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ABSTRACT

Identity-by-descent (IBD) matrix calculation is an important step in quantitative trait loci (QTL)
analysis using variance component models. To calculate IBD matrices efficiently for large pedigrees with
large numbers of loci, an approximation method based on the reconstruction of haplotype configurations
for the pedigrees is proposed. The method uses a subset of haplotype configurations with high likelihoods
identified by a haplotyping method. The new method is compared with a Markov chain Monte Carlo
(MCMC) method (Loki) in terms of QTL mapping performance on simulated pedigrees. Both methods
yield almost identical results for the estimation of QTL positions and variance parameters, while the new
method is much more computationally efficient than the MCMC approach for large pedigrees and large
numbers of loci. The proposed method is also compared with an exact method (Merlin) in small
simulated pedigrees, where both methods produce nearly identical estimates of position-specific kinship
coefficients. The new method can be used for fine mapping with joint linkage disequilibrium and linkage
analysis, which improves the power and accuracy of QTL mapping.

IN statistical gene mapping by means of linkage and/
or linkage disequilibrium (LD) analysis, the inheri-

tance pattern of any specific chromosomal position in a
pedigree can be captured by an identity-by-descent
(IBD) matrix (Goring et al. 2003). The calculation of
IBD matrices at putative quantitative trait loci (QTL)
positions in pedigrees is an important step in statistical
QTL mapping using variance component models. For
the estimation of IBD matrices, hidden Markov me-
thods are generally used on pedigrees of small to mod-
erate size (Kruglyak and Lander 1995, 1998; Abecasis
et al. 2002). For a complex pedigree, Wang et al. (1995)
presented a recursive approach to estimate IBD proba-
bilities, which utilizes only a single marker. Almasy and
Blangero (1998) used a regression approach, where
the IBD states at the markers are used to calculate IBD
probabilities at a given locus. However, the regression
coefficients used in the IBD calculation can be difficult
to estimate in a complex pedigree.

For large pedigrees and large numbers of loci, Markov
chainMonteCarlo (MCMC)methods (Sobel andLange
1996; Thompson and Heath 1999; Sobel et al. 2001)
were developed. However, MCMC methods can be very
slow to converge, especially for data with dense markers,
and convergencemay be difficult to diagnose or may not
be achieved (Pong-Wong et al. 2001). Pong-Wong et al.
(2001) presented a deterministic method, which is fast

on large pedigrees with multiple loci, but it uses only
partially reconstructed haplotypes.

To calculate IBD matrices efficiently for large pedi-
grees and large numbers of loci, here we propose an
approximation method using a set of haplotype config-
urations on a pedigree with high likelihoods, identified
by a conditional enumeration haplotyping method
(Gao et al. 2004; Gao and Hoeschele 2005). This
method is compared with the MCMC method imple-
mented in Loki (Heath 1997; Thompson and Heath

1999) based on QTL mapping performance in linkage
analysis. The proposed method can incorporate LD
information from historical recombinants, by allowing
for nonzero IBD probabilities for founder alleles on the
basis of the degree of similarity of the marker haplo-
types surrounding the genome position in question
(Meuwissen and Goddard 2000, 2001). In this article,
we assume that all individuals in a pedigree have been
genotyped for all markers. An extension to missing
marker data is underway and will be reported in a
subsequent contribution.

METHODS

Haplotype reconstruction: In the space of all consis-
tent haplotype configurations on a pedigree (SACHC),
typically most configurations have very small probabil-
ities so that only a relatively small subset of configura-
tions is relevant. A consistent haplotype configuration
is an assignment of haplotypes to all individuals in
the pedigree, which is consistent with the observed
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genotype data and the pedigree structure. We previ-
ously presented a conditional enumeration haplotyping
method based on conditional probabilities and likeli-
hood computations to identify a subset of haplotype
configurations with high conditional probabilities from
SACHC (Gao et al. 2004; Gao and Hoeschele 2005).
The conditional enumeration haplotyping method has
been tested on published and simulated data sets and
shown to be faster and provide more information than
several existing stochastic and rule-based methods.
In a pedigree, the combination of a specific individual

and a specific marker locus is termed a person-marker.
The genotypes of some person-markers in nonfounders
can be ordered by their parents’ genotypes. Let U
denote all remaining person-markers in a pedigree with
unordered heterozygous genotype. Assume that the size
of U is t. Reconstructing a haplotype configuration for
the entire pedigree consists of assigning an ordered
genotype to each person-marker inU. A set of t ordered
genotypes assigned to the t person-markers inU is called
a haplotype configuration for U.
Let fM1, M2, . . . , Mtg be a specific order of the

person-markers in U. Let mi denote an ordered geno-
type assigned to person-markerMi. The joint probability
of a haplotype configuration for U, m1, m2 , . . . , mt,
conditional on the observed data (D) is

Prðm1;m2; . . . ;mt jDÞ¼Prðm1jDÞPrðm2jm1;DÞ . . . Prðmt jm1; . . . ;mt�1;DÞ:
ð1Þ

Let pi ¼ Prðmi jm1; . . . ; mi�1;DÞ. Also, mi is one of the
ordered genotypes m1

i and m2
i , where m1

i (m2
i ) has the

larger (smaller) conditional probability p1i (p2i ) at
person-marker Mi, and p

j
i ¼ Prðmj

i jm1; . . . ; mi�1;DÞ for
j ¼ 1, 2, with p1i $ 0:5 and p2i # p1i . pi is equal to one of
the conditional probabilities p1i and p2i , so pi # p1i .
During haplotype reconstruction with the condi-

tional enumeration method (Gao et al. 2004; Gao and
Hoeschele 2005; see also the appendix), for some
pedigrees that contain uninformative full- or half-sib
families, at some person-marker Mi, we find that
p1i ¼ p2i ¼ 0:5, that is,

Prðm1
i jm1; . . . ;mi�1;DÞ ¼ Prðm2

i jm1; . . . ;mi�1;DÞ ¼ 0:5:

ð2Þ

Hence the pedigree does not provide information to
infer the phase at Mi on the basis of m1;m2; . . . ; mi�1,
and D. When reconstructing a haplotype in an optimal
reconstruction order M1, M2, . . . , Mt, determined by
the conditional enumeration method (Gao et al. 2004;
Gao and Hoeschele 2005), if there are k person
markers Mi with p1i ¼ p2i ¼ 0:5 (see Equation 2), let
U0.5 denote the set of these k personmarkers. If k is large
(which happens only when a pedigree contains many
uninformative full- or half-sib families), enumeration of
all possible ordered genotype combinations at these k
person-markers typically contributes little information

to the IBD matrix estimation and to QTL mapping, but
it increases the computing time substantially. There-
fore, for IBD matrix calculation based on a limited
number (say 2s) of haplotype configurations with high
likelihood and when s , k, then after enumerating two
ordered genotypes for s person-markers in U0.5 we
adjust l from its initial value (e.g., 0.90) down to 0.5, so
that only a single, randomly chosen ordered genotype is
assigned to each of the remaining k � s person-markers
in U0.5, where l is a threshold for the conditional
probabilities of ordered genotypes at each locus (l $

0.5; see Gao et al. 2004).
IBD matrix calculation: For a general pedigree, the

IBDmatrix at a specific genome location conditional on
the observed data (D) is a weighted average of all IBD
matrices, each conditional on a haplotype configura-
tion in SACHC, where the weight of each configuration
is the conditional probability of the configuration in
SACHC. The IBD matrix conditional on the observed
data (D) can be calculated by the expression

QD ¼
X
vi

Qvi
Prðvi jDÞ ð3Þ

(Wang et al. 1995; Hoeschele 2003), where vi is a
specific haplotype configuration of the pedigree in
SACHC, QD (Q

vi
) is the IBD matrix of the pedigree

given D (vi), and Pr(vijD) is the probability of vi

conditional the observed data D. The summation in
Equation 3 is over all configurations in SACHC.
For large pedigrees and large numbers of loci, it is

infeasible to sum over all possible configurations in
SACHC using Equation 3. Therefore, the exhaustive
summation is approximated by the summation over a
subset of haplotype configurations with high likelihoods
identified by the conditional enumeration method. The
probability Pr(vijD) can be estimated approximately by
the ratio of the likelihood of vi to the sum of the
likelihoods of all configurations in the identified subset.
Let ns denote the size of the subset of haplotype config-
urationswithhigh likelihoods identifiedby the conditional
enumeration method and used to calculate IBD matrices.
For a specific haplotype configuration vi, the corre-

sponding IBD matrix at a putative QTL position, Q
vi
,

can be calculated by a deterministic, recursive method
(Pong-Wong et al. 2001; Sobel et al. 2001). Suppose
there are n individuals in a pedigree, identified with
numbers 1, 2, . . . , n, so that parents always have smaller
numbers than their offspring. Let Am

i (Ap
i ) denote the

maternal (paternal) allele of individual i at the QTL
position, and let is denote the mother (s ¼m) or father
(s ¼ p) of i. The IBD probability between allele As

i of
individual i and allele At

j of individual j at the QTL
position conditional on observed data D is

PrðAs
i [At

j jDÞ ¼ PrðAs
i *A

p
is jDÞPrðA

p
is [At

j jDÞ
1PrðAs

i *Am
is
jDÞPrðAm

is
[At

j jDÞ
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(i . j, s ¼ m, p and t ¼ m, p) (Pong-Wong et al. 2001;
Sobel et al. 2001), where, for example, PrðAs

i *A
p
is
jDÞ is

the probability that alleleAs
i of individual i is inherited

from the allele A
p
is of its parent is , andPrðA

p
is [At

j jDÞ is
the IBD probability between allele A

p
is
of parent is and

allele At
j of individual j at the QTL position.

In linkage analysis, the IBD probabilities between the
QTL alleles of any two founder haplotypes are assumed
to be zero. For fine mapping using joint linkage
disequilibrium and linkage analysis, linkage disequilib-
rium is incorporated via nonzero IBD probabilities for
founder QTL alleles on the basis of the degree of
similarity of the marker haplotypes surrounding the
genome position in question. We currently compute
these IBD probabilities by a gene-droppingmethod on a
grid of putative QTL positions covering the entire
genome or a chromosome region of interest
(MacCluer et al. 1986; Meuwissen and Goddard
2000, 2001).

In the gene-dropping method, at any putative QTL
position, it is assumed that a mutation occurred Tg

generations before entering the founder generation of
a pedigree and that the effective population size for the
observed data isNe. For each replicate of the simulation,
Tg generations of an ancestral population are generated
with Ne individuals and with the same marker positions
as in the observed data. Let H ða; bÞdenote a haplotype
pair that has a and b continuous identity-by-state (IBS)
marker alleles between the QTL and the marker with
the first non-IBSmarker allele to the left and right of the
QTL locus in the last generation (a $ 0, b $ 0) of any
replicate, respectively. Let N ½H ða; bÞ� denote the total
number of H ða; bÞ cases over 10,000 replications of the
simulation, and let N ½H ða; bÞ; IBD� denote the number
of H ða; bÞcases that are IBD at the putative QTL. If two
haplotypes areH ða; bÞ, the IBD probability at theQTL is

PðIBDjH ða;bÞÞ ¼N ½H ða;bÞ; IBD�
N ½H ða;bÞ� : ð4Þ

It is not easy to estimate Tg and Ne from the observed
data. Meuwissen and Goddard (2000) performed a
simulation, which showed that using values of Tg ¼ 100
and Ne ¼ 100, when the true values of these parameters
varied, provided estimates of QTL position that were
equally or even more accurate than the estimates ob-
tained by using the true values of Tg and Ne. There-
fore, we used the values of Tg ¼ 100 and Ne ¼ 100 in
this study.

QTL mapping: To evaluate the performance of the
IBD matrix calculation method in QTL mapping, we
use a two-step variance component method proposed
by George et al. (2000) to estimate the QTL position
and the variance parameters. When we assume a single
QTL present at a specific genome position, in matrix
notation, the phenotypic records of a pedigree can be
modeled by

y¼Xb1Zu1Zv1e; ð5Þ

where y is a vector of phenotypes; b is a vector of fixed
effects; u is a vector of random polygenic effects; v is a
vector of random QTL effects; e is a vector of residuals;
X and Z are known incidence/covariate matrices for the
effects in b and in u and v, respectively; and u, v, and e
are assumed to be uncorrelated. The variance-covariance
matrix of the phenotypes under model (5) is

V¼VarðyÞ ¼ ZðAs2
u1Gs2

vÞZ91Is2
e ;

where A is the numerator relationship matrix; s2
u , s

2
v ,

and s2
e are variance components associated with vectors

u, v, and e, respectively; VarðuÞ ¼ As2
u , VarðvÞ ¼ Gs2

v ,
and VarðeÞ ¼ Is2

e ; andG ¼ fgijg is the IBD matrix (for n
individuals) at a specific QTL position conditional on
the marker information, where

gij ¼ 1
2

X
t¼m;p

X
s¼m;p

PrðAt
i [As

j jDÞ;

and, for example, PrðAm
i [A

p
j jDÞ is the IBD probability

between the maternal allele of individual i and the
paternal allele of individual j. In matrix notation (Van
Arendonk et al. 1994), G ¼ 0.5KQDK9, where K ¼ In 5
[1, 1],5 denotes the Kronecker product, andQD is the
2n 3 2n gametic IBD matrix, which contains elements
PrðAs

i [At
j jDÞ, where s¼m, p; t¼m, p; i¼ 1, . . . , n; and

j ¼ 1, . . . , n.
Assumingmultivariate normality, or y�N(Xb,V), the

restricted log-likelihood of the data under model (5)
can be represented as

L } �0:5½lnðjVjÞ1lnðjX9V�1XjÞ1ðy�Xb̂Þ9V�1ðy�Xb̂Þ�

(Patterson and Thompson 1971), where b̂ is the
generalized least-squares estimator of b. When no
QTL is assumed to be segregating in the pedigree, the
mixed linear model (5) reduces to the null hypothesis
model with no QTL, or

y¼Xb1Zu1e; ð6Þ

V¼VarðyÞ ¼ ZAZ9s2
u1 Is2

e :

Given the IBD matrix G at a putative QTL position,
parameters s2

u , s
2
v , and s2

e can be estimated by maxi-
mizing the restricted log-likelihood using ASReml
(Gilmour et al. 2002) under models (5) and (6). Let
L1 and L0 denote the maximized log-likelihoods per-
taining to models (5) and (6), respectively.

To test the presence of a QTL (H1) against no QTL
(H0) in a chromosomal region of interest, the test
statistic log LR ¼ �2(L0 � L1) is used. The asymptotic
distribution of log LR under H0 is not clear, because the
null hypothesis places parameter s2

v on the boundary of
its parameter space (Stram and Lee 1994; George et al.
2000). Thedistribution of log LRunderH0 is influenced
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by the chromosome segment length, the degree of
missing marker data, and the distributional properties
of the traits (George et al. 2000).
When testing a single marker interval in linkage

analysis, Xu and Atchley (1995) and Grignola et al.
(1996a,b) found that under H0 the empirical distribu-
tion of log LR follows a x2-distribution with degrees of
freedom between 1 and 2 for independent full-sib
families and related or unrelated half-sib families,
respectively. For testing the presence of a QTL in a
chromosomal region, George et al. (2000) reported
that the empirical distribution of log LR was close to a
x21-distribution for simulated pedigrees with 500 indi-
viduals. For simplicity and computational efficiency, in
this study, we used the 5% critical values of both x21 and
x22 to test for the presence of aQTL (H1) against noQTL
(H0) in a chromosomal region of interest.

SIMULATION STUDY AND RESULTS

Comparison between our method and a MCMC
method for estimating IBD matrices in linkage analysis:
Following George et al. (2000), we used a two-step
variance components method to perform QTL linkage
analysis for 50 simulated pedigrees based on the
ASReml software (Gilmour et al. 2002). We computed
IBD matrices at each putative QTL position with our
method as described above and with theMCMCmethod
implemented in Loki (Heath 1997; Thompson and
Heath 1999), assuming zero IBD probabilities between
any two founder QTL alleles. The calculation of IBD
matrices with Loki and the subsequent variance compo-
nents linkage analysis with ASReml for pedigrees have
been extensively described and tested by George et al.
(2000).
Simulation of pedigree data for linkage analysis:

Each simulated pedigree contained 33 founders (11
fathers and 22 mothers) and seven generations of
nonfounders. Founder marker haplotypes were gener-

ated assuming Hardy-Weinberg equilibrium at each
locus and linkage equilibrium between loci. Haplotypes
for nonfounders were simulated conditional on their
parental haplotypes, assuming Haldane’s no interfer-
ence mapping function. The chromosomal region
consisted of ten biallelic markers with allele frequency
of 0.5 and distance between adjacent markers of 5 cM. A
biallelic QTL with allele frequency of 0.5 was located at
position 22.5 cM (the midpoint between markers 5 and
6), and the QTL was additive and explained 10% of the
trait variance. Each father had two spouses, and each
full-sib family had three children. The size of the
pedigrees ranged from 470 to 500. A total of 50
pedigrees were simulated. A set of 27 putative QTL
positions (not at marker loci) was chosen across the
chromosomal region of interest (see below).
Assuming no fixed effects, the phenotype of individ-

ual i was generated as

yi ¼ ui1vi1 ei ; ð7Þ

where ui, vi, and ei were the polygenic effect, QTL effect,
and residual of individual i, respectively. For founders,
ui was drawn from the normal distribution N ð0;s2

uÞ,
and for nonfounders, ui was drawn from a normal distri-
bution with mean 0.5(uf 1 um) and variance 0:5s2

u[1 �
0.5(Ff 1 Fm)], where uf and um are the polygenic effects
and Ff and Fm the inbreeding coefficients of the father
and mother of i, respectively. If individual i had geno-
type QQ , Qq, or qq at the QTL, vi was set equal to a, 0,
or �a, respectively. QTL variance was s2

v ¼ 2pQ
ð1� pQ Þa2, and pQ was theQ-allele frequency (Falconer
and Mackay 1996; George et al. 2000). Residuals were
drawn from N(0, s2

e ). Parameter values were s2
e ¼ 2:5,

s2
u ¼ 2:0, pQ ¼ 0.5, a ¼ 1.0, and s2

v ¼ 0:5:
Results for linkage analysis: Figure 1 presents the

average log LR profiles over the 50 replicated pedigrees,
using IBD matrices calculated by Loki (100,000 itera-
tions) and by our method with two sets of values for
control parameters l, a, and ns (the size of the subset of

Figure 1.—Average test statistic (log LR) pro-
files over 50 replicated pedigrees of size 470–500,
with 10 biallelic markers, intermarker distance of
5 cM, true QTL position at 22.5 cM, and QTL var-
iance at 10% of the trait variance. IBD matrices
were calculated in three ways: ‘‘New1’’ and
‘‘New2,’’ which denote the proposed method
with l ¼ 0.65, a ¼ �0.3, and ns ¼ 50 and with
l ¼ 0.90, a ¼ �1.0, and ns ¼ 50, respectively,
and ‘‘Loki,’’ which represents use of the Loki soft-
ware with 100,000 iterations. See main text for ex-
planation of control parameters l, a, and ns.
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haplotype configurations with high likelihoods used to
calculate IBD matrices). Figure 1 shows that the three
profiles are nearly identical.

For each of the 50 pedigrees, we estimated the QTL
position as the location with the highest log-likelihood
among all 27 putative positions under model (5). Esti-
mates of the variance components were the values
maximizing the log-likelihood at this chosen QTL posi-
tion. Table 1 presents means, standard deviations (SD),
and mean-square errors (MSE) of the parameter esti-
mates over 50 pedigrees using IBD matrices calculated
by Loki and our method with the two sets of control
parameter values (l ¼ 0.65, a ¼ �0.3, and ns ¼ 50; l ¼
0.90, a ¼ �1.0, and ns ¼ 50). Table 1 shows that means,
SD, and MSE of the estimates of QTL position (dQ ) and
variance parameters (s2

i , i ¼ u, v, e) obtained with Loki
and ourmethod are very similar, with the estimates from
our method being very slightly closer to the true values
than those from Loki. Using our method with the sec-
ond set of control parameter values (l¼ 0.90, a¼�1.0,
and ns ¼ 50) produced slightly smaller SD and MSE,
except for the estimate of s2

u . Among the 50 replicated
pedigrees, in 8 replicates our method provided more
accurate estimates ofQTL position compared with Loki,
and in 5 (4) replicates, our method with control
parameter set 1 (2) provided less accurate estimates.

While the parameter estimates obtained with Loki
and our method are very similar (Table 1), and profiles
obtained with the two methods are nearly identical
(Figure 1), the proposed method uses much less
computing time than Loki in calculating IBD matrices.

Table 2 presents the computing times of both methods
for calculation of IBD matrices at the 27 putative QTL
positions on a workstation with 2.00 GHz Intel Xeon
CPU (1,047,546 kB RAM; Linux kernel 2.4.22).

To compare the power of QTL detection using our
method and Loki, we tested for a single QTL in the
chromosomal region of interest using the 5% critical
values of the chi-square distributions with 1 and 2 d.f.,
3.84 and 5.99. It is obvious from Figure 1 that there is
essentially no difference in power between the two
methods, but more detailed results are in Table 3. Table
3 shows that the numbers of replicates with a type II
error (null hypothesis H0 of no QTL not rejected), or
with QTL identification in the kth marker intervals to
the left or right of the true interval (k¼ 0, 1, . . . , 4), are
essentially the same for both methods.

TABLE 1

Parameter estimates obtained using Loki and the method proposed here for IBD matrix calculation based on
50 replicated pedigrees

Parametersa True value Methodb Mean estimate SDc MSEd

s2
u 2.0 New1 1.9777 0.5800 0.3301

New2 1.9789 0.5795 0.3295
Loki 1.9648 0.5788 0.3296

s2
v 0.5 New1 0.5774 0.2541 0.0693

New2 0.5770 0.2541 0.0692
Loki 0.5839 0.2576 0.0721

s2
e 2.5 New1 2.5288 0.2795 0.0774

New2 2.5284 0.2786 0.0769
Loki 2.5325 0.2810 0.0785

dQ 22.5 New1 21.750 8.493 0.7125
New2 21.825 8.066 0.6422
Loki 21.425 8.364 0.6972

Log LR — New1 10.2872 5.8044 —
New2 10.2930 5.8038 —
Loki 10.3230 5.8704 —

a Parameters from top to bottom are polygenic, QTL, and residual variance; QTL position; and test statistic.
b New1 (New2) denotes using the proposed method with l¼ 0.65, a¼�0.3, and ns ¼ 50 (l¼ 0.90, a¼�1.0,

and ns ¼ 50); see main text for explanation of these control parameters.
c Standard deviation of the estimates over 50 replicates.
d Mean square error of the estimates over 50 replicates.

TABLE 2

Computing times for calculation of IBD matrices at 27 QTL
positions for pedigrees of size 470–500 with Loki and the

proposed method

Computing time (hr:min:sec)

Methoda l a ns Mean SD

New1 0.65 �0.3 50 0:5:16 0:1:2
New2 0.90 �1.0 50 0:25:7 0:29:37
Loki — — — 1:46:0 0:3:5

a New1 (New2) denotes using the proposed method with l ¼
0.65, a ¼ �0.3, and ns ¼ 50 (l ¼ 0.90, a ¼ �1.0, and ns ¼ 50).
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Linkage analysis of a single, larger pedigree with a
larger number of linked loci: We simulated a pedigree
of 1024 individuals and 50 linked biallelic markers with
allele frequency of 0.5 and intermarker distance of 1 cM.
The pedigree had 60 founders (20 fathers and 40
mothers) and 16 generations of nonfounders. A bial-
lelic QTL with allele frequency of 0.5 was located at
position 24.5 cM (themidpoint betweenmarkers 25 and
26), and the QTL was additive and explained �18% of
the trait variance. Each father had two spouses, and each
full-sib family had two children. The phenotypic data
were simulated as described earlier.
We calculated IBD matrices at 49 putative QTL

positions (midpoints of the marker intervals) using
the proposed method and Loki. Using the proposed
method with l ¼ 0.65, a ¼ �0.3, and ns ¼ 50, we
obtained nonsingular IBD matrices at the 49 posi-
tions with computing time of 39 min and 34 sec.
Figure 2 presents the corresponding log LR profile,
which has a peak at 25.5 cM, 1 cM away from the true
QTL position.
Estimation of the IBD matrices by using Loki with

100,000 iterations took 22 hr, 4 min, and 34 sec.
However, all estimated IBD matrices were either singu-
lar or very close to singular and hence could not be
inverted. Although singular matrices can be used for
QTL mapping by the method of Visscher et al. (1999),
it is preferable to obtain nonsingular estimates of IBD
matrices if possible on the basis of the observed data,
because in our experience the singular estimates often
result from executing Loki with an insufficient number
of iterations, and increasing the number of iterations
can lead to nonsingular estimates. However, for very
large pedigrees with large numbers of linked loci a
sufficient increase in the number of iterations with Loki
may not be computationally feasible.

Effect of the control parameters of the haplotyping
algorithm on QTL mapping accuracy: The results
presented in Table 1 for our proposed method (New1
and New2) indicate that for the �500-member pedi-
grees a change in the settings of control parameters l
and a from 0.65 and �0.3 to 0.90 and �1.0 slightly
improves the accuracy of the estimates of parameters
(QTL position and variance parameters), for a given
setting of ns ¼ 50. To further investigate the influence
of different values of ns on the parameter estimates and
the likelihood ratios, we compared two settings of ns (50
and 1000) under two combinations of l and a. This
comparison was performed on selected pedigrees to
limit computing time. As an example, Table 4 presents
parameter estimates obtained with different values of l,
a, and ns for a single pedigree of 483 individuals from

TABLE 3

Power and accuracy of QTL detection in a chromosomal region using threshold values from chi-square distributions with 1 d.f.
(3.84) and 2 d.f. (5.99), with IBD matrix calculation by the method proposed here (with ns = 50) and by Loki based on

analysis of 50 pedigrees

No. of replicates with estimated position
in the kth interval to the left or

right of the true intervala
No. of replicates
not rejecting H0

bCritical value Method l a 0 1 2 3 4

3.84 Loki — — 17 12 3 6 3 9
New1 0.65 �0.3 18 10 3 7 3 9
New2 0.90 �1.0 18 10 4 7 2 9

5.99 Loki — — 16 11 3 6 2 12
New1 0.65 �0.3 16 9 3 7 3 12
New2 0.90 �1.0 16 9 4 7 2 12

a Number of replicates with estimated QTL position in the kth interval to the left or right of the true interval and with log LR
larger than the critical value (k¼ 0, 1, . . . , 4); k¼ 0 denotes that the estimated position is in the same interval as the true position.

b Number of replicates with log LR less than or equal to the critical value, where assuming H0: no QTL is present in the chro-
mosomal region.

Figure 2.—Test statistic (log LR) profile for a pedigree of
1024 individuals, with 50 biallelic markers, intermarker dis-
tance of 1 cM, true QTL position at 24.5 cM, andQTL variance
at 18% of the trait variance. IBD matrices were calculated
with the proposed method using control parameter values
of l ¼ 0.65, a ¼ �0.3, and ns ¼ 50.
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the set of 50 replicated pedigrees described earlier, and
Figure 3 presents the corresponding log LR profiles for
this pedigree.

Table 4 shows that for both sets of values for l and a,
increasing ns from 50 to 1000 produces essentially the
same parameter estimates and likelihood ratios. In
addition, for the same ns value, there is essentially no
difference in parameter estimates and likelihood ratios
for the two combinations of values of l and a. However,
increasing either ns or the absolute values of l and a

causes very substantial increases in computing time.
Figure 3 also shows that the log LR profiles are almost
identical for the four sets of values of l,a, and ns. Similar
results (not shown) were found for almost all of other
simulated pedigrees.

Comparison between our method and an exact
method for estimating IBD probabilities in small
pedigrees: To evaluate the performance of the new
method for small pedigrees, we simulated 20 replicated
pedigrees. Each pedigree has 15 individuals (including
three founders, one father and two mothers) spanning
four generations and 10 linked biallelic markers with
allele frequency of 0.5 and intermarker distance of 1 cM.
On average, each father had two spouses, and each full-

sib family had two children. Let K(i, j) denote the
position-specific kinship coefficient between individual
i and j, at a putative QTL position, or

K ði; jÞ ¼ 1
4 Pr A

p
i [A

p
j jD

� �
1Pr A

p
i [Am

j jD
� �h

1Pr Am
i [A

p
j jD

� �
1Pr Am

i [Am
j jD

� �i
;

where, for example, PrðAm
i [A

p
j jDÞ is the IBD probabil-

ity between the maternal allele of individual i and the
paternal allele of individual j. We computed kinship
coefficients at nine putative QTL positions (midpoints
of the marker intervals) with our method as described
above (l ¼ 0.999, a¼ �3.2) and with the exact method
implemented inMerlin (Abecasis et al. 2002), assuming
zero IBD probabilities between any two founder QTL
alleles. Let D(i, j) denote the absolute difference
between the two estimates of K(i, j) using our new
method and Merlin. The largest value of D(i, j) over all
pairs of individuals, all nine putative positions, and 20
replicates is 0.008969. So both methods have nearly
identical estimates for each K(i, j). The average value of
all nonzero D(i, j) is 0.00034975. The computing times
are 34 6 94 and 66 6 23 sec for the new method and
Merlin, respectively.

IBD matrix calculation with linkage disequilibrium:
In joint linkage and linkage disequilibrium mapping,
for each of the ns haplotype configurations with high
likelihoods used for IBD matrix calculation, the IBD
submatrix of the founder haplotypes was calculated
using the gene-dropping method (Meuwissen and
Goddard 2000), the IBD submatrices pertaining to
founders and descendants and for descendants were
calculated by the recursive method (Pong-Wong et al.
2001; Sobel et al. 2001), and the weighted average of the
ns IBD matrices was obtained as described earlier. Here
we used only our proposed method for IBD matrix
calculation, because Loki does not incorporate nonzero
IBD probability values among founder haplotypes. To
evaluate the performance of the proposed IBD matrix
method in joint linkage and linkage disequilibrium
mapping and the influence of different values of l, a,
and ns on the estimated results, we analyzed 50 simu-
lated, replicated pedigrees with linkage disequilibrium.

TABLE 4

Parameter estimates obtained using the proposed IBDmatrix method with different values of control parameters l, a and ns from
linkage analysis of a single 483-member pedigree

Estimatesa

l a ns s2
u s2

v s2
e dQ Log LR Time (hr:min:sec)

0.65 �0.3 50 2.0040 0.5873 2.7650 21.25 10.908 0:5:46
1000 2.0041 0.5874 2.7648 21.25 10.910 1:18:0

0.90 �1.0 50 2.0044 0.5871 2.7648 21.25 10.906 0:23:3
1000 2.0041 0.5874 2.7648 21.25 10.910 5:8:37

a Estimates from left to right are of polygenic, QTL, and residual variance; QTL position; and test statistic.

Figure 3.—Test statistic (log LR) profiles obtained using
the new IBD matrix calculation method with different values
of control parameters l, a, and ns for a single pedigree. The
pedigree had 483 individuals with 10 biallelic markers, true
QTL position at 22.5 cM, and intermarker distance of 5 cM.
A denotes the profile of log LR with l ¼ 0.65, a ¼ �0.3,
and ns ¼ 50; B, the profile with l ¼ 0.65, a ¼ �0.3, and
ns ¼ 1000; C, the profile with l ¼ 0.90, a ¼ �1.0, and ns ¼ 50;
and D, the profile with l ¼ 0.90, a ¼ �1.0, and ns ¼ 1000.
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Simulation of pedigrees with linkage disequilibrium:
We assumed that a mutation happened 100 generations
before entering each pedigree. We simulated 100 gen-
erations of an ancestral population as in Meuwissen

and Goddard (2000). Each generation had an effective
size of 100 with 50 males and 50 females. The simulated
chromosomal region contained 20 biallelic markers
with intermarker distance 1 cM and a biallelic QTL
located halfway (9.5 cM) between markers 10 and 11. In
the first ancestral generation, the two alleles of each
marker locus were sampled according to allele frequen-
cies 0.5, and each of the 200 QTL alleles was assigned a
unique number. For each of the subsequent ancestral
generations, each of 50 males and 50 females was pro-
duced by randomly sampling parents from the previous
generation. Among the QTL alleles that were still
present in the last (100th) generation, the allele with a
frequency near the desired value of 0.15 was chosen to
be the mutant allele (Q), while all other QTL alleles
were assumed to be wild type (q).
For each pedigree, the founder generation (14 males

and 28 females) was randomly sampled from the latest
(100th) generation of the ancestral population. Nine
descendant generations were generated, with parents
randomly sampled from the previous generation. Ped-
igree size ranged from 480 to 510, with each father
having two spouses and each full-sib family having two
children. Phenotypes were simulated as described ear-
lier, and the QTL explained 10% of the trait variance.
Fifty pedigrees were generated.
Results for joint linkage and linkage disequilibrium

mapping: IBD matrices were calculated at 19 putative
QTL positions (midpoints of the 19 marker intervals).

Figure 4 presents the average log LR profiles over the 50
replicated pedigrees, using the proposed IBD matrix
calculation method with three sets of values for control
parameters l, a, and ns when incorporating linkage dis-
equilibrium. Figure 4 shows that when l and a changed
from 0.65 and �0.3 to 0.90 and �1.0, and ns increased
from 50 to 1000, the average log LR profile remained
essentially unchanged, and each of the average log LR
profiles has its peak at the true QTL position of 9.5 cM.
Table 5 presents the parameter estimates produced

with the new IBD matrix calculation method for dif-
ferent values of l, a, and ns, when incorporating LD in

TABLE 5

Parameter estimates produced with the proposed IBD matrix calculation method when incorporating LD in the
analysis of 50 pedigrees and for different values of the control parameters l, a, and ns

Parametersa True value l a ns Mean estimate SDb MSEc

s2
u 1.02 0.65 �0.3 50 1.0541 0.2255 0.0510

0.90 �1.0 50 1.0535 0.2257 0.0510
0.90 �1.0 1000 1.0521 0.2270 0.0515

s2
v 0.255 0.65 �0.3 50 0.3994 0.2295 0.0725

0.90 �1.0 50 0.4002 0.2297 0.0727
0.90 �1.0 1000 0.4017 0.2306 0.0736

s2
e 1.275 0.65 �0.3 50 1.2855 0.1451 0.0207

0.90 �1.0 50 1.2856 0.1451 0.0208
0.90 �1.0 1000 1.2861 0.1453 0.0208

dQ 9.5 0.65 �0.3 50 9.68 2.3707 0.0554
0.90 �1.0 50 9.68 2.3707 0.0554
0.90 �1.0 1000 9.62 2.3355 0.0536

Log LR — 0.65 �0.3 50 19.6072 12.4949 —
0.90 �1.0 50 19.6382 12.5213 —
0.90 �1.0 1000 19.7072 12.6154 —

a Parameters from top to bottom are polygenic, QTL, and residual variance; QTL position; and test statistic.
b Standard deviation of the estimates over 50 replicates.
c Mean square error of the estimates over 50 replicates.

Figure 4.—Average test statistic (log LR) profiles over 50
replicated pedigrees of size 480–510, with 20 biallelic markers,
intermarker distance of 1 cM, true (biallelic) QTL position at
9.5 cM, and QTL variance at 10% of the trait variance. IBD
matrices were calculated with the proposed method incorpo-
rating linkage disequilibrium. New1 denotes the new IBD ma-
trix method with l ¼ 0.65, a ¼ �0.3, and ns ¼ 50; New2 has
l ¼ 0.90, a ¼ �1.0, and ns ¼ 50; and New3 has l ¼ 0.90, a ¼
�1.0, and ns ¼ 1000.
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the analysis of the 50 replicated pedigrees. Table 5 shows
that when the values of l and a change from 0.65 and
�0.3 to 0.90 and�1.0, and when ns increases from 50 to
1000, mean, SD, and MSE of all parameters are not no-
tably affected. For all sets of values for l, a, and ns, the
parameter estimates were generally close to the true
values except for s2

v, which was overestimated. This
overestimation was also reported by Grignola et al.
(1996b) and George et al. (2000).

To evaluate the power of joint LD and linkage
mapping using the proposed IBD matrix calculation
method for different values of control parameters l, a,
and ns, tests were conducted for the presence of a single
QTL (H1) vs. no QTL (H0) in the chromosomal region
of interest, using the 5% critical values of the x21- and x22-
distributions, 3.84 and 5.99. Table 6 presents the test
results from the analysis of the 50 replicated pedigrees.
Table 6 shows that when calculating the IBD matrices
with control parameter settings ‘‘New1’’ (l ¼ 0.65, a ¼
�0.3, and ns¼ 50) and ‘‘New2’’ (l¼ 0.90, a¼�1.0, and
ns ¼ 50), the results are identical and very similar to
those obtained with ‘‘New3’’ (l ¼ 0.90, a ¼ �1.0, and
ns ¼ 1000). For New1 or New2, with critical value 3.84
(5.99), among the 50 replicates, 44 (40) were found to
have a QTL in the chromosomal region, and 34 (30)
had the estimated QTL position in the correct marker
interval or in the left or right adjacent interval. Similar
results can be found for New3.

The accuracy of QTL identification and estimation
achieved with the incorporation of linkage disequilib-
rium for variance component analysis has been in-
vestigated by Meuwissen and Goddard (2000). Here
our goal is to show that their approach for IBD matrix
calculation in founders, which assumes known marker
haplotypes, can be easily combined with our conditional

enumeration method for haplotype reconstruction.
The proposed method for calculation of IBD matrices
incorporates LD and is applicable to the realistic situa-
tion of marker haplotype uncertainty in pedigree data.

DISCUSSION

As genetic marker maps continue to become denser
and more precise, there is an increasing demand for
multipoint QTL analysis of large and complex pedi-
grees. Exact computations become infeasible, necessi-
tating the use of approximation methods (Thompson
and Heath 1999). The proposed new IBD matrix
calculationmethod is shown to be an efficient approach
applicable to larger pedigrees and larger numbers of
linked loci than other available methods, while at least
maintaining the same QTL mapping accuracy as the
MCMC method implemented in Loki. It is based on a
conditional enumeration haplotyping method (Gao
et al. 2004; Gao and Hoeschele 2005), which is more
efficient for densely linkedmarkers. The new IBDmatrix
calculation method uses a subset of haplotype config-
urations with high likelihoods identified by the enumer-
ation method. It does not have the mixing problem,
which often exists in MCMC methods, in particular for
very tight linkage (Thompson and Heath 1999).

The proposed method uses only the informative
markers for the individual under consideration and its
parents and offspring according to optimal reconstruc-
tion orders for the pedigree (Gao et al. 2004; Gao and
Hoeschele 2005) and is hence not affected by the
presence of loops in the pedigree.

When increasing the average relationship/inbreeding
coefficient of the pedigree, the sizes of full-sib or half-sib
families, the number of linked loci, or the number of

TABLE 6

Power and accuracy of QTL detection in a chromosomal region of interest using threshold values from chi-square distributions
with 1 d.f. (3.84) and 2 d.f. (5.99), obtained with the proposed method for IBD matrix calculation when incorporating

LD in the analysis of 50 pedigrees

No. of replicates with estimated position in the kth
interval to the left or right of the correct intervalb

No. of replicates
not rejecting H0

cCritical value Methoda 0 1 2 3 4 5 6 7 8 9

3.84 New1/New2 20 14 4 3 0 2 0 1 0 0 6
New3 21 14 4 2 0 2 0 1 0 0 6

5.99 New1/New2 20 10 4 3 0 2 0 1 0 0 10
New3 21 10 4 2 0 2 0 1 0 0 10

a New1 denotes the new IBD matrix calculation method with control parameter settings l ¼ 0.65, a ¼ �0.3, and ns ¼ 50; New2
has l ¼ 0.90, a ¼ �1.0, and ns ¼ 50; New3 has l ¼ 0.90, a ¼ �1.0, and ns ¼ 1000. New1/New2 denotes that New1 and New2 gave
the same results.

b Number of replicates with log LR larger than the critical value (H0 was rejected) and with estimated QTL position in the kth
marker interval to the left or right of the true interval (k ¼ 0, 1, . . . , 4), where k ¼ 0 denotes an estimated position in the correct
marker interval.

c Number of replicates with log LR less than or equal to the critical value, when assuming H0: no QTL is present in the chro-
mosomal region.
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alleles per marker locus, the pedigree becomes more in-
formative, and the subset of haplotype configurations
with highest likelihoods accounts for a larger percentage
of the total probability, this increasing the efficiency of
our haplotyping and IBD matrix calculation methods.
The computing time of the new method can be

controlled by the values of two threshold parameters
(l and a, which affect the number of enumerated
configurations) and the size of the retained subset of
haplotype configurations used for IBD matrix calcula-
tion, ns. Given a set of values for control parameters l, a,
and ns, the computing time of the proposed method
depends on how informative the pedigree is. For an IBD
matrix at a putative QTL position, the computing time
does not always increase much or at all when the
number of linked loci or the size of the pedigree
increases, because of the larger amount of information
in the full- and half-sib families of the pedigree.
In our simulation studies, we found that the estimates

of QTL position and variance components obtained by
the proposed IBD matrix calculation method change
very little with changes in the settings of the control
parameters l, a, and ns (ns $ 50). For the types of
pedigrees that we simulated (full-sib families with two or
three children, each father having two spouses, and
biallelic marker loci), increasing ns beyond the value of
50, while leaving l and a constant, did not notably
change the estimates of QTL position and variance
components; for the same value of ns, increasing the
absolute values of l and a at most slightly improved
estimation accuracy, but at the cost of a substantial
increase in computing time. This robustness of the
estimates is expected to be true for general pedigrees, in
particular formore informative pedigree structures with
larger full- or half-sib families, more spouses per parent,
larger numbers of linked loci, or more alleles per locus.
Consequently, analysis of quite large pedigrees with
large numbers of dense markers should be feasible by
selecting settings of the control parameters l, a, and ns
with low absolute values that provide computational
efficiency while maintaining sufficient power and accu-
racy of QTL inference. It is advisable to run a QTL
analysis with at least two different settings of the control
parameters to verify robustness in each application.
In the linkage analysis of simulated pedigrees with

intermarker distance of 5 cM (Figure 1, Table 1), when
l, a, and ns had low absolute values (l¼ 0.65, a¼�0.3,
and ns ¼50), i.e., values yielding high computational
efficiency, the estimates and their accuracies obtained
with our proposed method were essentially identical to
those obtained by computing the IBD matrix with the
MCMC algorithm implemented in Loki (100,000 iter-
ations), while the computing time of the new method
was much shorter (see Table 2).
Pong-Wong et al. (2001) compared their determinis-

tic method with Loki via their performance in linkage
analysis of simulated replicates of pedigree data. This

deterministic method used only partially reconstructed
haplotypes for each individual. Although the shape of
average log LR profiles over simulated replicates was
similar for both methods, the average values of log LR
from the deterministic method were lower than those
using Loki at putative QTL positions close to the true
position and higher than those using Loki at some
positions far from the true position (Pong-Wong et al.
2001). In contrast, in our simulation study, our new
method and Loki always have essentially identical
average values of log LR at all putative QTL positions.
Using the MCMC method in Loki, if the number of

iterations is too small, then it is more likely that the
estimates of the IBD matrices will be singular. When the
pedigree size or thenumber of linkedmarkers increases,
more iterations are often needed to avoid obtaining too
many singular IBD matrices. The MCMC method may
therefore become computationally infeasible for large
pedigrees and large numbers of linked loci.
When intermarker distances are 1 cM or less and for

pedigrees that are not very informative (i.e., lack
sufficient numbers of recombination events), the esti-
mates of the IBD matrices at some putative QTL
positions may be singular (not often). Increasing the
number of linked loci may decrease the probability of
obtaining a singular IBD matrix. In addition, the IBD
matrices at marker loci may be singular (George et al.
2000). In this study, putative QTL positions were chosen
not to coincide with marker locations. For the singular
IBD matrices, an algorithm not requiring inversion of
the IBD matrices can be used for restricted maximum
likelihood (REML) estimation (Visscher et al. 1999;
George et al. 2000); however, this algorithm is always
computationally more intensive than algorithms using
inverses of IBD matrices, such as the algorithm imple-
mented in ASReml.
In the proposed method an IBD matrix is estimated

by a weighed average of IBD matrices conditional on
a subset of haplotype configurations with high like-
lihoods, while in the MCMC method in Loki it is
estimated by an arithmetic average of IBD matrices
conditional on a set of inheritance vectors or sets of
segregation indicators (Thompson and Heath 1999).
For the situation investigated here with unordered
genotypes known for each individual and all marker
loci (no missing data case), the size of the subset of
configurations in the proposed method can be quite
small (50 for pedigrees with 500–1000 individuals)
without compromisingQTLmapping accuracy. Because
of homozygous genotypes in the pedigree, a haplotype
configuration is often consistent with and then contains
all information in multiple inheritance vectors or sets of
segregation indicators used by the MCMC method in
Loki. This might be one of the reasons why the pro-
posed method using a subset of as little as 50 haplotype
configurations produces QTL mapping results that
are essentially identical to those obtained by computing
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the IBDmatrix using the MCMC algorithm in Loki with
100,000 iterations.

In this study, we assumed that all individuals in a
pedigree were genotypes at all markers. Work is un-
derway to extend our method to situations with sub-
stantial amounts of missing marker data.

The IBDmatrix calculation method presented in this
article was implemented in a C11 program, which is
available upon request from the first author for aca-
demic research.

We thank Peter Sorensen for beneficial discussions and Ricardo
Pong-Wong for helpful comments; we also thank Simon Heath for
assistance with the use of Loki. This research was supported by grant
R01 GM66103-01 from theNational Institutes of Health and by a grant
from The Monsanto Company to I. Hoeschele.

LITERATURE CITED

Abecasis, G. R, S. S. Cherny, W. O. Cookson and L. R. Cardon,
2002 Merlin-rapid analysis of dense genetic maps using sparse
gene flow trees. Nat. Genet. 30: 97–101.

Almasy, L., and J. Blangero, 1998 Multipoint quantitative-trait
linkage analysis in general pedigrees. Am. J. Hum. Genet. 62:
1198–1211.

Falconer, D. S., and T. F. C. Mackay, 1996 Introduction to Quantita-
tive Genetics. Addison-Wesley Longman, Harlow, England.

Gao, G., and I. Hoeschele, 2005 A note on a conditional enumer-
ation haplotyping method in pedigrees, in Lecture Notes in Bio-
informatics. Springer-Verlag, New York (in press).

Gao, G., I. Hoeschele, P. Sorensen and F. X. Du, 2004 Conditional
probability methods for haplotyping in pedigrees. Genetics 167:
2055–2065.

George, A. W., P. M. Visscher and C. S. Haley, 2000 Mapping
quantitative trait loci in complex pedigrees: a two-step variance
component approach. Genetics 156: 2081–2092.

Gilmour, A. R., B. J. Gogel, B. R. Cullis, S. J. Welham and
R. Thompson, 2002 ASReml User Guide Release 1.0. VSN Interna-
tional, Hemel Hempstead, UK.

Goring, H. H., J. T. Williams, T. D. Dyer and J. Blangero,
2003 On different approximations to multilocus identity-
by-descent calculations and the resulting power of variance
component-based linkage analysis. BMC Genet. 4 (Suppl. l): S72.

Grignola, F. E., I. Hoeschele and B. Tier, 1996a Mapping quan-
titative trait loci in outcross populations via residual maximum
likelihood. I. Methodology. Genet. Sel. Evol. 28: 479–490.

Grignola, F. E., I. Hoeschele, Q. Zhang and G. Thaller,
1996b Mapping quantitative trait loci in outcross populations
via residual maximum likelihood. II. A simulation study. Genet.
Sel. Evol. 28: 491–504.

Heath, S. C., 1997 Markov chain Monte Carlo segregation and
linkage analysis for oligogenic models. Am. J. Hum. Genet. 61:
748–760.

Hoeschele, I., 2003 Mapping quantitative trait loci in outbred ped-
igrees, pp 477–525 in Handbook of Statistical Genetics, Ed. 2, edited
by D. J. Balding, M. Bishop and C. Cannings. John Wiley &
Sons, Chichester, England.

Kruglyak, L., and E. S. Lander, 1995 Complete multipoint sib-pair
analysis of qualitative and quantitative traits. Am. J. Hum. Genet.
57: 439–454.

Kruglyak, L., and E. S. Lander, 1998 Faster multipoint linkage
analysis using Fourier transforms. J. Comput. Biol. 5: 1–7.

MacCluer, J. W., J. L. Vandeberg, B. Read and O. A. Ryder,
1986 Pedigree analysis by computer simulation. Zoo Biol. 5:
147–160.

Meuwissen, T. H. E., and M. E. Goddard, 2000 Fine mapping of
quantitative trait loci using linkage disequilibria with closely
linked marker loci. Genetics 155: 421–430.

Meuwissen, T. H. E., and M. E. Goddard, 2001 Prediction of iden-
tity by descent probabilities from marker-haplotypes. Genet. Sel.
Evol. 33: 635–658.

Patterson, H. D., and R. Thompson, 1971 Recovery of inter-block
information when block sizes are equal. Biometrika 58:
545–554.

Pong-Wong, R., A. W. George, J. A. Wooliams and C. S. Haley,
2001 A simple and rapid method for calculating identity-by-
descent matrices using multiple markers. Genet. Sel. Evol. 33:
435–471.

Sobel, E., and K. Lange, 1996 Descent graphs in pedigree analysis:
applications to haplotyping, location scores, and marker-sharing
statistics. Am. J. Hum. Genet. 58: 1323–1337.

Sobel, E., H. Sengul and D. E. Weeks, 2001 Multipoint estimation
of identity-by-descent probabilities at arbitrary positions among
marker loci on general pedigrees. Hum. Hered. 52: 121–131.

Stram, D. O., and J. W. Lee, 1994 Variance component testing in
the longitudinal mixed effects model. Biometrics 50: 1171–1177.

Thompson, E. A., and S. C. Heath, 1999 Estimation of conditional
multilocus gene identity among relatives, pp. 95–113 in Statistics
in Molecular Biology (IMS Lecture Note Series), edited by
F. Seillier-Moseiwitch, P. Donnelly and M. Waterman.
Springer-Verlag, New York.

Van Arendonk, J. A. M., B. Tier and B. P. Kinghorn, 1994 Use of
multiple genetic markers in prediction of breeding values.
Genetics 137: 319–329.

Visscher, P. M., C. S. Haley, S. C. Heath, W. J. Muir and D. H. R.
Blackwood, 1999 Detecting QTLs for uni- and bipolar disor-
der using a variance component method. Psych. Genet. 9: 75–84.

Wang, T., R. L. Fernanda, S. van der Beek and J. A. M. van

Arendonk, 1995 Covariance between relatives for a marked
quantitative trait locus. Genet. Sel. Evol. 27: 251–274.

Xu, S., and W. R. Atchley, 1995 A randommodel approach to inter-
val mapping of quantitative trait loci. Genetics 141: 1189–1197.

Communicating editor: R. Doerge

APPENDIX: A CONDITIONAL ENUMERATION
METHOD FOR HAPLOTYPING IN PEDIGREES

In Equation 1, calculating the conditional proba-
bilities (p j

i ) using all the available information in a large
pedigree is computationally infeasible.We therefore use
only the informative flanking marker information of a
locus under consideration from the corresponding in-
dividual and its close relatives: parents and offspring
(Gao et al. 2004). From Equation 1, the conditional pro-
bability of the haplotype configuration (m1,m2, . . . , mt)
can be written as

Prðm1;m2; . . . ; mt jDÞ ¼
Yt
i¼1

pi :

Let T denote the largest conditional probability of all
haplotype configurations for U, and let R denote the
ratio of the conditional probability of haplotype config-
uration (m1, m2, . . . , mt) to T. For any k# t, let
Qk ¼

Qk
j¼1ðpj=p1j Þ. Because pj # p1j , and T $

Qt
i¼1 p

1
j is

very likely true (see Gao and Hoeschele 2005 for
details), the following inequality is very likely to hold:

R ¼ Prðm1;m2; . . . ; mtÞ=T #
Yt
j¼1

pj
p1j

#Qk : ðA1Þ

Given a relatively small threshold 10a (a , 0, e.g., a ¼
�3), if we can find some k# t, such that Qk # 10a, then
from inequality (A1)wehaveR # 10a, so the conditional
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probability Prðm1;m2; . . . ; mt jDÞ is very small relative to
the largest conditional probability T. Then this config-
uration can be deleted from SACHC, when the purpose
is to efficiently identify a set of configurations with
highest likelihood.
Given a user-determined threshold l for the condi-

tional probabilities of ordered genotypes at each locus
(l$ 0.5; see Gao et al. 2004) and a threshold 10a for the
conditional probabilities of haplotype configurations (a
, 0 and 10a , (1 � l)/l; see below and Gao and
Hoeschele 2005), the conditional enumeration
method is implemented as follows: after the first i � 1
person-markers have been assigned ordered genotypes,
for each assignment combination pertaining to the i � 1
person-markers, m1, m2; . . . ; mi�1, we find the person-
marker Mi with the highest conditional probability p1i
among all remaining person-markers in U. We assign

ordered genotypes to person-marker Mi as described
below (i ¼ 1; 2; . . . ; t):

1. When p1i $l, then assign only m1
i to person-marker

Mi .
2. When p1i ,l, then if assigning m2

i to person-marker
Mi produces Q i # 10a, we assign only m1

i ; otherwise,
we retain both ordered genotypes, m1

i and m2
i , for

person-markerMi.

After all person-markers inUhave beenprocessedwith
this algorithm, a set of haplotype configurations for the
pedigree has been retained, and a smaller subset of
configurations with highest likelihood can be obtained
by eliminating more configurations, if desired. When l

approaches 1, and a approaches�‘ (10a approaches 0),
then the conditional enumeration haplotyping method
approaches an exhaustive (exact) enumeration method.
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