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ABSTRACT

Geneticists seeking to understand HIV-1 evolution among human hosts generally assume that hosts
represent a panmictic population. Social science research demonstrates that the network patterns over
which HIV-1 spreads are highly nonrandom, but the effect of these patterns on the genetic diversity of
HIV-1 and other sexually transmitted pathogens has yet to be thoroughly examined. In addition, interhost
phylogenetic models rarely account explicitly for genetic diversity arising from intrahost dynamics. This
study outlines a graph-theoretic framework (exponential random graph modeling, ERGM) for the
estimation, inference, and simulation of dynamic partnership networks. This approach is used to simulate
HIV-1 transmission and evolution under eight mixing patterns resembling those observed in empirical
human populations, while simultaneously incorporating intrahost viral diversity. Models of parametric
growth fit panmictic populations well, yielding estimates of total viral effective population on the order of
the product of infected host size and intrahost effective viral population size. Populations exhibiting
patterns of nonrandom mixing differ more widely in estimates of effective population size they yield,
however, and reconstructions of population dynamics can exhibit severe errors if panmixis is assumed. I
discuss implications for HIV-1 phylogenetics and the potential for ERGM to provide a general framework
for addressing these issues.

UNDERSTANDING genetic variation in human im-
munodeficiency virus (HIV)-1 is a crucial public

health issue, since its high mutation rate creates myriad
genetic forms differing in infectivity, virulence, and sus-
ceptibility to treatment. Geneticists have spent consid-
erable effort both in describing the distribution of this
variation and in uncovering the functional differences
that these forms create. These tasks are complicated by
the fact that HIV-1 forms a metapopulation with dif-
ferent evolutionary forces operating at two levels. Each
infected host contains her own complex pathogen pop-
ulation, in which genetic diversity is a function of familiar
population genetic forces including mutation, drift,
and selection. Individual hosts’ viral pools are then linked
epidemiologically and phylogenetically into a single
metapopulation, where the forces shaping genetic di-
versity include these concepts as well as the patterns of
host behavior transmitting the pathogen. Considerable
work on the genetics of metapopulations exists (e.g.,
Chesser et al. 1993; Hedrick and Gilpin 1997; Beerli
and Felsenstein 2001; Wakeley and Aliacar 2001);
however, the metapopulation dynamics of HIV-1 are
unique in many ways (new demes founded at rates

determined by patterns of human sexual or injection
drug behavior, demes isolated once founded, and guaran-
teed extinction of demes �5–20 years after their found-
ing) and require an exploration incorporating these
unique features.
In particular, common experience and a large body of

social science research (e.g., Laumann et al. 1994) tell us
that partner selection patterns for the behavior trans-
mitting HIV-1 are highly nonrandom. Such substruc-
ture is known to introduce irregularities into the growth
patterns of an epidemic and consequently into the
genetic diversity within that epidemic. Quantifying the
effects of realistic behavioral models by finding analyt-
ical solutions in a population genetics framework is
generally quite difficult, if not impossible, however.
Much work has now been done, relating patterns of
HIV-1 genetic diversity to host population history when
the latter is either stable or growing in some parametric
trajectory (e.g., Grassly et al. 1999; Holmes et al. 1999;
Pybus et al. 2000). This literature discusses the fact that
nonrandom mixing patterns may substantially affect
the outcome of these models and tests simple models
of social subdivision, but otherwise does not seek to
quantify these potential effects.
Previous work also tends to equate the estimates of

viral effective population size it derives with the effective
number of hosts through time, thus assuming that
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intrahost viral dynamics contribute little to genetic di-
versity occurring between viral samples from different
hosts (e.g., Grassly et al. 1999). However, viral diversity
emerges rapidly within an infected host, and anyone
who infects multiple others late in infection may do so
with viral sequences that are separated from a common
ancestor by many years. This is certain to increase the
effective size of the interhost viral population above
simply the number of hosts. An enormous amount of
research has examined these intrahost dynamics, but
the modeling of inter- and intrahost dynamics has re-
mained largely unintegrated. This is not surprising, since
work on each alone has proven immensely challenging.
However, network structure affects the distribution of
waiting times to transmission, sometimes called the
‘‘pretransmission interval’’ (Leitner andAlbert 1999),
which in turn determines the size of the effect that
intrahost genetic diversity has on interhost genetic
diversity.

In this article I present a graph-theoretic framework
for quantifying and simulating arbitrarily complex
patterns of structured (i.e., nonrandom) host mixing,
using a general class of probability models, known as
exponential random graph models (ERGM). These
models are then applied to the simulation of popula-
tions undergoing panmixis and to seven types of struc-
tured mixing whose general forms are informed by the
literature on community-level sexual networks. HIV-1
transmission and evolution are then simulated within
these populations using an approach that incorporates
both intrahost and interhost viral evolution. Phyloge-
netic trees are constructed using a sample of hosts from
each run, which are analyzed using skyline plotmethods
to derive estimates for current effective population size
and growth rate under models of exponential, logarith-
mic, and ‘‘expansion’’ growth (Pybus et al. 2000). These
estimates are then compared to known census popula-
tion size and growth rate.

BACKGROUND

HIV-1 interhost phylogenetics: Applications of phy-
logenetic methods to HIV-1 focused initially on deter-
mining genetic distance between samples of sequences
where the patterns of relationships were themselves of
primary interest (e.g., Ou et al. 1992 for a dental practice,
Leigh Brown et al. 1997 for risk groups and cities in the
British Isles, and McCutchan et al. 1992 for major HIV-
1 subtypes). A more recent application involves recon-
structing the population dynamics of the infected
human population, including the size and growth rate
of some subsection of the epidemic through time, from
a small sample of hosts in that subsection. Grassly et al.
(1999) use mismatch distributions and a likelihood ap-
proximation to compare the population history of HIV-1
subtypes A and B under the assumption of exponen-
tial growth. Holmes et al. (1999) uses a technique de-

veloped earlier (Nee et al. 1994, 1995) to compare the
reconstructed number of phylogenetic lineages through
time to that expected under constant population size,
linear growth, and exponential growth. Pybus et al. (2000)
and Strimmer and Pybus (2001) extend this method
to include the generation of maximum-likelihood esti-
mates of the effective population size of the virus (Ne) at
all points in the past using phylogenetic trees. This uses
the size of the interval between each pair of coalescent
events in a reconstructed tree to estimate the harmonic
mean of Ne during the interval, which in most scenarios
is close to the arithmetic mean and thus to the
maximum-likelihood estimate. This allows them to ob-
tain maximum-likelihood values for parameters of spe-
cific population growth patterns as well as compare
nested hypotheses of parametric growth scenarios.

Ne is the effective population size, the size of the
hypothetical (‘‘Wright–Fisher’’) population that would
yield an observed level of genetic diversity if all members
had an equal chance of contributing offspring to the
next generation. ‘‘Equal chance’’ requires a lack of se-
lection and implies certain outcomes—among them,
that the number of offspring left in a subsequent gen-
eration by each member of the prior is Poisson and that
no correlation in offspring number exists for successive
generations of a lineage. Genetic diversity in this type
of population is generated in well-understood ways.
Of course few real populations fit every assumption of
the Wright–Fisher model; the framework’s value comes
from numerous formulas relating Ne to census popu-
lation size for various violations. This provides a com-
mon metric for comparing populations and for testing
hypotheses about their demographic history or expo-
sure to selection. HIV-1metapopulation dynamics share
general features with some of these models, and they
can thus provide us with expectations as to how these
patterns will generally diverge from panmixis. In the
framework of source-sink models (Gaggiotti 1996),
for instance, newly HIV-infected individuals show some
of the characteristics of a ‘‘sink’’ and infecting individ-
uals those of a ‘‘source.’’ Unfortunately, existing models
cannot capture all of the complex partnership patterns
we see empirically in the human sexual/injection net-
works that result in HIV-1 phylogenies. For instance,
assortative mixing by partner number (i.e., highly active
people tending to have highly active partners) implies
a correlation in offspring number among successive
viral generations by lineage purely for network reasons,
a phenomenon that has received little attention in the
genetics literature. In addition, most theoretical work
on effective population size has been developed for dip-
loid organisms with sexual reproduction, while HIV-1
is a haploid virus (albeit one that experiences a form of
recombination); the concept ofNe still holds here, but is
based solely on variation in reproductive success among
lineages rather than on degrees of relatedness within
breeding pairs. Because of these limitations, most work
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on HIV-1 phylogenetics thus far has invoked the reason-
able assumption that the genetic signatures of network
irregularities will not be great, soNe is likely to be a good
approximation of the number of infected hosts. One
exception isGrassly et al. (1999),whocomparemismatch
data to models of population panmixis and binary sub-
division. They found that at the global level, the im-
proved fit to the subdivision model was not sufficiently
large to warrant the increase in model complexity.

The existing literature on interhost phylogenetics
and HIV population dynamics also assumes that the
effects of intrahost viral diversity are negligible. Each
infected person harbors a viral population contain-
ing on the order of 108 different genetic sequences
(Vartanianet al.1992),which changes constantly through
drift, mutation, and selection. However, estimates of Ne

during the long latency period aremore on the order of
103 (Leigh Brown 1997; Nijhuis et al. 1998; Rodrigo
et al. 1999; but see Rouzine and Coffin 1999), pre-
sumably since only a small fraction of infected cells
replicate. This diversity appears within a few months of
infection and is maintained throughout the many years
of clinical latency. Given this, the sequences that a host
contributes to each of the other people he infects (or to
sequence analysis) may be separated from each other by
years of evolution, plenty of time for HIV-1 to develop
substantial genetic distance. The actual amount of time
until the most recent common ancestor for two such
lineages is determined both by intrahost viral dynamics
and by the expected waiting time between getting
infected and infecting another, which is a function of
partnership network structure.

For n infected hosts, each with its own effective viral
pool of size Nei (for ‘‘intrahost Ne’’), the total viral ef-
fective population size across hosts (Ne) should be on
the order of nNei, which can be thought of as the inter-
host viral census size. (This is not strictly true, of course,
since Nei is the effective intrahost size. For the purposes
of this article, however, these intrahost dynamics are
conditioned upon, and the phrase ‘‘interhost viral census
size’’ is considerably less cumbersome than are more
precise alternatives.)

Although in diploid organisms subdivided metapop-
ulations display values of Ne that are considerably lower
than census population size, the reason for this (sub-
division increases the expected degree of relatedness
within mating pairs compared to panmixis) does not
apply for haploid populations, in which the concept
of Ne is not based on inbreeding. We might expect Ne to
differ from nNei under host panmixis, however, due to
the common practice of sampling a single lineage from
each participant in an interhost viral phylogenetic
analysis, which prevents similar sequences found in
individual viral pools from being jointly sampled. This
effect should be pronounced only when the number of
hosts studied is a sizeable portion of the total host
population under investigation.

Violations of host panmixis observed in practice
generally involve greater-than-Poisson variance in the
number of sexual or injection partners. On the whole
these should reduce Ne below nNei, possibly by a
considerable amount. Comparing N̂ e obtained from
phylogenetic methods to nNei allows us to see the
combined effect of departures from the panmictic
demographic model under consideration, isolation of
the hosts’ viral pools from each other, and the strategies
of sampling sequences by host, but does not allow us to
separate these effects out from one another. However,
by comparing panmictic populations (in which the
latter two phenomena also appear) to violations of
panmixis, we can isolate the additional effect of struc-
tured host mixing on N̂ e.
Network epidemiology: The methods used here to

model transmission are drawn from social network
analysis, an outgrowth of both graph theory and social
theory in which analysis focuses on the network of
relationships between pairs of agents. Within this
framework I focus on a probabilistic model class known
as ERGM or p* modeling, first developed in the spatial
statistics literature (Besag 1974; Frank and Strauss
1986; Strauss and Ikeda 1990) and introduced to
social network analysis by Wasserman and Pattison
(1996). This approach derives a model for partnership
formation by defining probabilities for each possible
graph (or ‘‘network’’) containing n actors. Let xij rep-
resent the value of the tie between nodes i and j; if, as
here, relationships are binary (xij¼ 1 if a tie is present or
0 if a tie is absent) and nondirected (xij ¼ xji " i, j), then
a graph x is defined by its

n
2

� �
tie values x ¼ fx1;2;

x1;3; x1;4; . . . ; x2;3; . . . ; xn�1;ng: In its general form, the
model represents the probability that a random graph X
will take on value x as

PðX ¼ xÞ ¼ expðu9zðxÞÞ
cðuÞ ; ð1Þ

where z(x) is a vector of network statistics, u is a vector of
parameters, and c(u) is a normalizing constant ensuring
that the probabilities sum to one over all graphs with n
nodes. Examples of commonly used z-statistics include
the number of ties in the graph, the number of nodes
with a certain number of ties, or the number of triads
(sets of three nodes that possess all pairwise ties).
Equation 1 can be reformulated in terms of the log-
odds of a single tie,

log
PðXij ¼ 1 j xCij Þ
PðXij ¼ 0 j xCij Þ

 !
¼ u9ðzðx1ij Þ � zðx�ij ÞÞ;

where xCij represents the complement of xi,j, x
1
ij rep-

resents the network with xi,j ¼ 1, and x�ij represents
the network with xi,j ¼ 0. This formulation removes
the normalizing constant while also highlighting the
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potentially recursive nature of tie probabilities, since
z-statistics may depend on values of other ties. The pres-
ence of c prevents the probability of any graph or the
marginal probability of any tie from being calculated
directly. Instead, Markov chain Monte Carlo (MCMC) is
used to draw samples from the proper distribution.

This representation is so general as to include any
possible probability model based on network statistics
(Besag 1974); it allows for various social structures to
be represented in a common statistical framework, but
also emphasizes the need for guidance in choosing pa-
rameterizations. This can be provided by the growing
number of studies that have collected network data
on sexual relationships, as well as by modeling work
showing the effect of network structure on HIV-1 trans-
mission patterns (e.g., Martin 1987; Orubuloye et al.
1991; Klovdahl et al. 1994; Garnett et al. 1996;
Morris et al. 1996; Friedman et al. 1997; Rothenberg
et al. 1998). Assortative mixing by social attributes (race,
age, location, and occupation) is commonly observed
and can greatly affect the dynamics of disease spread
(Morris and Dean 1994), as can the existence of a
‘‘core group’’ that is not only highly active but prefer-
entially mixes with other highly active people (Garnett
et al. 1996). Watts and May (1992) and Morris and
Kretzschmar (1997) demonstrated that the timing of
partnerships (concurrent vs. serial) is a strong determi-
nant of prevalence. Another important pattern includes
‘‘bridges,’’ or individuals who serve as epidemiological
links between groups that otherwise would have no
interaction, aswhenmenhavebothcommercial andnon-
commercial female sex partners (Morris et al. 1996).
Unfortunately, none of these studies has sequenced
HIV-1 from seropositive subjects, which could allow for a
simultaneous examination of network structure and
phylogenetics in a real population.

METHODS

The above qualitative observations of the social net-
works literature suggested eight mixing patterns under
which to simulate HIV-1 evolution: one panmictic host
population (random pattern), four populations divided
into equally active subgroups with internal preferential
mixing (assortative patterns), two populations with a
small highly active subgroup (core patterns), and one
bridges pattern. This last pattern consists of husbands,
wives, and commercial sex workers (CSWs); each
husband/wife pair maintains its relationship through-
out the course of the simulation, while husbands may
have simultaneous ties with CSWs; initial infection
always occurs in a CSW. Details of individual mixing
patterns are listed in Table 1 and depicted schematically
in Figure 1, while the statistics and parameters necessary
to create them are in Table 2. Parameter values were
calculated using the likelihood approach of Strauss
and Ikeda (1990). (Note that Strauss and Ikeda refer to

the result of this method as a pseudolikelihood; how-
ever, in each model here the probability of each tie is
independent of the existence of all other ties, and their
method yields the true likelihood.) For each mixing
pattern 100 runs were simulated, each for 10 years. The
exception is random mixing, which served as a basis of
comparison for other patterns in some analyses, and for
which 10,000 runs were simulated. Each run contains
200 actors sharing an expected 200 partnerships at any
moment, although the number fluctuates with proba-
bilities determined by the model parameterization. Equal
activity levels imply that systematic differences in out-
come should relate to the pattern, not the magnitude,
of partnerships. Populations are small since computing
needs for network simulation scale with the square of
population size, a continuing limitation on network-
based methods.

The basic framework used in this investigation com-
prises three steps: (1) simulation of dynamic social
networks, (2) simulation of HIV-1 transmission within
these networks, and (3) simulation of mutation along a
500-base viral sequence among infected hosts. All three
were implemented in a single software package, Evolve-
Net. This is available for download at http://faculty.
washington.edu/goodreau, along with documentation
for simulating networks according to user-defined mix-
ing patterns, simulating viral transmission and evolu-
tion within those networks, and outputting to common
tree formats (PHYLIP and MEGA).

Dynamic network simulation: Dynamic networks of
social relationships are modeled with the ERGM for-
mulation in Equation 1, using an MCMC algorithm
adopted for network data (Gilks et al. 1996; Snijders
2002). Each iteration of the algorithm comprises six
steps:

1. Select two nodes i, j randomly.
2. CalculateDzij(x), the amount by which the vector of z-

statistics changes when xij is toggled from its current
state to the opposite.

3. Calculate the acceptance probability ratio (which
avoids calculating c):

L ¼ PrðXij ¼ toggled value j rest of graphÞ
PrðXij ¼ current value j rest of graphÞ

¼ expðu9DzijðxÞÞ:

4. Select a random number r from a uniform (0, 1)
distribution.

5. If L. r then accept the toggle for the updated state;
otherwise retain the original value as the updated
state.

6. Record the updated state of the network and increase
the current time by Exponential � (ls).

The acceptance rule in step 5 guarantees that the sta-
tionary distribution of the chain equals the probability
distribution of Equation 1 (Metropolis et al. 1953).
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ERGMs withMCMC are generally used to simulate static
networks from a probabilitymodel of network structure.
However, since networks at consecutive steps in the
chain are either identical or differ by one tie, this

approach also provides a simple way to approximate
dynamic networks (implemented in step 6) while
retaining the instantaneous probability distribution of
the static model. (In general there is no guarantee that
this approach will yield a chain that resembles a real
dynamic network process on the local scale. However,
the relatively simplemodel parameterizations used here
should at least ensure that the chain mixes well locally.
More realistic methods for dynamic network modeling
in the ERGM framework are still in development.) All
models share the value of ls (13.63) that corresponds to
a mean uncensored relationship duration of 4 years in
these populations.
The first chain begins with no ties and is run through

a 1-million-iteration burn-in before to virtually elimi-
nate dependence on initial conditions. Snapshots are
then taken every 100,000 steps and used as seed net-
works for each of the 10-year dynamic simulations. The
outcome of this process is a set of 100 runs for each
mixing pattern (10,000 for random), consisting of a set
of relations and their starting and ending times.
One additional constraint was added for program-

ming convenience; once a tie had formed between two
actors and was then broken, it could not reform during
the same 10-year simulation. Although this means that
the resulting networks are not drawn perfectly from the
stated probability distribution, the differences are small
enough in sparse networks of this duration that the
effects are assumed to be minimal.
Viral transmission: In this simulation a constant,

universal probability of transmission within each sero-
discordant couple is used. This ignores many sources
of heterogeneity, including time since infection of first
partner, number of acts within partnership, and actor

TABLE 1

Population mixing models

Model Abbreviation Description

Random Random All partnerships equally likely
Two subgroups,

weak assortativity
2-strong Population divided into two groups of 100;

150 intragroup ties and 50 intergroup ties expected
Two subgroups,

strong assortativity
2-weak Population divided into two groups of 100;

195 intragroup ties and 5 intergroup ties expected
Eight subgroups,

weak assortativity
8-strong Population divided into eight groups of 25;

150 intragroup ties and 50 intergroup ties expected
Eight subgroups,

weak assortativity
8-weak Population divided into eight groups of 25;

195 intragroup ties and 5 intergroup ties expected
Core/periphery,

strong assortativity
Core-strong Population divided into active group of 25 and periphery of 175;

100 intracore ties, 95 intraperiphery ties, 5 core-periphery ties expected
Core/periphery,

weak assortativity
Core-weak Population divided into active group of 25 and periphery of 175;

30 intracore ties, 150 intraperiphery ties, 20 core-periphery ties expected
Bridges Bridges Population divided into 95 husbands, 95 wives, and 10 commercial

sex workers. Spouses remain married throughout,
105 ties between husbands and other females expected

In each assortative population (2-strong, 2-weak, 8-strong, 8-weak), individuals chose partners preferentially from within their
own cluster, but all clusters have equal activity. In the core populations, core members are more active than periphery members
and also disproportionately choose other core members as partners.

Figure 1.—Graphical representation of the eight mixing
models: (a) random, (b) 2-weak, (c) 2-strong, (d) core-weak,
(e) core-strong, (f) 8-weak, (g) 8-strong, and (h) bridges. In
all diagrams, the size of the dots represents their relative ex-
pected partner number. In a–g clusters of dots represent
groups that choose each other as partners more than they
choose members of other clusters; the distance between the
clusters represents their relative probability of choosing across
cluster. In h there are no clusters; joined pairs represent mar-
ried couples who remain partnered throughout; the larger
members of thepair arehusbands, who enter intopartnerships
with commercial sex workers, shown in the center.
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attributes such as genetic resistance to infection.However,
this makes it possible to state that differences in out-
come are due solely to mixing pattern. Estimates for
mean infectivity per partnership per unit time do not
appear in the literature; instead, a number (0.0007 in-
fections/serodiscordant partnership/day) was selected
because it yielded seroincidence in a simulated pan-
mictic population approximating that found in various
United States communities (Moss et al. 1994; Holmberg

1996).
Independent, constant infectivity implies that each

serodiscordant partnership has a waiting time until
transmission of Exponential � (lt), where lt ¼ 1/
0.0007 days. The expected waiting time until the first
transmission among all serodiscordant couples is thus
Exp � (slt), where s is the number of serodiscordant
partnerships. The quantity s changes every time a
partnership forms or ends and every time a transmission
event occurs. Transmission is thus modeled in each
network by infecting one member randomly and then
iterating the following steps beginning at time t0:

1. Calculate the number of serodiscordant partnerships
s and the time until the next partnership forms or
dissolves (tp).

2. Draw a random number r from Exponential � (slt).
3. If r, tp, add r to the current time, randomly select a

serodiscordant partnership, and infect its seronega-
tive member. Otherwise, advance the current time
by tp.

Viral evolution: Each infected host is represented in
the final analysis by a single 500-base viral sequence,
referred to as the host’s sampled lineage; generating the

genetic distance between an individual’s sampled line-
age and that of those they infect requires accounting for
intrahost dynamics, ideally without modeling each
host’s entire viral pool. This is accomplished by using
a model of intrahost dynamics to define the probability
distribution for the timing of the sequences’ most re-
cent common ancestor. The model used here entails
Ne ¼ 1 at infection, followed by rapid expansion and
contraction over the first 60 days and a subsequent
steady state ofNe¼ 103 (Leigh Brown et al. 1997). For a
constant-sized population, time back to the most recent
coalescence event among n sequences in a popula-
tion of size N follows an exponential distribution with
parameter

lc ¼
nðn � 1Þ
2NeG

; ð2Þ

whereG is generation length (Rodrigo andFelsenstein
1999). HereNe¼ 103 andG¼ 1.5 days, an average of the
1.2-day estimate of Rodrigo et al. (1999) and the 1.8-day
estimate they cite from personal communication with
Perelson. Any two sequences within a single host that
have not coalesced by the beginning of the steady state
are assumed to coalesce at the point of infection. Thus,
the following steps are completed for each infection
event (where actor i infects actor j), beginning with the
most recent:

1. Determine the number of potentially coalescing
lineages within actor i (ni). These include the
sampled lineages of i, j and anyone else i has infected
more recently than j but who has not coalesced in a
previous step.

2. Determine the most recent coalescence time t using
Equation 2.

a. If t is less recent than another infection event
involving i, no coalescence occurs yet.

b. If t is ,60 days more recent than i’s infection
date, all ni lineages coalesce at i’s infection date.

c. Otherwise, two lineages coalesce. If ni . 2, the
two coalescing lineages are selected randomly,
ni is reduced by one, and step 2 is repeated for
the reduced set of lineages.

HIV-1 mutation is simulated using Leitner and
Albert’s (1999) mean mutation rate for the env gene,
6.7 3 10�3 substitutions/base/year, or 1.8 3 10�5

substitutions/base/day. It also includes the env nucleo-
tide frequencies and transition matrix from Leitner
et al. (1997), both shown in Table 3, and gamma-
distributed intersite mutation rates, using their point
estimate a ¼ 0.384 for env. The instantaneous mutation
rate for site x (mx) equals the product of the overall
mutation rate, the relative mutation rate of the nucle-
otide at x, and x’s gammamutation factor. (Note that the
expected value of both the second and third factor is 1.)
The effects of selection and recombination are ignored.

TABLE 2

Graph statistics and parameters for each mixing model

Model Z u

Random No. of ties �4.590
2-strong No. of ties �3.907

No. of intergroup ties �3.693
2-weak No. of ties �4.174

No. of intergroup ties �1.119
8-strong No. of ties �2.426

No. of intergroup ties �4.895
8-weak No. of ties �2.708

No. of intergroup ties �2.387
Core-strong No. of ties �5.071

No. of core–periphery ties �1.703
No. of intracore ties 4.377

Core-weak No. of ties �4.610
No. of core–periphery ties �0.773
No. of intracore ties 2.413

Bridges No. of male–CSW ties �2.085
No. of male–male ties �‘

No. of female–female ties �‘

CSW, commercial sex worker.
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Simulation of mutation begins when the first person
in the population is infected from an outside source and
proceeds forward in time. The initial sequence for this
person is generated randomly with nucleotide proba-
bilities given in Table 3B. Mutations occur along this
lineage by repeatedly calculating the current mutation
rate mx for each site x, drawing a time until the next
mutation tx for each site from Exponential � (mx), and
selecting minft1, . . . , t500g. The new nucleotide is
selected with probabilities derived from the correspond-
ing row in Table 3B. This process is repeated for every
infected actor, with the initial sequence in their sampled
lineage matching that of the sequence to which it
coalesces.

The sampled sequences from each host are used to
generate mismatch distributions for the population.
For each run in which $25 hosts are infected, 25 hosts
are drawn randomly to contribute sampled lineages to
a phylogenetic tree, built using an ultrametric Fitch–
Margoliash distance method with power 2 (imple-
mented in PHYLIP as KITSCH). Distance matrices are
derived using the Kimura two-parameter model (imple-
mented in PHYLIP as DNADIST), with a transition/
transversion ratio (1.42) derived from the given mu-
tation matrix and a coefficient of variation (1.614)
corresponding to the Jin–Nei gamma parameter of
0.384 used in the simulation. The classic skyline plot
method of Pybus et al. (2000) is then used to generate
maximum-likelihood parameter estimates for the re-
constructed trees under the assumptions of exponential
growth, logistic growth, and ‘‘expansion growth’’ (ex-
ponential growth beginning from an arbitrary popula-
tion size in the infinite past). All three of these are
reasonable models for the process under investigation:
the initial stages of an epidemic generally see exponen-
tial increases in prevalence; saturation of small popula-
tions like these may on the other hand yield logistic
growth; while beginning with a single host whose viral
pool jumps to 1000 shortly after infection suggests

expansion growth may be most appropriate. Skyline
plot analysis was conducted with Genie 2.0 (Pybus
and Rambaut 2002a), using the Powell algorithm for
maximum-likelihood (ML) estimation. Because the
latter two methods are generalizations of exponential
growth, the fit of each can be compared to that of the
exponential model using a log-likelihood-ratio test.
[Although one can also use a Kolmogorov–Smirnov test
to examine fit for each model individually, the assump-
tions of this approach are rarely met in these popula-
tions (Pybus and Rambaut 2002b) and the power of
this test varies widely over the range of sample sizes in
this study (results not shown).]
Estimates obtained from Genie are expressed in

terms of mutation events; rescaling by the mutation
rate yields N̂ 0 (estimate of current effective interhost
viral population size) and r̂ (estimate of the exponential
growth rate of the effective interhost viral population
size).
Note that in this analysis, the sampled population

fraction of the host population used for phylogenetic
analysis is much larger than one would usually have in
practice (100% for the mismatch analysis and 25 of 25–
130 for the phylogenetic trees). Coalescent methods
require sample sizes to be much smaller than the
population from which they are drawn for the approx-
imations on which they are based to hold. However,
each host represents an effective viral pool of 103, so the
viral sample is much smaller than the viral population,
which is the one under investigation.

RESULTS

Figure 2 compares HIV-1 prevalence across mixing
patterns. Summary statistics for these distributions are
contained in Table 4, including the results of a Kull-
back–Leibler distance test between each distribution
and that of the random mixing pattern. [P-values were
obtained by sampling 100 runs from the 10,000 runs of
the random pattern, calculating the Kullback–Leibler
(KL) distance for this sample from the distribution of all
10,000, and repeating 1000 times]. Subdivision into two
groups shows no significant effect on prevalence, even
when strongly isolated. All other patterns have preva-
lence distributions differing significantly from the ran-
dom pattern, with clustering patterns lower and core
and bridges patterns higher. These results are consistent
with previous work described above, demonstrating
network effects on HIV-1 transmission.
Figure 3 examines the relation between infected host

size and the mean of the mismatch distribution for each
mixing pattern.Here 10,000 runs of the randompattern
are used to provide sufficient numbers for comparison
at every host population size. Lines show the mean and
2.5 and 97.5% quantiles for random runs at each size.
Points indicate runs for the relevant mixing pattern. For
most patterns the observed level of genetic variation

TABLE 3

Allele frequencies and transition matrix for env

A. Allele frequencies
A 0.4627
C 0.1474
G 0.1598
T 0.2302

A C G T

B. Transition matrix
A �0.8351 0.2519 0.4599 0.1233
C 0.7909 �1.3932 0.0574 0.5449
G 1.3318 0.0529 �1.5406 0.1558
T 0.2477 0.3488 0.1081 �0.7047

Data are from Leitner et al. (1997).
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falls within the range observed in random runs most or
all of the time; the exceptions are the core-strong and
8-strong patterns. In these cases mean genetic diversity
tends to be higher than that in random populations of
the same size, presumably because these patterns see
rapid initial spread in the core or single subgroup, with
little later on.

More interesting differences appear in the analysis
using full phylogenetic information. Table 5 shows the
number of runs by mixing pattern for which each
growth model provided the best fit. (For no run did
both the logistic and the expansion models fit signifi-
cantly better than exponential). Examples of logistic
growth are found in all mixing patterns, but far more
frequently in core-strong than in any other and far less
in the 2-weak and bridges patterns. Just as with mis-
match means, seeing logistic growth with the core-

strong pattern is not surprising, since transmission is
likely to spread rapidly in the core and then much more
slowly into the periphery, inducing amarked leveling off
of new infections. Why the 2-weak and bridges patterns
are less likely than panmixis to follow a logistic growth
model is not as apparent. Expansion models are not
common with any pattern except 8-strong, where the
number of runs is too small to draw strong conclusions.
Figure 4, a–c, provides one example wherein each
parametric growth model fits best.

Figure 5 graphs the ratio of N̂ 0 from the best-fitting
model for each run against nNei for that run. N̂ 0 is in fact
on the order of nNei for most runs and never on the
order of n, the number of hosts alone. All but one run of
the random pattern see N0 within one order of magni-
tude of nNei, and the same is true for most other mixing
patterns as well. In all these cases the relative over-
estimate by the exponential model is largely indepen-
dent of population size. In the range of values we see
(N0r ¼ �102–103), Pybus et al. (2000) in fact report an
upward bias of N̂ 0 by roughly a factor of 2 [b(u) ¼ 1 in
their terminology]. For the core-strong pattern, how-
ever, N̂ 0 is often two to three orders of magnitude larger
than nNei (and than N̂ 0 for a panmictic population of
the same size.) The bridges pattern seesmany runs up to
two orders of magnitude larger than nNei, a phenome-
non that varies strongly with seroprevalence. Figure 4d
illustrates a case where all three models yield a very high
N̂ 0 and neither logistic nor expansion growth fits better
than exponential, even though the shape of the curve
might suggest logistic growth. Similar patterns are seen
in most of the runs for which N̂ 0 is high.

Expansion growth is a reasonable model since Nei of
the sole infected host jumps to 103 almost initially in the
simulation. It is thus interesting to see what estimate for
initial population size (that is, Ne in the infinite past) is
obtained across all runs for which expansion growth is
the best-fittingmodel. A boxplot of these values is shown
in Figure 6, demonstrating that this approach does in
fact center around 103.

Figure 2.—Distribution of infected population across 100
runs of each model.

TABLE 4

Distribution of infected hosts across 100 runs of each
mixing pattern

Model Mean SD KL distance P

Random 27.5 24.7 — —
2-strong 26.9 20.5 0.260 0.37
2-weak 25.6 22.0 0.228 0.65
8-strong 14.0 7.7 1.327 ,0.001
8-weak 23.5 19.6 0.361 0.01
Core-strong 42.7 9.6 1.992 ,0.001
Core-weak 52.7 28.2 0.594 ,0.001
Bridges 102.9 21.9 3.348 ,0.001

Kullback–Leibler (KL) distances are between the given dis-
tribution and 10,000 runs of the random mixing pattern. See
text for calculation of P-values.
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Exponential growth and expansion growth both pro-
vide an estimate of the exponential growth rate r̂ that
can be compared to one calculated directly for the
observed host population size. The viral population
2133 generations before present (3650 days/1.5 days
per generation ¼ 2133 generations) is 1, although it
jumps to 103 shortly thereafter. Consider the r implied
by a population growing exponentially fromN2133¼ 1 to
N0 ¼ 1000n or from N2133 ¼ 1000 to N0 ¼ 1000n; the
values for r are simply

r ¼ log
n2133

103n

� �
=2133 ð3Þ

as implied by the formula for exponential growth. (Note
that there is no negative in the formula since time
is scaled backward.) Figure 7a shows the ratio of r̂
obtained from the best-fitting model (square for expo-
nential, circle for expansion) to the value of r from
Equation 3 with N2133 ¼ 1; Figure 7b repeats this for
N2133¼ 1000. Interestingly, r̂ tends to be slightly smaller

than the former and slightly larger than the latter, and
there is little variation amongmixing patterns. Note that
in this range of values for N0r Pybus et al. (2000) found
very little bias in r̂ .

DISCUSSION

HIV-1 research is unique for the large role played by
population genetics in its practical applications; accu-
rate estimates of viral population size and dynamics,
both within and between hosts, are important for
applications as wide ranging as reconstructing general
patterns of viral spread, understanding differences in
transmissibility of viral genotypes, and testing hypothe-
ses for the transmission of antiviral resistance. The work
here was a first step to fill a critical gap in HIV pop-
ulation genetics: our understanding of how the network
of behaviors that spread HIV-1 in the first place can
affect the relationship between census size and effective
population size at the community level.

Figure 3.—Mismatch mean by infected host size, for each mixing pattern in comparison to 10,000 random runs.

TABLE 5

Frequency of parametric models yielding best fit by likelihood-ratio test

Model
No. of runs with

n $ 25

No. with best-fitting model as

Exponential (%) Logistic (%) Expansion (%)

Random 41 31 (76) 7 (17) 3 (7)
2-strong 48 38 (79) 8 (17) 2 (4)
2-weak 42 39 (75) 2 (5) 1 (2)
8-strong 8 6 (75) 1 (13) 1 (13)
8-weak 37 31 (84) 6 (16) 0 (0)
Core-strong 100 56 (56) 43 (43) 1 (1)
Core-weak 81 67 (83) 10 (12) 4 (5)
Bridges 100 98 (98) 2 (2) 0 (0)
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Parametric models for estimating the growth rate of
the epidemic through phylogenetic analysis seem to be
highly robust for all populations regardless of mixing
pattern. These parametric models also yielded estimates

for current viral effective population size (N̂ 0) close to
the product of infected host size (n) and intrahost viral
effective population size (Nei) when the hosts are pan-
mictic. That such accurate estimates could be obtained

Figure 5.—Ratio of n0 from best-fitting model to nNei, by infected population size. Note that core-strong has an additional point
at (26, 2.1 3 105).

Figure 4.—Examples of runs fit by different parametric growth models. Thick line, skyline plot; thin line, best-fitting model;
dashed line, ML exponential model (for runs not fit best by exponential). (a) A 2-weak run fit best by the exponential model. (b) A
core-strong run fit best by logistic growth. (c) A random run fit best by expansion growth. (d) A bridge run in which exponential
yields a population estimate vastly larger than the census population, but for which no other model fits significantly better.
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from small samples is a very promising sign. It is impor-
tant to realize, though, that our ability to estimate the
effective number of hosts in the section of the epidemic
from which our sample of sequences is drawn is thus
confounded with our ability to accurately estimate Nei.
Although multiple studies have now obtained esti-

mates for Nei on the order of 103, this is hardly a settled
debate.
The degree to which estimates of N0 change with

violation of panmixis varies considerably on the basis of
the type of violation. Most mixing patterns saw estimates
of N0 in the same range as panmixis, although patterns
with a highly segregated core and those resembling
commercial sex worker networks often yielded values of
Ne that were orders of magnitude greater than census
size. Both of these are likely to be common patterns in
populations in which HIV-1 is circulating, and the latter
in particular is one that bears little resemblance to
existing population genetic models for population sub-
structure. Moreover, populations with different modes
of transmission (and different viral subtypes) will
generally display different network patterns; the bridges
pattern, for instance, is observed in some heterosexual
populations, while mixing patterns with cores and
subgroups are likely to appear in many homosexual or
intravenous drug-using populations. Thus it is reason-
able to believe that a large part of the observed
difference in N0 between viral subtypes A and B
(approximately two orders of magnitude for gag and
approximately one for env; Pybus et al. 2000) may be
due to differences induced by different departures from
panmixis rather than differences in census size. In both
cases, the absolute numbers should not be taken to

Figure 7.—Ratio of r obtained from
skyline plot model to r assuming expo-
nential growth with N0 ¼ 1000n and
(a) N2133 ¼ 1 and (b) N2133 ¼ 1000.
Boxes, mean 61 SD; whiskers, 2 SD;
circles, outliers.

Figure 6.—Boxplot of estimates for initial population size
across all runs best fit by expansion growth.
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represent the effective number of hosts, but the
effective combined viral pool, with the effective number
of hosts considerably lower than this.

In fact, any attempt to use phylogenetic methods to
identify pathogen population size and growth rate
through time, to date the timing of past epidemic events,
predict the future trajectory of host size on the basis
of the past, or compare the past transmission routes
of subtypes, will need to account for both intrahost
dynamics and the details of the social networks spread-
ing the pathogen, since each can affect Ne by multiple
orders of magnitude. As we use simulation to develop
more insight into the distribution of Ne expected
through time under different transmission modes and
rates, this approach may begin to contribute greatly to
the current debate on the relative importance of sexual
and iatrogenic transmission in the early history of the
HIV-1 epidemic in Africa and elsewhere (Gisselquist
and Potterat 2003).

This study has purposefully avoided many forms of
complexity requiring consideration in future work.
Chief among these are the birth/death dynamics of
real populations and heterogeneity in infectivity over
time and by partnership type and duration. The former
is certain to have reduced the rate of new infections in
the population toward the end of simulation and thus
perhaps to have induced similarities to logistic growth
that might not exist in dynamic populations. The
expected effect of ignoring the latter form of heteroge-
neity is to underestimate the importance of short
relationships as sources of viral spread. Evidence is
now growing that infectivity is concentrated during the
first few months after infection when viral load is high
(Leynaert et al. 1998; Shiboski and Padian 1998). If
this is true, then the model here will have under-
estimated the frequency with which new infections
occur before the infector has reached the Nei steady
state, making the relationships between Ne and nNei

murkier. This will have its greatest effect in populations
where short partnerships are relatively important, such
as those involving commercial sex workers. Ignoring
recombination may also overemphasize the contribu-
tion of intrahost diversity to Ne, possibly to a consider-
able extent (Wain-Hobson et al. 2003).

This study focused on population sizes equivalent to
an at-risk group in a small community. Many applica-
tions of HIV interhost phylogenetics study much larger
populations, including whole subtypes of HIV-1 or the
entire epidemic. Mixing is nonrandom within the
community and is also certainly nonrandom at higher
levels as well (by geographical distance, at the very least).
Whether these higher levels of nonpanmictic behavior
will also have significant effects on patterns of genetic
variation or whether our methods are in fact robust to
them is not addressed in this study. Further work (ana-
lytical or simulation-based) should identify how the effects
observed here scale up to more global populations.

This work demonstrated that host mixing structure
may have strong effects on population genetics ofHIV-1,
and these may not always be accountable by existing
parametricmodels for population growth. This does not
imply that no parsimonious parametric models can be
used to describe such populations. For example, a four-
parameter model combining the features of logistic
growth and expansion growth (i.e., logistic growth
beginning at an arbitrary population size in the infinite
past) may have fit some of the runs here that were not
otherwise well fit by any of the three testedmodels, since
both leveling off toward the present and starting from a
population of size 1000 occurred. Other models that
allow for multiple plateaus with logistic growth between
each may best describe some populations with strongly
segregated clusters.

More research on social network structure in HIV-
transmitting populations (ideally integrating genetic
data, which has not yet been done in any of the large-
scale studies of complete sexual network data in a
population) should help us hone in on the full range
of patterns found across risk groups and allow us to
generalize our phylogenetic models to incorporate all
of these possibilities. Since ERGM provides a means for
parameterizing any possible network structure, it seems
a strong candidate for the framework in which the two
steps of this process are bridged. By doing so we will
finally gain the ability to understand the genetics of
human sexually transmitted pathogens in a way that
truly reflects the unique processes that spread them.
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