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ABSTRACT

The high growth (hg) mutation increases body size in mice by 30–50%. Given the complexity of the
genetic regulation of animal growth, it is likely that the effect of this major locus is mediated by other
quantitative trait loci (QTL) with smaller effects within a web of gene interactions. In this article, we extend
our functional mapping model to characterize modifier QTL that interact with the hg locus during
ontogenetic growth. Our model is derived within the maximum-likelihood context, incorporated by
mathematical aspects of growth laws and implemented with the EM algorithm. In an F2 population founded
by a congenic high growth (HG) line and non-HG line, a highly additive effect due to the hg gene was
detected on growth trajectories. Three QTL located on chromosomes 2 and X were identified to trigger
significant additive and/or dominant effects on the process of growth. The most significant finding made
from our model is that these QTL interact with the hg locus to affect the shapes of the growth process. Our
model provides a powerful means for understanding the genetic architecture and regulation of growth rate
and body size in mammals.

THE high growth (hg) gene is a spontaneous muta-
tion that results in a 30–50% increase in postnatal

body growth in mice (Bradford and Famula 1984).
Earlier physiological studies suggest that the increase of
growth efficiency by the hg locus stems from increased
energy metabolism without altering overall body com-
position (Calvert et al. 1985, 1986). Using an interval-
mapping approach (Lander and Botstein 1989),
Horvat and Medrano (1995) have localized the hg
locus near Dl0Mit41 on the distal half of mouse chromo-
some 10 in both female and male F2 populations. These
authors further found that the hg phenotype is the
result of a 500-kb deletion in chromosome 10 that
includes three genes, suppressor of cytokine signaling-2
(Socs2), CASP2 and RIPH1 domain containing adaptor
with death domain (Raidd/cradd), and viral encoded
semaphorin receptor (Vespr or Plexin C1) (Wong et al.
2002). The HG phenotype results from the lack of ex-
pression of Socs2 (Horvat and Medrano 2001), which
regulates growth hormone signal transduction.

Given the genetic complexity of growth, it is unlikely
that the hg gene triggers a marked effect on growth
rate and body size with no mediation by environment
and other loci. As observed by Corva and Medrano

(2000), for example, the nutritional environment con-
founds the expression of the hg effect on the high
growth phenotype in mice. To identify modifiers of

the hg locus, Corva et al. (2001) developed an F2

population segregating for hg to examine interactions
between hg and other growth genes. They identified
a significant quantitative trait locus (QTL), Q2Ucd2,
located on chromosome 2, affecting weight gain from
2–9 weeks. This QTL accounts for 10.4% of the phe-
notypic variance in the homozygous hg/hgmice and also
exerts effects on carcass ash and protein and femur
length.

Comparing two F2 subpopulations, one homozygous
for the mutant allele (hg/hg) and the other homozygous
for the wild-type allele (1/1), Corva et al. (2001) de-
tected a growth QTL that was expressed differently be-
tween the two subpopulations and, therefore, thought
to interact with the hg locus. Such an hg background-
dependent QTL identified from single-trait mapping
makes it worthwhile to perform more thorough QTL
analyses for ontogenetic growth using functional map-
ping (Ma et al. 2002; Wu et al. 2004a,b,c; Zhao et al.
2004). Functional mapping that integrates mathemati-
cal aspects of growth laws into a mapping framework
can localize dynamic QTL responsible for the biological
process of a trait measured at a finite number of time
points and provide biologically meaningful results
about QTL detection. By estimating the parameters that
determine shape and function of a particular biological
process, rather than directly estimating gene effects at
all possible points during the entire time course, func-
tional mapping strikingly reduces the number of param-
eters to be estimated and, hence, displays increased
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statistical power to detect hidden QTL for growth
processes.

The motivation of this article is to develop a statistical
model for detecting QTL that interact with the hg locus
to influence the growth process within the context of
functional mapping. Unlike single time point analyses
by Corva et al. (2001), this model provides a quantita-
tive and testable framework for studying the interplay
between epistasis and growth pattern. Also, unlike our
earlier interaction model for a pair of unknown QTL
(Wu et al. 2004a), this model attempts to detect epistasis
between modifier QTL and a known gene on the ge-
nome, which is supposed to provide better estimates of
the QTL locations. Although motivated to solve a prac-
tical problem in mouse QTL mapping (Corva et al.
2001), we have developed a general epistasis-detecting
model that can be used to unveil the genetic secrets of
growth trajectories for other species.

MODEL

Background and problem: The hg mutation has been
introgressed intotheC57BL/6J(C57)backgroundthrough
nine backcrosses to create congenic line C57BL/6J-hg/hg
(HG). A mapping population was founded by mating
smaller CAST/EiJ (CAST) males to HG females, which
produced a total of 75 F1 and 1132 F2 mice (Corva et al.
2001). To test the segregation of hg in the mapping
population, these F2 mice were genotyped by using
D10Mit41 on chromosome 10, detected to be linked
with hg and D10Mit69, a marker that maps within the
hg deletion (Horvat and Medrano 1995). Mice homo-
zygous for HG alleles at D10Mit41 and without a
PCR amplification product for D10Mit69 (indicating
homozygosity for the hg deletion) were thought to be
homozygous for the mutant allele (expressed as hg/hg).
On the other hand, mice homozygous for CAST alleles
at D10Mit41 and amplifying for D10Mit69 were re-
garded as being homozygous for the wide-type
allele (expressed as 1/1). It was found that there were
274 1/1 mice, 596 1/hg mice, and 262 hg/hg mice in
the F2 cross, which conforms to Mendelian segregation
ratios.

Our hypothesis is that there exist particular QTL for
body growth that are expressed differently among the
three hg-typical genotypes. Such QTL are thought to be
modifiers that epistatically modulate the effects of hg.
Below, we modify our functional mapping model (Ma

et al. 2002; Wu et al. 2004a,c) to detect QTL modifiers
that display epistatic effects with the hg locus on growth
trajectories.
The likelihood function: Suppose there are n mice

for the F2, which is composed of three subpopulations
for the hg gene with size nj ( j ¼ 2 for genotype hg/hg,
1 for genotype hg/1, and 0 for genotype 1/1). Assume
that a QTL for growth curves or trajectories is segregat-

ing to form three genotypes, expressed by k (k ¼ 2 for
QQ , 1 for Qq, and 0 for qq), with alleles Q from the HG
parent and q from the CAST parent. Consider a genetic
linkage map constructed for the F2 using molecular
markers. The foundation of interval QTL mapping
is laid on the mixture model in which each F2 individual
is assumed to arise from one and only one of the pos-
sible QTL genotypes within known genotypes of two
markers that bracket the QTL (Lander and Botstein
1989). The frequencies of each QTL genotype within
marker interval genotypes, i.e., the conditional QTL
genotype probabilities given markers (see Table 1),
are embedded within the mixture model to reflect
the genomic position of the QTL within the marker
interval.

Let -k( j)ji be the conditional probability of a joint hg-
QTL genotype for individual i given a marker genotype.
The likelihood function of growth data, y, measured at
T different time points for the hg gene and putative QTL
is written as

Lð-; u; SjyÞ ¼
Yn
i¼1

X2

j¼0

X2

k¼0

-kð jÞji f ðyi ; ukð jÞ; Skð jÞÞ
" #

ð1Þ

¼
Y2

k¼0

Ynj
i¼1

X2

j¼0

-kji f ðyið jÞ; ukð jÞ; SjÞ
" #

; ð2Þ

where - is the parameter for QTL position contained
in the matrix of the QTL conditional probability, u
contains the genotypic mean vector for different hg-
QTL genotypes, and S is the residual covariance matrix
within hg-QTL genotypes. Equation 1 can be converted
to Equation 2 because for each individual the hg
genotype is known and, thus, the product of the likeli-
hood over different individuals is made among three
different hg genotypes. In Equation 2, nine joint hg-QTL
genotypes in the mixture model for a given individual i
can be simply expressed by three QTL genotypes
separately for three hg genotypes. For this reason, -k(j )ji
can be expressed by -kji. We assume that the residual
covariance matrix is different among the hg genotypes
but the same within different QTL genotypes (see
Equation 2).

The conditional probability -kji can be differently
calculated when the QTL and hg are located at different
marker intervals and when they are located next to each
other. In the former case, -kji’s have the same form for
each of the three hg genotypes (see Table 1). In the
latter case, -kji’s have different forms for different hg
genotypes, but they still can be obtained from Table 1 by
treating the hg gene as a marker. The choice of one of
the two flanking markers M‘ and M‘11 in Table 1 as the
hg gene depends on the left or right side of the hg gene
at which the QTL is located.

In the mixture model of Equation 2, the multivariate
normal distribution of hg-QTL genotype jk for growth
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traits measured for individual i in each subpopulation k
is expressed as

f ðyið jÞ; ukð jÞ; SjÞ ¼
1

ð2pÞT=2jSj j1=2

� exp �1
2ðyið jÞ � ukð jÞÞS�1

j ðyið jÞ � ukð jÞÞT
h i

;

where yi( j ) ¼ [yi( j )(1), . . . , yi( j )(T)] is a vector of
subpopulation-specific observation measured at T time
points, and uk( j ) ¼ [uk( j )(1), . . . , uk( j )(T)] is a vector of
expected values for genotype jk at different points. At a
particular time t, the relationship between the observa-
tion and expected genotypic value can be described by a
linear regression model,

yið jÞðtÞ ¼
X2

j¼0

xikukð jÞðtÞ1 eið jÞðtÞ;

where xij is the indicator variable denoted as 1 if a QTL
genotype k is considered for subject i and 0 otherwise;

and ei(j)(t) is the residual error that is i.i.d. normal with
the mean of zero and the variance of s2

j ðtÞ. The errors at
two different time points, t1 and t2, are correlated with
the covariance of covj(t1, t2). These (co)variances com-
pose a (T � T ) matrix Sj.

Modeling the mean vector and (co)variance matrix:
The estimation of the mean vector uk( j) and the (co)var-
iance matrixSj is statistically difficult because they involve
too many unknown parameters given a possible sample
size. Also, such direct estimation does not take into
account the biological principles of growth and de-
velopment. We incorporate the universal growth law, as
described by a logistic equation, into the estimation pro-
cess of the likelihood function (Equation 2). Thus, the
mean value of hg-QTL genotype jk at time t is expressed by

ukð jÞ ¼
akð jÞ

11 bkð jÞe
�ckð jÞt

; ð3Þ

where the growth parameter setGkð jÞ ¼ ðakð jÞ; bkð jÞ; ckð jÞÞ
describes the asymptotic growth, initial growth, and

TABLE 1

Conditional probabilities (-kji) of QTL genotypes given marker genotypes for M‘ and M‘+1 in the F2 population

QTL genotype

Marker genotype QQ Qq qq

M‘M‘M‘11M‘11
ð1 � r1Þ2ð1 � r2Þ2

ð1 � rÞ2

2r1r2ð1 � r1Þð1 � r2Þ
ð1 � rÞ2

r 2
1 r

2
2

ð1 � r Þ2

M‘M‘M‘11m‘11
r2ð1 � r1Þ2ð1 � r2Þ

ð1 � rÞr
r1ð1 � r1Þ 1 � 2r2 1 2r 2

2

� �
ð1 � r Þr

r 2
1 r2ð1 � r2Þ
ð1 � rÞr

M‘M‘m‘11m‘11
r 2
2 ð1 � r1Þ2

r 2

2r1r2ð1 � r1Þð1 � r2Þ
r 2

r 2
1 ð1 � r2Þ2

r 2

M‘mM‘M‘11M‘11
r1ð1 � r1Þð1 � r2Þ2

ð1 � rÞr
r2ð1 � r2Þ 1 � 2r11 2r 2

1

� �
ð1 � rÞr

r1r
2
2 ð1 � r1Þ
ð1 � rÞr

M‘m‘M‘11m‘11
2r1r2ð1 � r1Þð1 � r2Þ

1 � 2r 1 2r 2

ð1 � 2r11 2r 2
1 Þ 1 � 2r2 1 2r 2

2

� �
1 � 2r 1 2r 2

2r1r2ð1 � r1Þð1 � r2Þ
1 � 2r 1 2r 2

M‘m‘m‘11m‘11
r1r

2
2 ð1 � r1Þ
ð1 � rÞr

r2ð1 � r2Þ 1 � 2r11 2r 2
1

� �
ð1 � rÞr

r1ð1 � r1Þð1 � r2Þ2

ð1 � r Þr

m‘m‘M‘11M‘11
r 2
1 ð1 � r2Þ2

r 2

2r1r2ð1 � r1Þð1 � r2Þ
r 2

r 2
2 ð1 � r1Þ2

r 2

m‘m‘M‘11m‘11
r 2
1 r2ð1 � r2Þ
rð1 � rÞ

r1ð1 � r1Þ 1 � 2r21 2r 2
2

� �
rð1 � rÞ

r2ð1 � r1Þ2ð1 � r2Þ
rð1 � rÞ

m‘m‘m‘11m‘11
r 2
1 r

2
2

ð1 � rÞ2

2r1r2ð1 � r1Þð1 � r2Þ
ð1 � rÞ2

ð1 � r1Þ2ð1 � r2Þ2

ð1 � r Þ2

r1, r2, and r are the recombination fractions between marker M‘ and the QTL, between the QTL and marker
M‘11, and between the two flanking markers. Marker alleles M‘ and M‘11 are assumed to be from the HG parent
and m‘ and m‘11 from the CAST parent, respectively.
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relative growth rate, respectively. With this growth
equation, we need only estimate the growth parameters,
rather than estimate genotypic values at every point, to
detect genotypic differences in growth. This can signif-
icantly reduce the number of unknown parameters
to be estimated, especially when the number of time
points is large. Moreover, the statistical significance
of a QTL and its interaction with the hg gene can be
tested by comparing these growth parameters among
the three different QTL genotypes across different
subpopulations.

Similarly, the covariance matrix can be structured
with an appropriate model. Statistical analysis of longi-
tudinal data has established a number of structural
models that capture most of the information contained
in the matrix (Diggle et al. 2002). Here, we use a first-
order autoregressive [AR(1)] model to model the struc-
ture of the matrix, which is based on two assumptions,
first, the variance s2 is constant over time, and, second,
the correlation decays in a proportion of r purely
with time interval. With the AR(1) model, we need
only estimate Qj ¼ (rj, s

2
j Þ instead of all elements in the

matrix. The advantage of such a matrix-structuring
model is to reduce the number of unknown parameters,
without losing the information of the matrix. Many
other structural models may be more advantageous
over the stationary AR(1) model, but the choice of
an optimal model in a particular situation should be
based on statistical tests, as described in Kirkpatrick
and Heckman (1989), Pletcher and Geyer (1999),
Zimmerman and Nunez-Anton (2001), and Pletcher
and Jaffrezic (2002).
Computational algorithms: As classified above, the

unknown parameters that build up the likelihood
function (Equation 2) include the curve parameters,
matrix-structuring parameters, and the QTL genotype
frequencies specified by QTL position measured in
terms of the recombination fractions (r1 or r2) between
the QTL and its flanking markers (see Table 1). Arrayed
by V ¼ fVjg2

j¼0 ¼ fGkð jÞ; Qj ; r1g2
j¼0, these unknowns

can be estimated through differentiating the log-
likelihood function of Equation 2 with respect to each
unknown, setting the derivative equal to zero, and
solving the log-likelihood equations. This estimation
process can be implemented with the expectation-
maximization (EM) algorithm (Dempster et al. 1977)
as described below.

The log-likelihood function of growth and marker
data (Mj) for subpopulation k based on Equation 1 is
given by

logLjðVj jyjÞ ¼
Xnj
i¼1

log
X2

k¼0

-kji f ðyið jÞ; Gkð jÞ; QjÞ
" #

;

with the derivative with respect to any element Vl

o

oVl
logLjðVj jyjÞ ¼

Xnj
i¼1

X2

k¼0

-kjiðo=oVl Þf ðyið jÞ; Gkð jÞ; QjÞP2
k9¼0½-k9ji f ðyk9ð jÞ; Gk9ð jÞ; QjÞ�

¼
Xnj
i¼1

X2

k¼0

-kji f ðyið jÞ; Gkð jÞ; QjÞP2
k9¼0½-k9ji f ðyk9ð jÞ; Gk9ð jÞ; QjÞ�

� o

oVl
log f ðyið jÞ; Gkð jÞ; QjÞ

¼
Xnj
i¼1

X2

k¼0

Pkji
o

oVl
log f ðyið jÞ; Gkð jÞ; QjÞ;

where we define

Pkji ¼
-kji f ðyið jÞ; Gkð jÞ; QjÞP2
j¼0 -kji f ðyið jÞ; Gkð jÞ; QjÞ

; ð4Þ

which could be thought of as a posterior probability that
progeny i with a particular marker genotype has QTL
genotype j. We then implement the EM algorithm with
the expanded parameter set fV, Pg, where P ¼ fPkjig.
Conditional on P (the E step; Equation 4), we solve for

o

oVl
logLjð-j ; Vj jyjÞ ¼ 0 ð5Þ

to get the estimates of V (the M step; Equation 5). The
estimates are then used to update P, and the process is
repeated between Equations 4 and 5 until convergence.
The values at convergence are the maximum-likelihood
estimates (MLEs) of V. The iterative expressions of
estimating V from the previous step were given in Ma

et al. (2002) and Wu et al. (2002, 2004b). In Wu et al.
(2002), approximate estimates of the samplings errors
from Fisher’s information matrices were given.

As usual, the QTL position parameter can be viewed
as a known parameter because a putative QTL can be
searched at every 1 or 2 cM on a map interval bracketed
by two markers throughout the entire linkage map. The
amount of support for a QTL at a particular map
position is often displayed graphically through the
use of likelihood maps or profiles, which plot the
likelihood-ratio test statistic as a function of map
position of the putative QTL.
Hypothesis tests: Different from traditional mapping

approaches, our functional mapping for longitudinal
traits allows for the tests of a number of biologically
meaningful hypotheses (Wu et al. 2004a). These hy-
pothesis tests can be a global test for the existence of
significant QTL, a local test for the genetic effect on
growth at a particular time point, a regional test for the
overall effect of QTL on a particular period of growth
process, or an interaction test for the change of QTL
expression across times. These tests at different levels
can be formulated to test the effects of QTL � hg inter-
action on the shape of growth.

Testing whether specific QTL exist to affect growth
trajectories is a first step toward the understanding of
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the genetic architecture of growth and development.
The genetic control over entire growth processes can be
tested by formulating the following hypotheses:

H0: Gkð jÞ[Gj ; j ; k ¼ 0; 1; 2

H1: Not all the equalities in H0 hold:
ð6Þ

The H0 states that there are no QTL affecting growth
trajectories and the three genotypic curves in each
subpopulation overlap (the reduced model), whereas
the H1 proposes that such QTL do exist (the full
model). The test statistic for testing the hypotheses in
Equation 6 is calculated as the log-likelihood ratio of the
reduced to the full model,

LR ¼ �2½logLðṼ j yÞ � logLðV̂ j y�; ð7Þ

where Ṽ and V̂ denote the MLEs of the unknown
parameters under H0 and H1, respectively. The LR is
asymptotically x2-distributed with 18 d.f. An empirical
approach for determining the critical threshold is based
on permutation tests, as advocated by Churchill and
Doerge (1994). By repeatedly shuffling the relation-
ships between marker genotypes and phenotypes, a
series of the maximum log-likelihood ratios are calcu-
lated, from the distribution of which the critical
threshold is determined.

After a significant QTL is detected, the next test is
about the interaction effect between this QTL and hg on
growth. We use the area under curve (Ak(j)) as a criterion
for this QTL � hg interaction test, expressed as

Akð jÞ ¼
ðT

0

akð jÞ
11 bkð jÞe

�ckð jÞt
dt

¼
akð jÞ
ckð jÞ

lnðbkð jÞ1 eckð jÞT � lnðbkð jÞ11Þ
� �

:

In this case, the null hypothesis for testing QTL � hg
interaction can be formulated as

A2ð jÞ � A1ð jÞ[A2 � A1 and A1ð jÞ � A0ð jÞ[A1 � A0;

j ¼ 2; 1; 0;

i.e., the difference between the areas under curves of
different QTL genotypes is set equal for the three hg
genotypes.

In addition to testing overall genetic effects on
growth trajectories, our model allows for the tests of
the additive and dominant effects as well as the in-
teraction effects between the QTL and hg locus. Let a1

and a2 be the additive effects of the hg and QTL; d1 and
d2 be the dominant effect of the hg and QTL; and I, J, K,
and L be the additive � additive, additive � dominant,
dominant � additive, and dominant � dominant epi-
static effects between the loci (Lynch and Walsh 1998).
We tabulateAk(j) in terms of their genetic compositions as

where A is the overall mean. Hypothesis tests for these
genetic effects are formulated with constraints

A2ð2Þ1A0ð2Þ ¼ A2ð0Þ1A0ð0Þ;

A2ð2Þ1A2ð0Þ ¼ A0ð2Þ1A0ð0Þ;

for the additive genetic effects of the hg and QTL,
respectively,

2ðA2ð1Þ1A0ð1ÞÞ ¼ A2ð2Þ1A2ð0Þ1A0ð2Þ1A0ð0Þ;

2ðA1ð2Þ1A1ð0ÞÞ ¼ A2ð2Þ1A2ð0Þ1A0ð2Þ1A0ð0Þ;

for the dominant genetic effects of the hg and QTL,
respectively, and

A2ð2Þ1A0ð0Þ ¼ A0ð2Þ1A2ð0Þ;

2ðA1ð2Þ �A1ð0ÞÞ ¼ A2ð2Þ1A0ð2Þ �A2ð0Þ �A0ð0Þ;

2ðA2ð1Þ �A0ð1ÞÞ ¼ A2ð2Þ1A2ð0Þ �A0ð2Þ �A0ð0Þ;

2ðA2ð1Þ1A0ð1Þ1A1ð2Þ1A1ð0Þ ¼ A2ð2Þ1A2ð0Þ1A0ð2Þ1A0ð0Þ14A1ð1Þ;

for the additive � additive, additive � dominant, domi-
nant � additive, and dominant � dominant genetic
effect interactions between the hg and QTL, respectively.

RESULTS

To detect QTL modifiers, we need to genotype and
phenotype F2 mice from each of the three hg genotypes
hg/hg, hg/1, and 1/1. However, the animal material
available to our QTL analysis contains only two sub-
populations hg/hg and 1/1 developed by Corva et al.
(2001) with a two-step approach as follows: In the first
step, a linkage map covering the 19 autosomes and one
sex chromosome (X) was constructed with 83 molecular
markers for 262 hg/hg mice from the F2 cross. A simple
analysis of variance approach was used to detect sig-
nificant markers associated with growth rate and body
weight. In the second step, the most significant markers
genotyped in the hg/hg subpopulation were also typed
for the 274 1/1 mice from the same F2 population.
These genotyped markers were found to be located at
chromosomes 1, 2, 4, 9, and X (Corva et al. 2001), with
which a common linkage map that integrates the two
subpopulations was constructed.

QQ Qq

hg=hg

hg=1

1 =1

A2ð2Þ ¼ A1 a1 1 a2 1 I A1ð2Þ ¼ A1 a1 1 d2 1 J

A2ð1Þ ¼ A1 d1 1 a2 1K A1ð1Þ ¼ A1 d1 1 d2 1L

A2ð0Þ ¼ A � a1 1 a2 � I A1ð0Þ ¼ A � a1 1 d2 � J

0
B@

qq

A0ð2Þ ¼ A1 a1 � a2 � I

A0ð1Þ ¼ A1 d1 � a2 � K

A0ð0Þ ¼ A � a1 � a2 1 I

1
CA;
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Both the hg/hg and 1/1 subpopulations were
phenotyped for body weight on a weekly basis from 2
to 9 weeks of age. However, about one-third of the mice
from each subpopulation were measured only at weeks
3, 6, and 9. Although our original model was designed
for the same measurement schedule for all subjects (Ma

et al. 2002), a recent model has been derived to handle
subject-dependent measurement schedules with a rea-
sonable convergence rate (Hou et al. 2005). Data for
body weights at different ages were corrected for the
effects of dam, litter, sex, and parity.

The logistic curve described by Equation 3 was used to
fit the growth trajectory for each mouse, using non-
linear least-squares approaches. Statistical tests indicate
a good fitness at the significance level P, 0.001. There
is a substantial difference in growth pattern between the
two F2 subpopulations, hg/hg and 1/1 (Figure 1). On
average, these two subpopulations are similar from birth
to age 3 weeks, but after 3 weeks the hg/hg mice display
much greater growth (Figure 1B) than do the 1/1
mice (Figure 1A). Substantial variation in growth curve
among different animals in each subpopulation sug-
gests that specific QTL may be involved in shaping
developmental trajectories.

Our mapping model is employed to search for growth
QTL through a genome-wide scanning approach.
Figure 2 illustrates the profile of the log-likelihood ratio
(LR) test statistics throughout the common linkage map
for the two subpopulations. The ‘‘genome-wide’’ critical
threshold value throughout the common linkage map
at the a ¼ 0.01 significance level was estimated as 155.2
on the basis of 1000 permutation tests. According to this
criterion, two separate QTL each corresponding to a
peak of the LR profile were detected on chromosome X.
We also computed the chromosome-wide critical thresh-
olds with the LR peaks of individual chromosomes. A
few distinct peaks on chromosome 2 may carry multiple
QTL according to this criterion. On the basis of earlier
studies with the same mapping material, the locations of
these suggestive QTL (Figure 2) contain important
QTL for many growth-related traits (Corva et al.
2001). For this reason, we perform an in-depth hypoth-

esis test for the QTL located at the highest peak (Figure
2), as for the two QTL on chromosome X.

The three growth curves each determined by a
genotype at each of these significant QTL are drawn
separately for the hg/hg and1/1mice (Figure 3), using
the MLEs of curve parameters (Ĝkð jÞ; Table 2) from our
model. As expected, the hg locus displays a striking
(additive) effect on growth trajectories (Table 3). The
growth trajectories of the same QTL genotype are
different between the two subpopulations, suggesting
that the genetic expression of QTL is affected by genetic
background. In general, the three detected QTL start to
exert their effects on growth in both subpopulations
when the mice are 3 weeks of age (Figure 4). After this
age, the QTL effects tend to increase with age.

We further tested the QTL effects and how they
interact with the hg locus to affect growth trajectories.
On the basis of the hypothesis test given in Equation 7
and others, we calculated the LR values for the additive
and dominant effects of the QTL and its interaction
effects with hg for all three QTL (Table 3). The QTL
detected on chromosome 2 has highly significant
additive and dominant effects on growth trajectories,
operating in a dominant gene action manner as shown
by small differences between genotypes Qq and QQ
in both subpopulations (see Figure 3). This QTL also
displays significant additive � additive and additive �
dominant epistatic effects with the hg locus.

Located on the same chromosome, the two QTL
detected on chromosome X exhibit different modes of
gene action for growth. The first QTL at 3 cM from the
first marker has a nonsignificant additive effect but
highly significant dominant effect (Table 3; Figure 3B).
When interacting with the hg gene, however, this
dominant QTL displays an inverse pattern, i.e., with a
significant additive � additive but nonsignificant addi-
tive � dominant epistatic effects (Table 3). The second
QTL at 37 cM from the first marker seems to act in a
partial dominant manner (Figure 3C), with both types
of epistatic effects being significant (Table 3). Except
for the first QTL on chromosome X with a nonsignif-
icant additive effect, the favorable allele at the other

Figure 1.—Plots of body mass vs.
ages for (A) 2xx1/1 mice and (B)
2xx hg/hg mice in an F2 progeny
derived from HG and CAST lines
(Corva et al. 2001).
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QTL that contribute to greater growth originates from
the HG parent.

Because only two hg genotypes are included, we
cannot estimate all the QTL-hg epistatic effects. The
dynamic changes of different types of genetic effects for
the hg and QTL across ages that can be estimated are

a1ðtÞ ¼ 1
2½u2ð2ÞðtÞ1u0ð2ÞðtÞ � u2ð0ÞðtÞ � u0ð0ÞðtÞ�

for the additive genetic effect of the hg locus,

a2ðtÞ ¼ 1
2½u2ð2ÞðtÞ1u2ð0ÞðtÞ � u0ð2ÞðtÞ � u0ð0ÞðtÞ�

for the additive genetic effect of the QTL,

d2ðtÞ ¼ 1
4½2u1ð2ÞðtÞ1u1ð0ÞðtÞ � u2ð2ÞðtÞ � u2ð0ÞðtÞ

� u0ð2ÞðtÞ � u0ð0ÞðtÞ�

for the dominant genetic effect of the QTL,

I ðtÞ ¼ 1
2½u2ð2ÞðtÞ1u0ð0ÞðtÞ � u0ð2ÞðtÞ � u2ð0ÞðtÞ�

for the additive � additive genetic effect, and

J ðtÞ ¼ 1
4½2u1ð2ÞðtÞ � 2u1ð0ÞðtÞ � u2ð2ÞðtÞ � u0ð2ÞðtÞ

1u2ð0ÞðtÞ1u0ð0ÞðtÞ�

for the additive � dominant genetic effect between hg
and QTL. All these age-dependent changes of genetic
effects are illustrated in Figure 4. The additive effect
(a1) of the hg locus increases rapidly with age, and so do
the additive (a2) and/or dominant effects (d2) of the
QTL, but with a lesser extent. The interaction effects
(I and J ) between the QTL and hg are quite stable over
age, contributing to a significant part of the genetic
variation throughout growth ontogeny.

DISCUSSION

Traditional quantitative genetic theory proposes that
genetic variation in a quantitative trait is due to
polygenes each with a small effect on the phenotype
and being sensitive to the environment (Lynch and
Walsh 1998). Although this theory has led to sub-
stantial successes in the explanation of quantitative
variation, it has been challenged by recent discoveries

Figure 2.—The profile of the log-likelihood ratios (LR) be-
tween the full and reduced (no QTL) model for body mass
growth trajectories across the linkage map constructed from
molecular markers. The genomic positions corresponding to
the peak of the curve, as indicated by vertical dotted lines,
are the MLEs of the QTL positions. The genome- and
chromosome-wide threshold values for claiming the existence
of QTL are given as the horizonal solid and dotted lines,
respectively. The positions of markers on chromosomes are
given beneath the x-axis.

Mapping Epistasis for Mouse Growth 245



of QTL based on polymorphic markers. According to
these QTL mapping results, a quantitative trait may be
governed by unequally sized loci with a few having larger
effects than many others (Mackay 2001). A 30–50%
increase of body size in mice caused by the hg mutation
(Bradford and Famula 1984) provides excellent
evidence for the inclusion of a major gene in the genetic
control of a quantitative trait.

As part of the complex network of genetic control, the
expression of the hg locus should not be independent of
the genetic background (Corva et al. 2001). It thus is of
great interest to identify individual QTL that interact
with the hg locus using mapping approaches. The
identification of such QTL can improve our under-
standing of the interactions between pathways of sig-
nal transduction involved in the regulation of growth.
This information can then be transferred to the
development of techniques targeted to manipulate
these growth-regulating pathways in mammals.

In this article, we have presented a statistical model
for detecting interacting QTL involved in the regulation
of growth through the hg locus. This model is the
extension of our functional mapping approach (Ma

et al. 2002; Wu et al. 2004a; Zhao et al. 2004) proposed to
shed light on the genetic architecture of growth by
incorporating its underlying developmental principles
(von Bertalanffy 1957; Rice 1997; West et al. 2001)
and the statistical methods for growth analysis (Diggle

et al. 2002). A QTL is thought to be epistatic with the hg
gene if its expression depends on the genetic back-
ground containing segregating hg. The extended model
has power to estimate the differences in the gene action
of a QTL expressed in different hg genotypes. Corva
et al. (2001) constructed a segregating F2 population
using a congenic hg/hg line and a wild-type inbred
line. Molecular markers at genomic regions that may
contain QTL for growth rate and body size were ge-
notyped to construct a common linkage map for two
F2 subpopulations, hg/hg and 1/1. Thus, by estimat-
ing and testing the genetic effects of a QTL in these two
different subpopulations, we can determine how the
QTL, as a modifier, influences the expression of the
hg/hg gene.

Our model has successfully detected three QTL that
interact with the hg gene to govern the shape of growth
trajectories. These detected QTL on chromosomes 2
and X affect growth curves with different modes of gene
action. The estimation for the location of the QTL on
chromosome 2 is broadly in agreement with that by
previous QTL mapping based on a single-trait analysis
(Corva et al. 2001), although our analysis is more
informative in terms of age-dependent changes of
QTL effects and the detection of epistasis in the genetic
control of growth traits. The epistasis between the
detected QTL and the hg locus is relatively small, relative
to their main effects, but is thought to play a significant
role in shaping growth processes. As illustrated by Figure
4, there are different patterns for the change of different
genetic effects across ages. The additive effect of the
hg locus increases rapidly with age, and so do the ad-
ditive and/or dominant effects of the QTL, but to a
lesser extent. The interaction effects between the QTL
and hg are quite stable over age, contributing a signifi-
cant part of the genetic variation throughout growth
ontogeny.

Figure 3.—Three growth curves, each presenting a group
of genotype QQ (solid curves), Qq (dashed curves), and qq
(dotted curves), in the hg/hg (red) and 1/1 (blue) mice
at the QTL, detected by our joint model, on chromosomes
2 (A) and X (B and C).
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The genetic control of body size across age has
been observed in mice by both quantitative genetic
(Cheverud 1984; Atchley and Zhu 1997) and QTL
mapping approaches (Cheverud et al. 1996; Vaughn
et al. 1999). It is suggested that the formation of such
age-specific patterns is regulated by different genetic
mechanisms. Falconer et al. (1978) speculated two
general physiological mechanisms that determine the
increase in body size in mice, but these mechanisms
appear to act at different life stages (Atchley and Zhu
1997). This has been confirmed by QTL mapping of
mouse growth traits in that early and late growth in mice
were affected by distinct QTL, mapping to separate
chromosome locations (Cheverud et al. 1996; Vaughn
et al. 1999). In other animals, Carlborg et al. (2003)
found that epistasis is important for early growth when
the foundation for rapid growth is set by the develop-
ment of internal organs, but less important for later
growth involving the main deposition of body tissues.
Our model has the capacity to quantify the patterns of
the age-dependent change of genetic effects and, thus,
to gain more insights into the interplay between gene
action and development in developmental biological
research.

In this study, we have reported only on the additive
effect of the hg gene as well as its additive-related
epistatic effects with other QTL detected by molecular
markers. An F2 subpopulation heterozygous for the
mutant and wild-type alleles that would allow estimation
of effects due to dominance was not available. Using the
available material, we have found three QTL on
chromosomes 2 and X that interact with the hg locus
to affect the shapes of the growth process. These genetic
interactions are thought to play an important role in
mediating the expression of the hg gene. Our model is
fit by one modifier QTL, but it can be readily extended
to include more modifiers that interact with each other
and with the hg gene. The involvement of more QTL
in the model can better reflect a practical situation
in which there is a web of interacting genes in trait con-
trol (Segre et al. 2005). Although the available genetic
data from Corva et al. (2001) were not subject to a
multi-QTL analysis because of their low coverage of
the mouse genome (including only chromosomes 1, 2,
4, 9, and X), our model derived in this article provides
a powerful tool to shed light on the genetic architec-
ture and regulation of growth rate and body size in
mammals.

TABLE 2

TheMLEs of the QTL position, QTL effects described by growth parameters Gk( j ) = (ak( j ), bk( j ), ck( j )), residual
variance (sj), and correlation (rj) in two different subpopulations of the F2 mouse population

QQ Qq qq Residual

Subpopulation Position (cM) a2(k) b2(k) c2(k) a1(k) b1(k) c1(k) a0(k) b0(k) c0(k) rj s2
j

Chromosome 2
1/1 37 22.88 2.77 0.58 22.15 2.68 0.60 19.86 2.41 0.63 0.88 6.75
hg/hg 28.40 4.36 0.60 27.73 4.06 0.60 24.16 3.35 0.57 0.87 12.05

Chromosome X
1/1 3 21.16 2.58 0.59 22.25 2.61 0.60 21.65 2.68 0.63 0.89 7.06
hg/hg 26.47 3.96 0.61 27.72 4.12 0.59 25.74 3.41 0.55 0.87 13.08

Chromosome X
1/1 29 22.38 2.66 0.58 21.95 2.64 0.60 21.08 2.61 0.63 0.90 7.34
hg/hg 28.43 4.15 0.59 27.36 4.00 0.59 25.21 3.59 0.57 0.87 12.77

Position indicates the map distance in centimorgans from the first marker on a chromosome. Uppercase Q
and lowercase q stand for the alleles from the HG and CAST parents, respectively.

TABLE 3

The LR values and the corresponding P-values (in parentheses, estimated from simulation studies) for testing
the additive effect of the hg locus (a1), the additive (a2) and dominant (d2) effects of QTL, and the additive ·
additive (I ) and additive · dominant ( J ) epistatic effects between hg and QTL on overall growth curves

Mutation/QTL a1 a2 d2 I J

Hg 83.5 (0.000)
Chromosome 2 13.6 (0.001) 8.7 (0.004) 6.6 (0.023) 5.3 (0.030)
Chromosome X 2.7 (0.082) 7.7 (0.021) 13.6 (0.003) 1.6 (0.120)
Chromosome X 3.1 (0.087) 4.8 (0.041) 12.7 (0.004) 15.1 (0.002)
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