traf-
ficking. The first of these modifiers, NEM-sensitive fusion
protein 2 (Nsf2), encodes an AAA ATPase family member,
which functions as a chaperone-type protein that utilizes
ATP hydrolysis to drive conformational changes in target
proteins (reviewed in WHITEHEART and MATVEEVA
2004). We identified two alleles of Nsf2 that cause subtle
eye roughness in the Psn'” background, one of which,
Nsf2*¢, is homozygous viable with small rough eyes.

In Drosophila, phenotypes resulting from expression
of dominant-negative forms of Nsf2 suggest that Nsf2
plays roles in Notch and Wingless signaling (STEWART
et al. 2001), and our mutant alleles confirm this ob-
servation. In humans, NSF likely functions in synaptic
vesicle fusion by altering the conformation of SNAP-
SNARE complexes. A similar chaperone activity con-
tributes to the regulation of the B-2-adrenergic receptor
by altering the conformation of the adrenergic receptor-
binding protein, B-arrestin, which affects (-arrestin’s
interactions with the cytoskeleton or with proteins such
as clathrin (McDoNALD et al. 1999; McDoNALD and
LerkowrTZz 2001; MILLER et al. 2001). In addition, NSF
may be involved in disassembly and recycling of the
glutamate receptor complex (NISHIMUNE ef al. 1998;
SONG et al. 1998; NOEL et al. 1999). Several models are
possible for the role of Nsf2 in Notch signaling. Nsf2
may be required for the endocytosis of Notch recep-
tors and ligands that has been shown to be essential for
Notch signaling (see DISCUSSION). Alternatively, Nsf2
might be essential for the assembly of mature y-secretase
complexes or for trafficking and recycling of y-secretase
during Notch signaling.

We recovered two alleles of AP-47, the p-subunit of
the AP-1 clathrin adaptor complex, as mild enhancers
of the Psn’/Psn'” reduced eye (Figure 2F). AP-47%%1°
displayed mild vein thickening in the Psn’/Psn'” back-
ground. As trans-heterozygotes, Psn® AP-475"10/Psn'®
AP-475"!1 are viable and display striking Notch loss-of-
function phenotypes in the wing, the notum, and the eye
(Figure 3). In the course of genetic mapping, we gen-
erated a recombinant AP-47%"*"" chromosome lacking
the Psn'” mutation. Psn® AP-475510 /AP-4 750511 fljes are
essentially wild type (data not shown), suggesting that
the AP-47 Notch-like interaction phenotypes are de-
pendent on reduced Notch signaling. We suggest that
AP-47 functions in Notch signaling via its role as a
clathrin adaptor complex member (see DISCUSSION).
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FIGURE 5.—Mutations in y-Tub23C result in abnormal numbers of neurons and thickened veins in pupal wings. (A—C) Thirty
hours after puparium formation (APF) pupal wings were immunostained with mAb22C10 to identify neurons. (D-F) Pupal wings
were treated as in A—C except that photos were taken under high contrast to more easily visualize veins. (A—C) Wild-type pupal
wings (A) have four neurons (arrows) spaced along the third wing vein. In contrast, y-Tub23C"'/+ pupal wings have either too
many neurons (arrows in B) or too few neurons (arrows in C). (D-F) In comparison to wild type (D), y-Tub23C""*'/+; Psn’/+
pupal wing veins are abnormally wide (E and F). The open and solid rectangles in D-F indicate the widths of the wild-type veins in
D to facilitate comparison. Arrows in E and F indicate bumps (see text).

v-Tubulin: We isolated five alleles of y-Tubulin23C (vy-
Tub23C) that exhibit small, rough eyes, enhanced wing
vein thickening, and wing nicking in combination with
Psn’/Psn'” (Figures 2G and 4, C and D). y-Tub23C mu-
tants exhibit two additional phenotypes as pupae that
may result from Notch signaling defects. Wild-type
pupal wings contain four neuronal cell bodies spaced
along the third wing vein (Figure A, arrows), three of
which are likely associated with the campaniform
sensillae. In contrast, y-Tub23C mutant wings often
show a reduced number of neuronal cell bodies, neu-
rons spaced incorrectly, or, less frequently, extra neu-
rons at a single site (Figure 5, B and C). Sensory organ
loss and the inappropriate adoption of the neuronal
fate by sibling cells resulting in clusters of neurons are
typical phenotypes caused by alterations in Notch
signaling. In addition, 30 hr after puparium formation
(APF), y-Tub23C mutant pupal wings appear to have
grossly thickened veins (compare Figure 5, E and F, with
5D), a typical Notch pathway loss-of-function pheno-
type. These thickened veins appear to recover during
subsequent development, resulting in essentially wild-
type veins in the adult. Transient vein thickening as-
sociated with loss of Notch signaling has also been
observed in conditional dynamin mutants (PARKS et al.
2000).

v-Tub23C mutants are homozygous lethal. Heterozy-
gotes display several dominant, Presenilin-independent
phenotypes in the adult. Approximately 8% of y-Tub23C
adults have nicked wings and y-Tub23C""', y-Tub23C"",
and y-Tub23C"** adults display a very mild rough eye
phenotype (datanotshown) thatis not highly penetrant
and is not strong enough to account for the enhanced

small, rough eye observed in the Psn’/Psn'” background
(Figure 2G). Strikingly, a large fraction of y-Tub23C
adults have wings with “bumps” (Figure 4B, arrow). This
phenotype appears to be temperature sensitive. At 18°,
10% (n=19) and at 23°, 6% (n = 31) of y-Tub23C "'/
(GyO display bumps, whereas, at 27°, ~92% display bumps
(n = 40). Similarly, 0-5% of y-Tub23C "**/CyO adults
display bumps at 18° or 23° (n = 149 and 37, respec-
tively), whereas 47% display bumps at 27° (n = 113).
The majority (90%) of these bumps occur along the
third wing vein (L3) and most of these (91%) occur
in the mid-distal portion of the vein (data not shown).
Bumps have also been observed on the fourth wing vein,
on crossveins, and in intervein regions. The location of
the majority of bumps on L3 coincides with the region
in which campaniform sensillae are found. However,
examination of 30-hr APF wings suggests that there is no
correlation between the neurons associated with the
campaniform sensillae and the location of these masses.
Bumps appear sometime between 0 and 30 hr APF and
seem to consist of a mass of extracellular material de-
posited between the dorsal and ventral epithelial sheets
that form the wing (Figure 5, E and F, arrows). There
are no cells associated with these masses as judged by
the absence of DAPI-positive nuclei (data not shown).
In addition, there is no clear correlation between the
severity of the bumps phenotype and reductions in
Presenilin, Notch, or Delta function (data not shown).
These results indicate that this phenotype is not directly
related to Notch signaling.

In addition to strong genetic interactions with Psn
mutations, y-Tub23C alleles show significant genetic
interactions with N and DI alleles. vy-Tub23C mutants
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strongly enhance the wing-notching phenotype associ-
ated with N hypomorphs. For example, nicking associ-
ated with N*** occurs primarily in the distal portion of
the wing with little or no anterior nicking (Figure 4E).
In contrast, notching in N***'/+ ; y-Tub23C"***/+ occurs
throughout the entirety of the wing margin and is
accompanied by a mild increase in extra vein material,
especially at vein termini (Figure 4F). y-Tub23C muta-
tions also enhance the vein thickening and ectopic vein
phenotypes associated with DI mutations (Figure 4, G
and H). No interactions were seen with alleles of Su(H),
aph-1, mastermind, dellex, bigbrain, EGFR, or rhomboid (data
not shown).

The mutational changes present in our vy-Tub23C
alleles suggest that they are not null alleles. The five
alleles arose in two separate rounds of mutagenesis
in each of the two screens and thus originated from at
least four independent mutational events. Nonetheless,
Y-Tub23C*" and y-Tub23C""* both share a change
from Met382 to Ile, while y-Tub23C"", y-Tub23C""",
and y-Tub23C"* share a change from Pro358 to Leu.
Met382 is conserved in both humans and yeast y-tubulin,
but is changed to Leu in C. elegans. Pro358 is conserved
in humans, yeast, and C. elegans y-tubulin. Genetic data
are consistent with the suggestion that these y-Tub23C
alleles are not null alleles as y-Tub23C""***is semiviable in
trans with a deficiency that deletes y-Tub23C [Df(2L)JS17
dpp™*; BSC stock 1567]. The surviving adults are all male
and display small, crumpled, blistered wings; small,
rough eyes; missing macrochaetae; and microchaeta
polarity defects (data not shown). The recurrence of
these two amino acid changes in our alleles suggests that
they cause aberrant y-tubulin function that can reduce
Notch pathway signaling.

DISCUSSION

We performed two genetic screens in Drosophila and
identified 19 modifiers of Presenilin-dependent Notch
phenotypes caused by Psn hypomorphic mutations. We
identified genes required for general eye development
as well as known members of the Notch pathway. The
screen isolated several nct mutations, indicating that the
Psn’/Psn'” genotype provides a sensitized background
for recovering Notch pathway interactors, including
those directly involved in y-secretase function.

We identified Nsf2, AP-47, and y-Tubulin23C as regu-
lators of the Notch pathway. Nsf2 has well-defined
functions in protein trafficking and has been previously
tied to Notch signaling using overexpression of a
dominantnegative Nsf2 protein (STEWART et al. 2001).
Our screens now confirm Nsf2 involvement in Notch
signaling with the recovery of loss-of-function alleles. In
contrast, AP-47 and vy-tubulin have not been linked to
Notch signaling in the past. AP-47 has well-defined
functions in vesicular trafficking and likely functions in

Notch signaling in this capacity, while the mechanism of
y-tubulin function in the pathway is less clear.

Recent work has implicated several proteins involved
in vesicular trafficking in both positive and negative
regulation of the Notch pathway (reviewed in LE BORGNE
et al. 2005). The best studied of these is dynamin, the
GTPase responsible for formation and pinching off of
vesicles. Loss of dynamin function results in loss of Delta
endocytosis, loss of dissociation of the Notch extracel-
lular and intracellular domains, and strong Notch loss-
of-function phenotypes (Poobry 1990; SEUGNET et al.
1997; Parks et al. 2000). Dynamin appears to be re-
quired in both Delta- and Notch-expressing cells for
Notch signaling to occur, butits precise role has yet to be
determined (SEUGNET et al. 1997; PARKS et al. 2000).
Other proteins that positively regulate Notch signaling
include the clathrin coat components, clathrin heavy
chain, a-adaptin, and epsin (CADAVID et al. 2000; TiaN
et al. 2004; WANG and STrRUHL 2004, 2005) and the
regulator, Nsf2 (see RESULTS; STEWART et al. 2001). Fi-
nally, three ubiquitin ligases, neuralized, mindbomb,
and deltex, act to positively regulate trafficking and
signaling of Notch pathway members. Neuralized and
mindbomb are thought to ubiquitinate Delta and/or
Serrate to promote ligand endocytosis and activation of
signal (reviewed in LE BORGNE et al. 2005). Deltex likely
ubiquitinates Notch to promote sorting into an un-
defined intracellular compartment where ligand- and
Su(H)-independent signaling may occur (HORI et al.
2004 and references therein).

It is apparent that the endocytic machinery can be
regulated at numerous steps to positively affect Notch
signaling, yet the role that these proteins play remains
unclear. Endocytosis of Delta bound to Notch could
resultin conformational changes in Notch necessary for
its cleavage by ADAM/TACE proteins and y-secretases
and subsequent release of the intracellular domain
(PARKs et al. 2000). Endocytic proteins may also recruit
cofactors necessary for Delta—Notch signaling or may
contribute to colocalization of Notch receptors and
secretases. In addition, endocytosis through a recycling
endosome has been proposed as a mechanism for con-
verting a Delta “pro-ligand” into an active form (WANG
and STRUHL 2004). It is not known if similar mecha-
nisms directly regulate the activity and recycling of
y-secretase complexes.

Mutations in AP-47, the Drosophila p1 protein of the
clathrin adaptor complex AP-1, result in typical Notch
loss-of-function phenotypes in the Psn’/Psn'” back-
ground. There are at least four distinct adaptor pro-
tein (AP) complexes that link clathrin to membranes,
coordinate clathrin coat assembly, and recruit cargo
proteins. AP-1 functions in multiple steps in vesicle
trafficking and cargo sorting from the Golgi to endo-
somes and the plasma membrane and is critical for the
sorting and recycling of receptors to correct plasma
membrane domains (FUTTER et al. 1998; NAKAGAWA
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et al. 2000; OrzECH et al. 2001; GAN et al. 2002; PAGANO
et al. 2004). The p-chain of AP-1 appears to be re-
sponsible for sorting cargo proteins into developing
vesicles. In kidney epithelial cells, 1A mediates sorting
to endosomes, while p1B mediates the targeting of pro-
teins to the basolateral plasma membrane (SuGIMOTO
et al. 2002; FoLscH et al. 2003 and references therein). In
C. elegans, unc-101 encodes a p-subunit closely related
to mammalian AP-47 (LEE et al. 1994). In chemosen-
sory neurons, loss of unc-101 function results in abnor-
mal membrane trafficking of a certain set of proteins
(DWYER el al. 2001). These data suggest that AP-1
p-chains can recognize and target specific proteins to
specific cellular destinations. Preliminary data suggest
that unc-101 enhances a Presenilin loss-of-function egg-
laying phenotype in C. elegans (R. Francis and G.
McGRATH, personal communication). This, in combi-
nation with our genetic data, implies that AP-47 plays a
key regulatory role in Notch pathway function through
the sorting, trafficking, and/or recycling of the Notch
receptors, ligands, and secretases to their correct cel-
lular destinations. Alternatively, AP-47 could function
as part of the recycling endosomal pathway suggested to
be required for Delta activation (WANG and STRUHL
2004, 2005).

We recovered five alleles of y-Tub23C. These alleles
display loss-of-function Notch-like phenotypes in pupae
and adults in the absence of any sensitizing mutations
and have strong genetic interactions not only with Psn
mutations, but also with D/ and N alleles. These alleles
do not appear to behave as nulls (see RESULTS), but
rather may impair or impart a specific interaction be-
tween y-tubulin and Presenilin, Notch, or other mem-
bers of the pathway.

There are currently two primary functions attributed
to y-tubulin: nucleation of microtubules as part of
the centrosomal complex (OAKLEY 2000; reviewed in
MoriTz and AGARD 2001) and capping of microtubule
“minus” ends (WIESE and ZHENG 2000), which may
regulate microtubule growth. It has also been hypoth-
esized that the centrosomal complex may serve as a site
to concentrate proteins involved in the cell cycle and
that some of these proteins may bind to vy-tubulin
(PrR1GOZHINA et al. 2004). Interestingly, PS1 is function-
ally associated with the cytoskeleton (P1GINO et al. 2001
and references therein), perhaps through interactions
with microtubule-binding proteins such as CLIP-170
(TezAPSIDIS et al. 2003). PS1 and PS2 have also been
detected at centrosomes (LI et al. 1997), suggesting the
possibility of a functional interaction with vy-tubulin.
This notion is supported by the observation that muta-
tions in a C. elegans Presenilin gene, spe-4, display
defective spermatogenesis accompanied by aberrant
tubulin accumulation (ARDUENGO et al. 1998). Finally,
recentresearch hasindicated thatin the two-cell stage in
developing Drosophila bristle organs, Delta accumu-
lates in Rabl1-positive recycling endosomes in one cell

but not in the other (EMERY et al. 2005). These endo-
somes are pericentrosomal and their asymmetric accu-
mulation appears to require asymmetric accumulation
of the protein Nuclear Fallout, the Drosophila homolog
of Arfophilin/Rab11-FIB3, which is also known to
concentrate at centrosomes (EMERY et al. 2005).

Centrosomal and/or cytoplasmic y-tubulin may play
a role in regulating cellular architecture via the nu-
cleation of microtubules from the centrosome, capping
of minus ends, and mediating microtubule growth in
the cytoplasm and/or recruitment and localization of
proteins. These functions may regulate vesicle traffick-
ing through the secretory and endocytic pathways,
which could influence the subcellular localization of
Presenilin or other Notch pathway components. Addi-
tional experiments will be required to determine if the
y-tubulin missense mutations described here are gain or
loss of function, whether they interact directly with
Presenilin or Notch pathway components, or whether
they modulate the pathway indirectly through effects on
other processes, such as vesicle trafficking.

In conclusion, we have performed two genetic screens
and identified 19 modifiers of Presenilin-dependent
Notch pathway phenotypes. We recovered a number of
proteins not previously implicated in Notch signaling,
including Sptb, a transcription elongation factor that
may interact with the Notch intracellular domain
through Spt6, and two proteins involved in ECM func-
tion, kkv and dumpy. In addition, we have discovered a
novel role for AP-47 that reinforces current research
suggesting that the subcellular trafficking machinery
is an important regulator of Notch signaling, and we
implicate y-tubulin as a Notch pathway interactor. These
findings provide new insights into the mechanisms
by which Notch signaling is regulated in development
and suggest novel candidate approaches for targeting
human disorders, including cancer and Alzheimer’s
disease.
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