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ABSTRACT

We have developed a fast and economical strategy for dissecting the genetic architecture of quantitative
trait loci at a molecular level. The method uses two pieces of information: mapping data from crosses that
involve more than two inbred strains and sequence variants in the progenitor strains within the interval
containing a quantitative trait locus (QTL). By testing whether the strain distribution pattern in the pro-
genitor strains is consistent with the observed genetic effect of the QTL we can assign a probability that any
sequence variant is a quantitative trait nucleotide (QTN). It is not necessary to genotype the animals except
at a skeleton ofmarkers; the genotypes at all other polymorphisms are estimated by amultipoint analysis. We
apply the method to a 4.8-Mb region on mouse chromosome 1 that contains a QTL influencing anxiety
segregating in a heterogeneous stock and show that, under the assumption that a single QTN is present and
lies in a region conserved between the human and mouse genomes, it is possible to reduce the number of
variants likely to be the quantitative trait nucleotide from many thousands to ,20.

ALTHOUGH it is straightforward tomap quantitative
trait loci (QTL) in animal models such as rodents

[.100 that influence behavioral variation alone have
been identified (Flint 2003)], finding the quantitative
trait nucleotides (QTN) that give rise to aQTLcontinues
to be difficult and expensive; cheaper and quicker ways
ofmoving fromQTL toQTNare needed. Unfortunately
the genetic architecture of quantitative traits is complex
(Mackay 2001). Studies in yeast (Steinmetz et al. 2002)
and Drosophila (Anholt et al. 2003) reveal interactions
between sex, environment, and genotype and show that
no single variant within a locus may be sufficient to ex-
plain phenotypic variation. The individual contribution
from each locus is usually small, and the responsible
sequence variants may lie within noncoding regions
(Allen et al. 2003; Helms et al. 2003; Tokuhiro et al.
2003;Ueda et al. 2003; VanLaere et al. 2003; Zhang et al.
2003).

The availability of complete genome sequences and
dense single-nucleotidepolymorphism(SNP)mapsopens
up novel approaches to QTN identification (Lander et al.
2001; Sachidanandam et al. 2001; Wade et al. 2002;
Waterston et al. 2002). Surveys of genetic variation in
the mouse indicate that sequence differences between in-
bred strains are not randomly distributed across the ge-
nome. Wade and colleagues argue that 95% of genetic
variation lies in one-third of the mouse genome and
suggest that focusingonSNPdense regionsof thegenome
will accelerate QTL searches (Wade et al. 2002).

Sequence differences between inbred strains have
long been used to map QTL in panels of recombinant
inbred lines (see http://www.webqtl.org). The key idea
is that allelic distribution across the panel at a locus
is characterized by its strain distribution pattern (SDP):
a QTL must be contained in a locus where the SDP
correlates with the phenotypic distribution across the
panel. More recently, Hitzemann and colleagues have
shown that when QTL have been mapped in different
combinations of inbred strain crosses, allelic variation
among the strains can be combined with mapping data
to narrow the region containing the functional variant
(Hitzemann et al. 2002). Further, it should be possible
to exploit the SDP of multiple inbred strains for QTL
mapping in silico (Grupe et al. 2001).

Here, rather thanmapQTL, we show how to use SDPs
to identify candidateQTN.Wepresent a novel approach
that combines the high-resolutionmapping potential of
genetically heterogeneous stock (HS) of mice with the
sequence information available from theHS progenitor
strains (Talbot et al. 1999; Mott et al. 2000). Our
approach differs from that of other methods that use
SDP information (for example, Hitzemann et al. 2002;
Grupe et al. 2001), in that it incorporates the probabi-
listic ancestral haplotype reconstruction analysis de-
veloped for the analysis of HS populations.

As a test case, we analyzed a QTL that contributes to
,10% of the phenotypic variance in a number of
behavioral tests of anxiety in the mouse (Turri et al.
2001a,b). The small-effect size is typical for a behavioral
QTL and for many other phenotypes too (Flint 2003).
The QTL has been mapped to a 4.8-Mb region near
position 143 Mb on chromosome 1 in HS mice that are
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derived from eight inbred progenitor strains, A/J, AKR,
BALB/c, C3H,C57BL/6,DBA/2, I, andRIII (McClearn
et al. 1970).We screened the region for sequence variants
and identified 1720 (including 1325 SNPs) of an esti-
mated total of 15,000 (Yalcinet al. 2004a). All the diallelic
variants fall into 19 SDPs, none of which form a simple
haplotype block structure. These SDP complexities sug-
gest that a way to test that each variant is a QTN is by com-
bining QTL mapping data in HS animals (Talbot et al.
1999)with the SDPs ofHSprogenitor strains (Yalcinet al.
2004a) and thus avoiding theneed to genotype every poly-
morphism. The problem this article addresses is equiva-
lent to the hidden SNP problem in human genetics
(Evans et al. 2004). However, our solution differs in that
we can make use of the known haplotype structure of
mouse inbred strains.

MATERIALS AND METHODS

Heterogeneous stock mice: We used the same mice and
phenotype as described in Talbot et al. (1999). The stock is
maintained by breeding from 40 pairs and at the time of the
experiment reported heremice were at generation 58 at which
point the expected average length of unrecombined chromo-
some is ,2 cM, in agreement with experimental observation
(Talbot et al. 1999). Open-field activity was measured in 751
heterogeneous stock mice for 5 min in a white plastic 60-cm
arena. Defecation was measured by recording the number of
fecal boli produced in the open field during the 5-min test
period. Thephenotypeweuse, EMO, is the difference between
the standardized scores for activity and defecation.
SNP genotyping: SNP genotyping was performed using the

MassExtend system (Sequenom). Extension and amplification
primers were designed using SpectroDesigner. Oligonucleo-
tides were synthesized at Metabion (Martinsried, Germany).
PCR was carried out with Hotstar Taq obtained from QIAGEN
(Düsseldorf, Germany). A 5-ml PCR contained 2.5 ng of ge-
nomic DNA, 0.2 units of HotStar Taq, 5 pmol forward and re-
verse primers, 2 mm of each dNTP, 13HotStar Taq PCR buffer
as supplied by the enzyme manufacturer [contains 1.5 mm

MgCl2, Tris-Cl, KCl, (NH4)2SO4 pH 8.7], and 25 mm MgCl2
(QIAGEN). The temperature profile consisted of an initial en-
zyme activation performed at 95� for 15 min, followed by 45
cycles of 94� for 20 sec, 56� for 30 sec, 72� for 60 sec, and a final
incubation at 72� for 3 min.

PCR products were treated with shrimp alkaline phospha-
tase (Sequenom) for 20 min at 37� to remove excess dNTPs. A
thermosequenase (Sequenom) was used for the base exten-
sion reactions (94� for 2 min, followed by 94� for 5 sec, 52� for
5 sec, and 72� for 5 sec for 55 cycles).

Unincorporated nucleotides were removed from extension
products using SpectroClean resin. A few nanoliters of sample
was then arrayed onto a 384 SpectroChip by a SpectroPoint
robot. Chips were read in the Bruker Biflex III Mass Spec-
trometer system and data analyzed on SpectroTyper. Geno-
types were automatically uploaded into a custom database.
DNA sequencing: Genomic DNA was amplified in a 50-ml

PCR reaction using oligonucleotides synthesized at MWG
(Ebersberg, Germany): 100 ngDNA, 0.2 units GoldTaq,10 pmol
forward and reverse primers, 8 mm of each dNTP, 13 PCR
buffer, and 25mmMgCl2. The PCRwas run using the following
conditions: 95� for 15min (31), 95� for 30 sec, 62� for 30 sec at
�0.5�/cycle, 72� for 60 sec (313), 95� for 30 sec, 58� for 30 sec,
72� for 55 sec (329), and 72� for 7 min (31). PCR products

were purified on a 96-well Millipore purification plate and
resuspended in 30 ml of H2O. Two sequencing reactions were
prepared for each DNA sample, one with the forward primer
and one with the reverse primer. PCR reagents were removed
from solution by an ethanol precipitation in the presence of
sodium acetate. All sequencing reactions were analyzed on an
ABI3700 sequencer and edited using CONSED software
(Gordon et al. 1998).
Sequence variant information: We used the data set of 1720

variants described in Yalcin et al. (2004a), obtained by re-
sequencing 580 kb of the 4.8-Mb region in each of the eightHS
founders. We used DNA from the following eight strains as
representative of the founders of the HS: A/J, AKR, BALB/cJ,
C3H/HeJ, C57BL/6J, DBA/2J, I/LnJ, and RIII/DmmobJ
(hereafter referred to as A/J, AKR, BALB/c, C3H, C57BL/6,
DBA/2, I, and RIII). Details of the sequencing strategy are
given in Yalcin et al. (2004a); in brief, we resequenced all
exons, including at least 1 kb of flanking sequence, all con-
served noncoding regions (defined as regions of .70% simi-
larity over $100 bp in a comparison between mouse and
human sequence), and finally a random selection of 1- to 2-kb
segments, at intervals of �10 kb. The mean distance between
sampled sequences was 8.2 kb.
Marker selection: We selected a set of SNPs for genotyping

the HS animals on the basis of the informativeness of the
haplotypes of the eight HS founder strains. The method was
originally developed for tagging SNPs in humans (Ackerman
et al. 2003). Briefly, the method works on a moving window of
SNPs, prioritizing the SNPs in each window by their ability to
account for an entropy-basedmeasure of diversity between the
founder haplotypes. Each SNP is scored by summing its con-
tributions in all the windows that overlap the SNP. Then the
SNPs are ranked across the region by sorting their scores, and
the top SNPs are chosen for genotyping. For a detailed ex-
planation the reader is referred to http://www.well.ox.ac.
uk/rmott/SNPS.
Testing for a QTL: The test for a QTL is an extension of the

treatment in Mott et al. (2000). A skeleton of markers is
genotyped in the HS over a region containing a QTL. The
markers must be spaced close enough that on average more
than one marker will be present between any two historical
recombinants that have accumulated in the HS. We also
genotype the progenitor strains with the same markers.

We consider, on both chromosomes, each interval L between
genotypedmarkers in anHS individual i. Because the genotype
data provide only incomplete information, the strain origins of
each interval are not known with certainty. We use a dynamic-
programming algorithm (Mott et al. 2000) to infer the prob-
ability FLi(s, t) of descent from founder strains s, t, where s and t
can be any of the progenitors (and may be identical).

If the interval L (the interval between two genotyped mark-
ers) contains a QTL, then the expected trait value for an in-
dividual withancestral strains s, twithin the intervalwill beT(s, t),
say, for a general ‘‘full’’ model allowing for interaction between
the alleles and including dominance, or T(s)1T(t) if the QTL
behaves additively. The expected trait value for the individual i
with strain probability distribution F is then

m
ðfÞ
i ¼

X
s;t

FLiðs; tÞT ðs; tÞ ð1Þ

or

m
ðaÞ
i ¼

X
s;t

FLiðs; tÞðT ðsÞ1T ðtÞÞ ð2Þ

for an additive QTL. The T ’s are estimated by multiple linear
regression of the observed trait values yi on the probabilities
FLi(s, t). In this instance, the T ’s are estimated genetic effects
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from the linear regression model. Under the null hypothesis
of no QTL effect, the trait means T(s, t) are the same for all
strains s and t. We use analysis of variance to look for significant
differences between the strain effects as a test for the presence
of a QTL. Furthermore, the additive model (2) is a submodel
of the full model (1), so the presence of an interaction within
the interval is tested by comparing the models using a partial
F-test.
Testing for a QTN within a QTL by merge analysis: Within

the interval (L) we have a series of polymorphisms, deter-
mined, for example, by sequence analysis of the progenitor
strains, and we test the candidacy of each polymorphism as a
QTN. To apply the test of a QTN, the positions and SDPs of all
variants are assumed to be known within the interval L. We
define p as the sequence polymorphism and we note that p
partitions the founder strains into two or more groups, in
which all members of a group share the same allele at p; a
diallelic SNP will generate two groups. If p is associated with
the trait, then merging the founder strains in accordance with
p’s SDP will retain, or enhance, its statistical significance.
However, if the significance level drops markedly, we cannot
reject the null hypothesis of no association. We define

Xpða; sÞ ¼
1 if strain s has allele a within interval L
0 otherwise:

�

The probability that individual i is descended from alleles a, b
within interval L at polymorphism p is estimated by

Gpiða; bÞ ¼
X
s;t

Xpða; sÞXpðb; tÞFLiðs; tÞ:

The expected trait value for individual i in the merged strains
is then

m
ðfÞ
i ¼

X
a;b

Gpiða; bÞT ða; bÞ ð3Þ

for the full model or

m
ðaÞ
i ¼

X
a;b

Gpiða; bÞðT ðaÞ1T ðbÞÞ ð4Þ

for the additivemodel. Themodel for aQTLusing themerged
strains is a submodel of the corresponding model using the
unmerged data: model (3) is a submodel of (1), and (4) is a
submodel of (2).

A partial F-test determines whether the fit is significantly
different between the models. Although the variance ex-
plained by a submodel cannot exceed that of the full model,
the partial F-statistic can be more significant in the submodel
because of the reduction in the number of degrees of freedom.
For example, the test for adiallelic SNPhas 1 d.f. in the additive
model and 2 d.f. in the full model; by contrast, the full un-
merged model (with S¼ 8 strains) has 35 d.f. [(S(S1 1)/2)�
1 ¼ 35]. Polymorphisms in the same interval that share a SDP
behave identically under the test and cannot be distinguished.
In this framework, p can be (a) a single polymorphism such as
a SNP ormicrosatellite, (b) a composite of several nearby poly-
morphisms, or (c) the distinct haplotypes present at a locus, so
the test can also be used to investigate and eliminate regions
where the haplotype distribution pattern is inconsistent with
the phenotype values.

We extended the original C version of HAPPY, which fits
only the linear additive model (2), by reimplementing the
model-fitting part of the algorithm in the R language (http://
www.r-project.org), keeping (for efficiency) the original
dynamic-programming engine written in C. The four models

and the merge analysis are implemented as R functions in the
package. Consequently R’s modeling capabilities, including
generalized linear models and multivariate analyses, are avail-
able in HAPPY (http://www.well.ox.ac.uk/happy).

To see if a single polymorphism could explain all of the
genetic variance under a QTL, the effect due to each poly-
morphism was removed in turn and the merge analysis was
repeated across all remaining variants. Writing m(p) to mean
the model for polymorphism p, the fits of the models yp1q ¼
m(p)1m(q) and yp ¼ m(p) are compared to test if the effect of
fitting polymorphism q after fitting p is significant. The most
significant conditional fit for a polymorphism measures how
much residual genetic variance is unaccounted.

RESULTS

High-resolution QTL mapping using SNPs: We
began by choosing SNP markers within the 95% con-
fidence interval of a QTL on mouse chromosome 1,
corresponding to the 4.8-Mb region described in Yalcin
et al. (2004a). QTLmapping information obtained from
each marker depends on the marker’s SDP: if we use a
set of markers with identical SDPs our ability to detect
QTL with SDPs different from those of the markers is
diminished. Therefore we developed an algorithm that
took into account the SDPs of the SNPs to identify a
maximally informative set of markers from the 1325
SNPs for which we have SDP data.

We identified 37 SNPs, 3 of which are monomorphic
in the HS. Monomorphic markers still provide useful
mapping information, since they exclude some haplo-
type configurations. All 751 animals were genotyped
with the 37 SNPs. After inspection for quality and likely
genotyping error, we included data from 650 animals to
map the anxiety phenotype, using both a full model
(testing for dominance) and an additive model.

Figure 1 shows log P values within each genotyped
marker interval (log P is the negative base-10 logarithm
of the analysis-of-variance F-statistic). The fit of the full
model is significantly better than that of the additive
model (log P . 3.0) at two positions, at 1.7 Mb in the
promoter of the rgs2 gene and at 4.3 Mb in an intron of
the brinp3 gene. All remaining analyses presented in this
article use the full model; the results using the additive
model are qualitatively similar. The relative flatness of the
log P plot in Figure 1 reflects the fact that markers within
the region are in linkage disequilibrium (LD). LD values
(measuredbyD9) are high (.0.8) overmanyhundreds of
kilobases and we cannot expect to obtain additional
mapping information by adding more markers.

QTN analysis: There may be thousands of poly-
morphisms to investigate within even a few megabases
(Yalcin et al. 2004a). Our aim is to prioritize candidate
QTN for functional investigation without further ge-
notyping. The principle behind the test is that, to be a
functional candidate, the SDP of a genetic variant must
match that of the QTN. As an illustration, consider a
cross descended from just three strains in which there
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is a QTL with two alleles. If strains 1 and 2 carry the
decreaser and strain 3 the increaser allele, the SDP of
the true QTN is 001 (where 1 is the increaser allele).
Now consider sequence variants near the QTN, such
that no recombination has occurred between the QTN
and the variants. We obtain the SDP of each variant by
genotyping the three founder strains. We can eliminate
all variants whose SDPs are not 001. This simple scenario
demonstrates the power of the approach for evaluating
candidate sequence variants.
The SDPs for all common diallelic variants (SNPs

and insertion/deletions) across the 4.8-Mb region are
shown in Figure 2 by a sequence of digits representing
the alleles for the eight founder strains, in the order
A/J, AKR, BALB/c, C3H, C57BL/6, DBA, I, RIII. The
allele for the first strain A/J is coded as 0. The alleles for
the other strains are coded as digits, with the kth strain
corresponding to the kth digit in the sequence. For
example, a SNP in which the strains A/J, AKR, BALB/c,
and RIII have allele C and the remainder allele T has the
SDP 00011110 (in this instance ‘‘0’’ indicates ‘‘C’’ and
‘‘1’’ indicates ‘‘T’’). SDPs with multiallelic markers were
included in our analysis [the region we have examined
contains 258 microsatellites (Yalcin et al. 2004a)] but
the large number of SDPs to which they give rise is not
displayed in Figure 2.
Figure 2 shows the full-model merge log P values of

all variants as black dots. The unmerged values are the
same as those we obtain from the HAPPY QTL analysis,
under a full model for the interval that contains the var-
iant [shown as a red line; this is model (2) inmaterials

andmethods]. The partial F-test that comparesmerged
and unmerged is not shown for clarity. Variants with the
same SDP are not confined to simple haplotype blocks
and consequently variants with high-scoring log P val-
ues occur throughout most of the region.

The strategy excludes many variants: 493 variants
(28%) have a merge log P , 2. However, there is an
excess of high-scoring variants: 681 (39%) score .6
(almost all of these either are repeats or have the SDPs
01101111 or 00101111). Even if we include only those
variants for which merged and unmerged models are
not significantly different (defined as a partial F-test
log P , 2), we still retain 542 (31%) variants. Conse-
quently a simple ranking by log P does not reduce the
number of variants to a manageable number.
The number of candidate variants can be restricted

further by considering only variants in regions of se-
quence conservation, assuming that all functional var-
iants are within such a sequence. We used sequence
similarity between human and mouse, which is likely to
be conservative as many regions of sequence similarity
will have been maintained by chance since the diver-
gence of primate and rodent lineages (Wade et al. 2002).
We examined all variants within expressed sequences
and within potentially functional sequence (defined as
sequence with .70% similarity to that of human over
100 bp). No variants are predicted to disrupt the reading
frame or alter the length of transcripts; none are pre-
dicted to have an effect on the protein’s function
[POLYPHEN (Ramensky et al. 2002) and SIFT pro-
grams (Ng and Henikoff 2003)], although we cannot
exclude the possibility. There are 614 noncoding var-
iants, with a distribution of merge log P values similar
to that of the full set of results: 68% (419) have merge
log P . 6. So, while taking into account functional in-
formation reduces the number of potential QTN, it still
leaves many hundreds of candidates.
The analysis did not exclude any gene, since high- and

low-scoring variants are intermixed, with no useful
spatial clustering. There are 77 variants with log P val-
ues . 8 (5% of the total) covering a 2.2-Mb region; the

Figure 1.—Dynamic pro-
gramming analysis of chromo-
some 1 QTL. The vertical scale
is in log P units and the hori-
zontal scale is in megabases.
The position and name of genes
are shown above the likelihood
curves. Three tests are shown:
black, thefit to an additivemodel;
red, the fit to a full model; and
purple, the results of a partial
F-test comparing additive to full
models. A significant difference
between full and additive mod-
els is shown by the significance
of the partial F-test result (pur-
ple line) as can be seen at po-
sition 1.7 Mb.
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highest 10% of log P values extend over 2.9 Mb. The
uneven pattern is not consistent with a simple haplotype
block structure. Figures 2 and 3 show how, even within
a single gene, different SDPs coexist.

To reduce the number of candidate QTNs further we
examined the effects of fitting themodel for one variant
conditional upon another variant being fitted at the
same time. In general, the more significant a variant is,
the less significant is the best remaining variant. We
found that the sum of the merge log P for a given vari-
ant and the maximum conditional merge log P among
all the other variants was almost constant and equal to
themaximum observedmerge log P (Figure 4). This is a
consequence of linkage disequilibrium between mark-
ers within the region. Figure 4 shows a bimodal distribu-
tion of log P scores, with a cluster of nonsignificant
values,2 and another cluster of candidates with scores
.4. Figure 4 also shows that the SDPs that distinguish
between the strains A/J and C57BL/6 (shown in red)
constitute almost all of the highest-scoring variants
with merge log P . 6; these strains were used to map
the QTL in an F2 intercross (Gershenfeld et al. 1997).

If we set a condition that, once the variant is fitted, the
remaining best significant fit is ,log P 2, 14 variants
remain (Table 1), of which 12 are repeats and only 2 are
SNPs. With a more relaxed criterion of ,log P 3,
65 variants are included. Four variants are significant
by a conditional fit criterion and lie within a conserved
sequence. All are within introns of the rgs18 gene and
are repeats, not SNPs. Figure 3 shows the merge analysis
for the region containing rgs18. Of the 139 variants in
the region, only 34 (24%) have merge log P values .4,
of which 12 (8%) are .9.

Finally we used simulation to confirm that themethod
identifies QTN correctly. We retained the LD structure
in the data set and performed simulations taking each
of the 37 genotyped markers in turn, generating a sin-
gle, additive, QTL on the basis of the genotypes at the
marker. The merge analysis was repeated to see how
accurately the simulated QTN was identified. We found
that on average the simulated QTN was in the top
3.2% of the log P values with a mean log P difference
of 0.46 between the maximum and the log P of the
simulated QTN.

Figure 2.—Quantitative trait nucleotide analysis across a 4.8-Mb QTL on mouse chromosome 1. The horizontal axis is the
coordinate in megabases. The top half shows the QTN merge analysis. Yellow bars indicate the positions of the exons of genes
in the region. Each gene’s name is positioned at the leftmost exon of the gene. The vertical black lines are the positions of geno-
typed markers; each region between adjacent lines defines a marker interval. The positions and log P significance levels of 1720
sequence variants under a merged strain analysis are indicated by black dots. The unmerged value for the marker interval is shown
by a horizontal red line, whose placement is identical to that in Figure 1. The vertical position of a black dot relative to the red line
measures the evidence that the variant could be a QTN for the trait. Variants with black dot values,log P 2 are unlikely to be QTN,
while variants with very high black dot values could be QTN or share the same strain distribution pattern with a nearby QTN. The
gray and white horizontal tracks in the bottom half of the figure show the spatial arrangement of the variants’ strain distribution
patterns. Each track corresponds to the SDP indicated in the left margin by a string of 0’s and 1’s representing the alleles for the
eight founder strains of the HS, in the order A/J, AKR, BALB/c, C3H, C57BL/6, DBA, I, RIII. Repeat-length polymorphisms are
combined into a single track, as are rare variants (all SDPs occurring,10 times). Within each SDP track the vertical black lines give
the locations of the variants with that SDP.

Quantitative Trait Nucleotide Analysis of Outbred Mice 677



DISCUSSION

In this study we investigated whether themosaic struc-
ture of the mouse genome would aid identification of
QTN and developed a statistical test that can reject poly-
morphisms as being QTN. By noting which progenitor
strains share the same allele at a locus we can test if it is
a QTN, first merging the strains according to that var-
iant’s SDP and then comparing the statistical evidence
in favor of the presence of a QTL under themerged and
unmergedmodels. We stress that the test does not prove
that a variant is a QTN; that requires further functional
analysis (for example, see Van Laere et al. 2003; Zhang
et al. 2003), but it does eliminate variants.
We applied the method to a 4.8-Mb region in which

there are nine genes and�15,000 sequence variants, any
of which might be a QTN that influences anxiety in the
mouse (Yalcin et al. 2004a). Our method excluded two-
thirds of candidate QTN, but left hundreds of variants
with significant merge log P values. We showed that it
is possible to lessen the number of candidates by re-
stricting the analysis to variants in known or putative
functional regions. Where additional evidence impli-
cates a particular gene then the number of candidate
QTN can be reduced significantly, as shown, for exam-
ple, in an analysis of the variants surrounding rgs18
(Figure 3).
Finally, we identified those variants that could explain

all of the genetic variance in the region. On the assump-

tion that all candidate functional regions have been iden-
tified, sequenced, and hence tested within the frame-
work and that only a single QTN is responsible, we were
able to reduce the 15,000 variants to 14 putative QTN.
Of these variants, 4 lie within regions of conserved
sequence (an index of potential function), in introns of a
regulatorofG-protein signaling(rgs18) (Table1). It isnote-
worthy that 12 of the variants were repeats, including
all 4 within the rgs18 gene; interestingly, differences in
repeat length have been reported to have a quantitative
effect on gene expression (Albanese et al. 2001).
Although conditional QTN analysis identifies which

variants could account for all the genetic variance, there
may be more than one functional candidate. Because of
the high LD in the region, the genetic variance could be
explained either by a single variant or by at least two
working together. While we have substantially reduced
the number of candidateQTN, we emphasize that in the
absence of sufficient historical recombinants to provide
adequate mapping resolution and because high-scoring
SDPs are distributed throughout the region, we cannot
exclude any gene.
A number of factors could compromise the perfor-

mance of our method. First, it is possible that there may
be other SDPs in the region that are associated with the
QTL effect; their presence, if not taken into account,
could reduce the power of our analysis. An analysis of
the distribution of sequence variants in the region indi-
cated that we had detected.98% of SDPs (Yalcin et al.
2004a) so, at least in this case, it is unlikely that missing
SDPs are damaging our method’s power.
A second problem for the method is that even when

analyzing a small region, wemay be dealing withmultiple
QTN, rather than a single effect.Whenamerge analysis is
performed incorrectly assuming the presence of a single

Figure 3.—Merge analysis of 139 variants surrounding the
rgs18 gene. See Figure 2 legend for explanation. The SDP
track labeled ‘‘repeats’’ gives the positions of all repeat poly-
morphisms.

Figure 4.—Conditional merge analysis. Scatter plot of the
merge log P is shown for each variant (x-axis) vs. the maxi-
mum merge log P (y-axis) for all other variants, conditional
on the variant being fitted. Red dots indicate variants with
an SDP that distinguishes A/J and C57BL/6 strains, the strain
pair used to map the QTL in an F2 intercross.
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QTN, the results may be misleading: if the additional
QTN are on different SDPs, then this should be detect-
able because no single SDP will perform as well as the
unmerged models (1) or (2). However, if they are on
the same SDP and are very close together then it will be
difficult to distinguish multiple from single effects.
The consequence of the latter situation will be the
presence of equally ranked SNPs that will remain
candidates, as we discuss in the context of rgs2, below.
We cannot at the moment say how often merge analyses
will have to deal with multiple QTN. While we have
restricted our search to a region of ,5 Mb, a relatively
small region by the standards of most QTL analyses, it is
quite possible that it contains multiple QTN.
We have elsewhere shown that rgs2 is a quantitative

trait gene for open field behavior, by using a commercial
outbred stock of mice called MF1 (Yalcin et al. 2004b).
Although the ancestry of MF1 is unknown, MF1 chro-
mosomes can bemodeled as a mosaic of standard labor-
atory strains, i.e., like an HS, and therefore can be
analyzed in the same way. However, because theMF1 has
built up much more ancestral recombination than the
HS, we were able to resolve the QTL analyzed in this
article into three smaller QTL, one of which contains
rgs2, while the others did not contain any known gene.
All 10 variants occurring in or near to rgs2 have the same
SDP 00101111 and all have highly significant merge
log P values of 7.64, although they are not the most sig-
nificant. The maximum conditional log P for the rgs2
variants is 4.27, indicating that these variants do not
account for all of the genetic variation.
We developed the method for HS mice, but it can be

applied to all QTL mapping experiments involving
more than two strains where sequence information is
available to identify candidate QTN. However, we must
point out that we have not undertaken a comprehensive
analysis of all the factors that impact on the method’s
power, which would require a large set of simulations
incorporating variations in the number of founder
strains, distribution of sequence variants, and position
and effect size of the QTL.
When high-resolution SNP maps of many inbred

strains become available they will have wide utility. In
the simplest case, a merge analysis can then be carried
out, in silico, for any QTL mapped in multiple strains.
Many phenotypes have already been mapped in multi-
ple strain crosses [for example, obesity (Brockmann
and Bevova 2002) and anxiety (Flint 2003)]. The me-
thod is also robust in the presence of epistasis, because
for a segregating cross if unlinked loci are epistatic we
would expect to see all combinations of alleles present in
the mapping population. The effect of epistasis is to
reduce the genetic variance attributable to each locus
individually, but we would still expect to see a concor-
dance between QTN and trait.
The method may have additional applications. Stud-

ies of sequence variation in the mouse suggest that

commonly used laboratory strains are descended from a
few subspecies (Beck et al. 2000; Lindblad-Toh et al.
2000;Wade et al. 2002; Wiltshire et al. 2003). In theory,
a large number of inbred strains can be treated as a set
of recombinant inbred strains, derived from a small set
of progenitors. By combining high-density SNP maps
with phenotypic data from the mouse phenome data-
base (http://www.jax.org/phenome), potential QTN can
be identified in amerge analysis, although the complex-
ity of the mosaic structure of the mouse genome may
limit success (Yalcin et al. 2004a). Merging functional
with in silico approaches may be the best strategy for the
simultaneous identification of the large numbers of loci
underlying complex phenotypes.

We thank Andrew Morris for helpful comments. This work was
funded by a grant from the Wellcome Trust.
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