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ABSTRACT

False discovery rate control has become an essential tool in any study that has a very large multiplicity
problem. False discovery rate-controlling procedures have also been found to be very effective in QTL
analysis, ensuring reproducible results with few falsely discovered linkages and offering increased power to
discover QTL, although their acceptance has been slower than in microarray analysis, for example. The
reason is partly because the methodological aspects of applying the false discovery rate to QTL mapping
are not well developed. Our aim in this work is to lay a solid foundation for the use of the false discovery
rate in QTL mapping. We review the false discovery rate criterion, the appropriate interpretation of the
FDR, and alternative formulations of the FDR that appeared in the statistical and genetics literature. We
discuss important features of the FDR approach, some stemming from new developments in FDR theory
and methodology, which deem it especially useful in linkage analysis. We review false discovery rate-
controlling procedures—the BH, the resampling procedure, and the adaptive two-stage procedure—and
discuss the validity of these procedures in single- and multiple-trait QTL mapping. Finally we argue that
the control of the false discovery rate has an important role in suggesting, indicating the significance of,
and confirming QTL and present guidelines for its use.

OVERLOOKING the multiplicity aspects in QTL
studies with numerous markers and several quan-

titative traits can lead to many false discoveries of link-
ages. Lander and Kruglyak (1995, p. 241) were among
the first to address the multiplicity problem in QTL
mapping, arguing that ‘‘Adopting too lax a standard
guarantees a burgeoning literature of false positive . . .
Scientific disciplines erode their credibility when a sub-
stantial proportion of claims cannot be replicated.’’ The
procedure they offered was designed to control the
probability of making even one type I error—of making
even one false discovery—in a QTL study with a single
quantitative trait. This probability is termed the family-
wise error rate (FWE) or in this case the genome-wise
error rate (GWER).

Concerned that controlling the FWE at conventional
levels results in very little power to discover QTL,
Lander and Kruglyak (1995) set the following widely
used terminology: suggestive linkage, statistical evidence
that would be expected to occur one time at random in a
genome scan; significant linkage, statistical evidence that
would be expected to occur at random with probability
0.05; and confirmed linkage, significant linkage confirmed
by a further sample with a nominal P-value ,0.01.

The FWE-controlling procedures employed are de-
signed to control the probability of making one or more
false discoveries for a single trait. In studies with

multiple traits FWE-controlling procedures have to be
suitably adjusted by further raising the threshold for
significant linkage according to the number of traits in
the study. Consider, for example, a study with 12 quan-
titative traits. For a linkage to be suggestive, it should
pass a threshold that is equivalent to controlling the
FWE at level 0.6 (using the Poisson approximation when
the average is 1). Findings that would have been re-
ported as significant linkages (FWE ¼ 0.05) in a single-
trait study should now be reported only as suggestive
linkages (if a simple Bonferroni correction was used the
single-trait threshold should be divided by the number
of traits). Such a solution may be acceptable in QTL
studies with only a few traits. In studies with many traits
the control of the FWE leaves very little power to make
discoveries. The problem becomes serious even well
before reaching current large problems that combine
microarrays with QTL analysis, as in Williams et al.
(2002) with 12,422 quantitative traits.

The conflict between the strict control of type I error,
as a protection against false discoveries, and the need
for increased power led Benjamini and Hochberg

(1995) to suggest a new criterion for type I error in
multiple testing: let Q be the proportion of false linkage
claims in a genome scan, setting it at zero if no dis-
coveries are made; then the false discovery rate (FDR) is
the expected value of Q. It thus seems as if Benjamini
and Hochberg have taken literally the warning of
Lander and Kruglyak about the danger in allowing a
substantial proportion of false claims and cast this
danger into a well-defined statistical criterion.
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Benjamini and Hochberg (1995) also introduced a
FDR-controlling procedure [sometimes called linear
step-up or the Benjamini-Hochberg (BH) procedure]
and proved that it controls the FDR for independent test
statistics. Benjamini and Yekutieli (2001) proved that
the same holds for some types of positive dependence.

Weller et al. (1998) were the first to apply the FDR
approach for QTL mapping. They explained the use of
the BH procedure for single-marker analysis and dem-
onstrated the increase in power. While commenting on
this work, Zaykin et al. (2000) pointed out that the con-
ditional interpretation of the FDR criterion, i.e., that
controlling the FDR at 0.05 means that 95% of the dis-
coveries are true, does not always hold. Although Weller

(2000) eased their concern, the issue is still alive and
has resurfaced in discussions of alternative formulations
of the FDR criterion: positive FDR (Storey et al. 2004),
adjusted FDR (Mosig et al. 2001), and the proportion of
false positives (PFP) (Fernando et al. 2004).

While the BH procedure received much attention in
microarray analysis, the developments were slower in
the context of QTL analysis. Sabatti et al. (2003) veri-
fied that the BH procedure controls the FDR for single-
trait linkage (see also Yekutieli 2001) and association
genome screens. Lee et al. (2002) addressed interval
mapping, discussed the use of the FDR in multiple quan-
titative traits, and recommended the application of the
BH procedure separately for each trait. Sabatti et al.
(2003) further suggested substituting the BH procedure
with a resampling-based FDR procedure capable of cap-
turing the dependency structure of the data to achieve
additional power.

What is common to the above researchers, and to the
few other users of FDR ideas in QTL analysis, is their
enthusiasm about the important role that these ideas
can play in QTL analysis. Since we share this enthusi-
asm, it seems important to us to lay a solid foundation
for the use of FDR in this area, as well as to expand our
working methodologies. We present the FDR in precise
terms, in conjunction with related formulations of the
proportion of false discoveries. We make a clear distinc-
tion between the FDR criterion and the BH procedure
that controls it under independence. We explain the
role that adaptive FDR-controlling procedures can have
in increasing power while controlling the FDR. We
clarify what is known about the performance of FDR-
controlling procedures under dependency in the con-
text of QTL analysis and offer more progress on this
question. We analyze the performance of the resam-
pling procedure of Yekutieli and Benjamini (1999) in
QTL analysis, and we address the important issue of
multiple traits. In all of the above, we also make an effort
to point at remaining gaps in our knowledge. Finally, we
analyze FDR control in independently repeated experi-
ments and make use of the results to offer a set of FDR
guidelines for the significance of findings in QTL
studies.

This article is structured as follows: with a slight dan-
ger of repetition, we review the FDR in the next section.
We present the various types of FDR-controlling proce-
dures. We discuss what ‘‘FDR control’’ means, its re-
lations to conditional FDR control and the suggestive
linkage criterion, and the control of FDR in multitrait
studies. And we present a new framework, based on the
BH procedure, for FDR-confirmed QTL mapping with
an independent study and compare our new approach
to Lander and Kruglyak’s confirmed linkage. The sub-
sequent section is dedicated to simulation studies.
We compare the performance of the BH procedure to
the performance of the FDR-resampling and FWE-
resampling procedures. We examine the FDR control
of the BH procedure in cases for which no analytical
results are available. The final section summarizes our
FDR guidelines for assessing the significance of the
results of QTL experiments. Thus we hope to be able
with this article to remove some of the hurdles placed
before the use of FDR in QTL analysis and help with its
wider and faster acceptance.

THE FALSE DISCOVERY RATE

The FDR was defined in Benjamini and Hochberg

(1995) as the expected proportion of false discoveries.
Formally, if R is the total number of discoveries, and V
of them are false discoveries, the proportion of false
discoveries is Q ¼ V/R if R . 0 and Q ¼ 0 if R ¼ 0.
Although the value of Q is usually not known in a
particular experiment, we can discuss and even control
its expectation, FDR ¼ E(Q).

Benjamini and Hochberg (1995) considered several
alternative formulations for the FDR. Two such alter-
native formulations, passed over by Benjamini and
Hochberg, reappeared in the statistical and genetic
literature: E(Q j R . 0), the positive FDR (pFDR) in
Storey (2002), and E(V)/E(R), the PFP in Fernando
et al. (2004). The pFDR and PFP have very desirable
properties; however, they are not appropriate criteria for
multiple testing: a statistical procedure offering pFDR or
PFP control for all configurations of true and false null
hypotheses cannot be constructed. Let us articulate this
point, if all tested hypotheses are true, say studying a
totally nonhereditary trait, any discovery made is a false
discovery—no matter what statistical method is being
used. The proportion of false discoveries among these
discoveries is identically 1. With the exception of the
useless ‘‘never-reject-anything’’ rule, the pFDR and the
PFP of all procedures are by definition 1. Thus even
the procedure suggested in Storey (2002), designed to
address the pFDR, is not a pFDR-controlling testing
procedure. It is capable only of estimating the pFDR
once a fixed rejection threshold is being used (see The
fixed rejection region approach) and includes an estimate of
m0/m (see Two-stage adaptive procedures).
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In contrast, if all tested hypotheses are true, the FDR
equals the traditional FWE. Therefore it also makes
sense to use the conventional levels such as 0.05 or 0.01
for FDR control, although in some applications higher
values may be justifiable. In particular, for QTL analysis
Mosig et al. (2001) recommend using 0.1, and Weller

et al. (1998) use 0.25.
FDR-controlling procedures: The BH procedure:

Benjamini and Hochberg (1995) provided a simple
stepwise procedure to control the FDR at a desired level
q. The procedure makes use of the P-values only, so
the statistical test itself may be tailored to the problem
at hand, be it a LOD score or a nonparametric test.
The procedure runs as follows. The individual P-values
are sorted from smallest to largest: P(1) # P(2) � � �# P(m).
Starting from the largest P-value P(m), compare P(i) with
q � i/m. Continue as long as P(i). q � i/m. Let k be the first
time P(i) # q � i/m and then declare the hypotheses cor-
responding to the smallest k P-values as significant.

An intuitive explanation of the connection between
the BH procedure and FDR control was offered by
Benjamini and Hochberg (1995) and later recited by
Weller et al. (1998) and Mosig et al. (2001): if we reject
the khypotheses with P-values less than p(k) and treat this
p(k) as if it is fixed, then regardless of the joint dis-
tribution of the P-values the average number of false dis-
coveries is p(k) � m0, where m0 is the (unknown) number
of true null hypotheses. As an upper bound for the FDR
we take p(k) �m/k. For this to be less than q, p(k) has to be
less than q � k/m. This argument by itself is inappropriate
as a proof, mixing expectations with values in the ex-
periment and ignoring the case when no discovery is
made. Hence it cannot be used to imply that the BH
procedure always controls the FDR regardless of the test
statistic distribution, and in fact in some rare settings the
FDR of the BH procedure may get as high as q(11 1

2 1
1
31 � � � 1=m). The correct statement, proven precisely in
Benjamini and Yekutieli (2001), is as follows:

Theorem 1. If the test statistics are positively regression
dependent on each hypothesis from the subset corresponding to
true null hypotheses, the BH procedure controls the FDR at
level q � m0/m.

The definition of the positive regression dependent
on a subset (PRDS) condition and a review of important
examples where it is satisfied can be found in Benjamini
and Yekutieli (2001). The PRDS condition and FDR
control of the BH procedure in single-trait QTL analysis
are discussed in Sabatti et al. (2003). In FDR control in
multitrait studies we discuss FDR control of the BH
procedure in multiple-trait QTL analysis.

The fixed rejection region approach: Weller et al. (1998)
denote q ¼ P(i) � m/i as the false discovery rate when
rejecting at P(i). They note the erratic behavior of this q as
a function of i and demonstrate in simulations that the
mean value of the above expression—for a fixed i—is

greater than the mean of the number of tests with P-
values # P(i) not linked to a simulated QTL divided by i.

Such an attempt does not verify the FDR control of
the BH procedure. Instead, it shows that if one decides
beforehand to reject the i hypotheses with the smallest
P-values, the corresponding P(i) � m/i is a conservative
estimator of the FDR committed. A more natural choice
in this direction is to use the fixed rejection region ap-
proach. For example, reject any hypothesis with LOD . c
and study the FDR properties of such a rejection rule as
c varies. A detailed discussion of this topic, in general
settings, can be found in Yekutieli and Benjamini
(1999) and Storey (2002).

In the BH procedure q is specified while the LOD
threshold and the number of hypotheses rejected vary.
If, for each P(i), instead of comparing P(i) � m/i to q
we take the minimum of such terms over all P-values
larger than or equal to P(i), we get the BH FDR-adjusted
P-values: PBH

ðiÞ ¼ minj$iðPð jÞ � m=jÞ (Westfall 1997;
Yekutieli and Benjamini 1999). Obviously, rejecting
all hypotheses whose BH FDR-adjusted P-values are
smaller than q is equivalent to applying the BH pro-
cedure at level q. Thus reporting the FDR-adjusted
P-values PBH

ðiÞ , or plotting them as a function of i, is
convenient. Compared to plots of q ¼ P(i) � m/i vs. i
(or vs. P(i) as in Lee et al. 2002), they are monotonic and
exhibit less erratic behavior. Plotting the FDR-adjusted
P-values vs. their location on the chromosome is
another informative way of displaying results.

Two-stage adaptive procedures: When some QTL exist,
implying that the number of markers unlinked to QTL
m0 is less than m, the BH procedure controls the FDR at
too strict a level by a factor of m0/m. If this factor were
known, using the BH procedure at level q* ¼ q � m/m0

instead of q would be more powerful and still achieve
FDR control at level q. Since m0 is hardly ever known, it
seems attractive to first estimate m0 and then use q* as
defined above, with the estimated m/m0 instead of the
true quantity. Theorem 1 by itself does not guarantee
that two-stage procedures control the FDR at the desired
level, and their properties need separate attention (see
Benjamini et al. 2003).

Two-stage adaptive FDR-controlling procedures were
introduced by Benjamini and Hochberg (2000). The
study and development of adaptive FDR-controlling
procedures is a very active area of research: Storey
(2002), Storey et al. (2004), and Black (2004), to name
just a few. In the context of QTL analysis, Mosig et al.
(2001) discussed the role of the estimated m0 in the
control of FDR, their offering being an adaptive pro-
cedure aimed at controlling the FDR (rather than a new
criterion). Important modifications to the procedure
were offered in Fernando et al. (2004).

Benjamini et al. (2003) introduced a two-stage pro-
cedure in which m0 is estimated by the number of
hypotheses not rejected by the BH procedure at level q,
m � R, further multiplied by 1 1 q. At the second stage
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the BH is used again with the modified q*. They
analytically prove FDR control of their new procedure
for an independent test statistic. Benjamini et al. (2003)
further show that with the exception of their procedure,
all other two-stage procedures (including the two-stage
procedure of Mosig et al. 2001) fail to control the FDR
for some positively regression-dependent tests. This
does not mean yet that all other procedures are not
appropriate for the particular dependency structure
encountered in QTL mapping, but it raises doubt as to
their appropriateness in their current form.
Resampling procedures: Resampling procedures, reshuf-

fling, and randomization, being close variants, overcome
the problem of specifying the marginal distributions of
the test statistic at each marker under the null hypothesis
of no linkage and even more importantly incorporate the
dependency between the markers to increase the power
of the analysis. It is done by imitating the way the data were
generated by sampling, with or without replacement,
under the assumption of no linkage. In QTL analysis
resampled data can be generated by randomly drawing a
with-replacement sample of the phenotype data and then
correlating it with the original genotype data.

Yekutieli and Benjamini (1999) introduced a gen-
eral FDR-controlling resampling procedure designed to
control the FDR: for i ¼ 1, 2, . . . , m compute the
resampling-based FDR-adjusted P-value PRes

ðiÞ ; reject the
null hypotheses corresponding to PRes

ðiÞ , q. This pro-
cedure controls the FDR if the sets of test statistics
corresponding to true and false hypotheses are in-
dependent. This condition is satisfied in single-trait
QTL analysis (see FDR control in multitrait studies). For
multiple traits we bring support for FDR control in the
simulation study.
Control of the FDR: Level q FDR means that the

expected value of Q is less than or equal to q. The actual
value of Q can theoretically vary from 0 to 1; thus FDR
control does not generally imply that 95% of the dis-
coveries are true discoveries. Genovese and Wasserman

(2004) show that in very large problems with indepen-
dently distributed test statistics if the data contain a
proportion of true discoveries then applying the BH
procedure does ensure that �95% of the discoveries are
true ones, and as Q hardly varies, FDR ¼ pFDR ¼ PFP ¼
0.05 �m0/m. Note that while these assumptions might be
reasonable for microarray data, they do not necessarily
apply to QTL mapping.
Conditional control of the FDR: Zaykin et al. (2000)

argue against control of the FDR as it does not control
the expected proportion of false discoveries if interest is
restricted to experiments in which some discoveries
were made (which is the pFDR) and recommend adher-
ing to control of the FWE. Storey (2002) has been
advancing the pFDR as the criterion of interest. Math-
ematically, pFDR ¼ E(Q j R . 0) ¼ FDR/P(R . 0) .

FDR; thus control of the FDR does not imply pFDR
control. We agree with Zaykin et al. (2000) that control

of FWE offers more protection than FDR at the same
level. However, as we argued before, FWE is not suitable
for QTL analysis because at low levels such as 0.05, it
leaves too little power to make discoveries of multiple
QTL, and at higher levels, as allowed by suggestive
linkage, it does not offer sufficient type I error control
(details inReplacing the suggestive linkage criterion with FDR
control). Moreover, in spite of its conservativeness,
controlling the FWE still does not control the pFDR.

Actually, the control of the FDR strikes a balance
between the usually too conservative control of the FWE
and the sometimes impossible control of the pFDR,
depending on the data at hand. Studying a totally
nonhereditary trait with FDR ¼ q is the same as with
FWE ¼ q (both being smaller than the pFDR). On the
other hand, when QTL are present, as true discoveries
are more likely than false ones, Pr(R . 0) . FWE. In
particular, studies in which many hypotheses are re-
jected reflect configurations where Pr(R. 0) � 1. Thus
FDR � pFDR, and controlling the FDR in such cases is
reasonably close to controlling the pFDR (both being
smaller than the FWE) (Weller 2000).
Replacing the suggestive linkage criterion with FDR control:

Let us carry the above discussion into the case of
suggestive linkage. The threshold is chosen so that
there will be one false linkage per genome scan on the
average. Using the Poisson approximation, such a
threshold is equivalent to controlling the FWE at 0.6.
Now when Zaykin et al. (2000, p. 1918) claim that the
control of FWE is better than the FDR, they argue: ‘‘ . . .
using an FWER controlling method, one may claim that
all significances obtained in the study are real, gambling
upon the occurrence that the given study was not one of
the 25% (or whatever FWE level that is used) that will
produce a false positive.’’ Consider the above argument
applied to the criterion for suggestive linkages: gam-
bling that the given study is not one of the 12 out of 20
that will produce a false positive, is difficult to justify. It is
therefore our view that controlling the FWE at 0.6
cannot by itself be trusted to indicate suggestive results.
If one reads carefully Lander and Kruglyak (1995)
similar skepticism can be sensed, as, for example, they
do not see a way to confirm suggestive linkages in a
second study. We therefore suggest that this criterion be
abandoned and be replaced by FDR control at lower
level. A good choice is q ¼ 0.1, as done by Lee et al.
(2002). We certainly do not recommend going higher
than q ¼ 0.2 in published reports.

Controlling the FDR at an even lower level, say q ¼
0.05, yields credible results while adapting to the
number of traits, their complexity, and their degree of
heritability. In studies with a few weak QTL, such FDR-
significant linkage is as conservative as the usual (FWE)
significant linkage. In studies with highly heritable
complex traits FDR ¼ 0.05 control offers much more
power than FWE ¼ 0.05 control. Thus false discoveries
are likely to occur among the FDR-significant linkages,
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but the false discoveries are expected to be a small
proportion of the discoveries made.

FDR control in multitrait studies: Studying multiple
traits, a question arises whether there is need to con-
sider all traits jointly when controlling the FDR at level q
or whether each trait can be considered separately. An
intuitive reason for the second approach is that having a
fixed proportion of errors in each trait implies the same
fixed proportion of errors in the combined study. Lee
et al. (2002) considered both options and recommen-
ded the latter. However, when each trait is considered
separately the actual FDR over the entire study is
determined by the type of data analyzed. For example,
in a study with k independent nonheritable traits, the
FDR for all traits combined equals 1 � (1 � q)k. On the
other hand, in a study in which all traits are highly
heritable, the combined FDR is approximately q.

Fernando et al. (2004) show that if for each trait the
PFP is controlled at level q then the PFP of the entire
study is less than or equal to q. Our ongoing work
(Benjamini and Yekutieli 2002) indicates that control-
ling the FDR at each trait separately is legitimate as long
as the number of markers discovered this way across all
traits greatly exceeds the number of traits in the study
(e.g., if the number of markers discovered is more than
twice the number of traits the combined FDR is ,2 � q).
The connection between the two results is that in large
studies with many discoveries PFP � FDR. To be on the
safe side, we recommend that the test statistics of all the
traits in the study have to be tested simultaneously in a
FDR-controlling procedure. Unlike in FWE-controlling
approaches, the resulting decrease in power need not
be large (see simulations in Use of resampling-based
procedures in QTL analysis).

Yekutieli (2001) addressed the problem of control-
ling the FDR when simultaneously testing all test
statistics in a multiple-trait study. For each trait locus
and each quantitative trait the null hypothesis is that the
allelic composition at the locus is unassociated with the
quantitative trait. The alternative hypothesis depends
on the design of the study and can be one sided, but for
the most part is two sided: a nonzero additive effect for
the back-cross design or nonzero additive or dominance
effects for an intercross design. For each trait separately,
Yekutieli (2001) proves the following:

a. PRDS dependency between the test statistics in a
backcross experiment corresponding to the true null
hypotheses. Due to genetic linkage, for each trait all
the hypotheses on a chromosome are either true or
false depending on the presence of a QTL on the
chromosome.

Since test statistics on separate chromosomes are
independent:
b. Independence between the set of test statistics

corresponding to false null hypotheses and those
corresponding to true ones.

Property b is a sufficient condition for the validity of the
resampling-based FDR-controlling procedure. Properties
a and b jointly imply the PRDS condition. Property b does
not hold for multiple traits—a chromosome might
contain QTL for only a subset of the traits in the study.
Traits having negatively correlated environmental com-
ponents rule out property a.

Confirming QTL mapping with an independent
study: According to the guidelines suggested by Lander
and Kruglyak (1995) the most credible linkage is a
‘‘confirmed linkage’’—a significant linkage from one
study found significant at the nominal 0.01 level in an
independent study, preferably conducted by other
investigators. They argue that each significant linkage
can be tested by itself at the 0.05 level, since it was
chosen in advance. Since typically one further considers
a 20-cM neighborhood of markers around the signifi-
cant linkage, their nominal threshold is lowered to 0.01.

The above approach has two limitations: (1) using
the FWE at level 0.05 to test the significance of the
results in the initial study may leave little power to make
any discoveries, and (2) if a number of linkages are
discovered in the first stage, neglecting to control for
multiplicity in the confirmatory stage compromises the
strength of the evidence. The latter is especially serious
when we consider multiple complex traits, with their
many potential QTL.

We therefore suggest a new FDR-controlling testing
strategy in which the BH procedure is used in both
the initial and the confirmatory studies. (Similarly, if
FWE is controlled at the second stage then so does the
two-stage procedure.)

Definition 2. A FDR procedure for confirming QTL
mapping in an independent study is as follows:

1. Test the m null hypotheses in study 1 using the BH
procedure at level q1.

2. Test the r1 hypotheses rejected in study 1 using the
BH procedure at level q2.

Proposition 3. Under the conditions of Theorem 1, and
for q1 and q2 fixed in advance, the FDR of procedure 2 is
#q1 � q2 � m0/m.

The proof of Proposition 3 is deferred to the appendix.
If we wish to adhere to the Lander and Kruglyak

(1995) choice of the ‘‘double 0.05’’ level, FDR-confirmed
linkages are significant linkages from the first study that
were tested at the FDR level of 0.05 in the confirmation
study and remained significant. Thus FDR-confirmed
linkages enjoy an FDR level of 0.0025. This way we
address the two limitations of the Lander and Kruglyak
approach to confirming linkages.

Otherwise, Proposition 3 can be used in the design
of the experiment: determining the optimal signifi-
cance level and sample sizes to be used in each study,
with the possible goal of decreasing the number of
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sampling units (sample size times number of hypothe-
ses), while the combined study still controls the FDR at
level 0.05.

SIMULATION STUDY

Use of resampling-based procedures in QTL analysis:
Sabatti et al. (2003) suggest using resampling-based pro-
cedures in QTL analysis. To test their suggestion we com-
pared the power of the BH procedure to the power of
the resampling FDR procedure and the Churchill and
Doerge (1994) FWE-controlling resampling procedure.
Single-trait power comparison: This simulated experi-

ment consisted of 550 backcross progeny. The genome
of each individual consisted of 20 100-cM chromosomes.
Markers were situated at 1-cM intervals—the dense
marker map is meant to work in favor of the resampling-
based procedures. Quantitative trait values were com-
puted by summing the allelic effect at QTL and noise.
Six QTL with effect sizes of 0.3, 0.2, 0.4, 0.1, 0.4, and 0.3
were planted on 4 chromosomes. Each simulation
consisted of 500 repetitions. For each outcome variable
and marker, the absolute valued Z-score and P-values
were computed, and the two FDR procedures and the
FWE procedure were applied at level 0.05. In all the
simulations, the rejection of the null hypothesis of no
association between a marker and a quantitative trait was
considered a true discovery for markers on chromo-
somes with a QTL for the quantitative trait and a false
discovery for markers on chromosomes with no QTL for
the quantitative trait. To conduct the two resampling-
based methods the data were resampled 3000 times
under the complete null hypothesis of no QTL.

A summary of the results of this study is presented in
Table 1. The two FDR-controlling procedures yield very
similar results. Their FDR levels are 0.038 6 0.004 and
0.039 6 0.004, significantly , 0:04 ¼ 0:053 16

20 (the ex-
pected FDR level for independently distributed test
statistics). The two FDR procedures enjoy similar power
and are superior to the FWE-controlling procedure.
The FDR procedures have lower mean rejection thresh-
olds (expressed in terms of Z-scores) and more true
discoveries (.200 for the FDR procedures; 91 for the
FWE procedure). The price for the increased power is
a few more erroneous linkages and FWE levels of 0.63
and 0.64.

Multitrait power comparison: In this set of simulations
we altered the simulation of the phenotypes. We
simulated one, two, four, and eight traits. QTL were
placed at random. The number of chromosomes having
QTL was sampled from a Poisson distribution with
mean 3. The number of QTL per chromosome was
either one or two. Effect sizes were sampled from
U[�0.25, 0.4]. In this set of simulations an independent
random error term was added to each trait.

In Table 2 we present the average threshold for
rejecting null hypotheses for the three procedures at
level 0.05 (expressed in terms of Z-scores and P-values).
The two FDR procedures retain, and even increase,
their power as the number of traits increases. This
property is characteristic of FDR procedures when QTL
are present. On the other hand, if no QTL are present
FDR procedures control the FWE and the FDR thresh-
old increases as the number of hypotheses increases.
This type of behavior is evident in the performance of
the FWE-controlling procedure. As the number of traits
increases twofold the critical P-value is multiplied by 0.5.
FDR control of the BH procedure: According to the

simulation results in Use of resampling-based procedures in
QTL analysis the BH and the FDR resampling proce-
dures are practically identical. In this set of simulations
we verify whether the BH procedure controls the FDR in
situations for which no analytical results are available.
FDR control in an intercross experiment: The setting is as

in the single-trait power comparison, but we altered the
design of the experiment from a backcross to an inter-
cross. We therefore added the following six domi-
nance effects to the six QTL: 0.15, �0.15, 0.3, �0.06,

TABLE 1

Comparison of FDR and FWE procedures—single trait

Resampling
FDR

BH
procedure

Resampling
FWE

Mean Z-score rejection
threshold 2.81 2.79 3.84

FDR level 0.039 0.038 0.002
FWE level 0.65 0.63 0.042
Mean no. of true

discoveries 207.4 205.5 90.9

TABLE 2

Mean Z-score (and P-value) rejection thresholds—multiple traits

Resampling FDR BH procedure Resampling FWE

Single trait 3.06 (2.2 3 10�3) 3.08 (2.1 3 10�3) 3.81 (1.4 3 10�4)
2 traits 2.95 (3.2 3 10�3) 2.92 (3.5 3 10�3) 4.01 (6.0 3 10�5)
4 traits 2.96 (3.1 3 10�3) 2.92 (3.5 3 10�3) 4.15 (3.3 3 10�5)
8 traits 2.90 (3.7 3 10�3) 2.89 (3.8 3 10�3) 4.36 (1.3 3 10�5)
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�0.01, and �0.25. The simulation included 1000 repli-
cations. The simulated FDR of the BH procedure was
0.0396 6 0.001, indicating that it also controls the FDR
at level q � m0/m in single-trait intercross experiments.

FDR control for negatively correlated multiple traits: The set-
ting is as in the multitrait power comparison with the num-
ber of traits set to eight, only this time correlated (rather
than independent) errors are added to the traits. This set
of simulations consisted of two runs of 1000 replications.

In the first simulation the random error terms added
to the phenotypes were a sample from a multivariate
normal distribution with 0 mean, unit variance, and 0.36
correlation. The FDR value for the BH procedure was
0.042 6 0.001.

In the second simulation the eight traits were divided
into two blocks of four traits (traits 1–4 and traits 5–8).
The correlation of the error terms within each block re-
mained 0.36, and the correlation of the error terms be-
tween traits belonging to different blocks was changed
to �0.36. The FDR value was now 0.044 6 0.001.

While the number of true null hypotheses varied, the
expected value of q � m0/m was 0.0425. This reveals that
the introduction of negatively correlated error terms
may result in FDR exceeding q � m0/m. But the striking
feature, evident in all the simulations conducted, is that
the FDR level of the BH procedure is practically un-
affected by correlation: in all simulations the FDR varied
from q � m0/m by ,0.002.

SUMMARY

The two advantages of the FDR approach, which
make it particularly suitable for QTL analysis, are its
adaptivity to the amount of information in the data and
its scalability—controlling the FDR for multiple traits
may come with no loss of power. By comparison, the
thresholds set by Lander and Kruglyak (1995) are
valid only for a single trait. If these thresholds are fur-
ther modified to achieve FWE control when many traits
are studied, the required size of the experiment that is
needed to achieve significance may not be feasible.

We establish, via simulations, that the BH procedures
can effectively be used to control the FDR in multiple-
trait studies. Controlling the FDR at the 0.10 level can
take the place of the suggestive linkage criterion of
Lander and Kruglyak. At the 0.05 level it can assume
the role of identifying significant QTL. Such FDR signif-
icant linkages can further be confirmed in an indepen-
dent study by controlling the FDR again at the 0.05 level,
thereby giving rise to FDR-confirmed linkages.
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APPENDIX: PROOF OF PROPOSITION 3

Let R1, V1, R2, and V2 denote the number of dis-
coveries and false discoveries in the initial and confir-
matory studies when applying procedure 2. Let

Q1 ¼ V1=R1 if R1 . 0
0 if R1 ¼ 0

; Q2 ¼ V2=R2 if R2 . 0
0 if R2 ¼ 0

;

��

therefore, the FDR of procedure 2 is E(Q2).
Conditioning on the number of discoveries and the

number of false discoveries at the initial study, R1 ¼ r1
and V1 ¼ v1, and using Theorem 1 with v1 and r1 taking

the role of m0 and m, we get ER1¼r1;V1¼v1
ðQ2Þ# v1 � q2=r1

for r1 . 0 and Q2 [ 0 if r1 ¼ 0. To complete the proof we
use the independence of the two studies and express the
FDR of procedure 2,

EðQ2Þ# q2 �
Xm
r1¼1

Xr1
v1¼0

PrðR1 ¼ r1;V1 ¼ v1Þ �
v1

r1
1PrðR1 ¼ 0Þ � 0

( )

¼ q2 � EðQ1Þ

# q2 �
m0q1

m
;

where the last inequality holds since the BH procedure
is also used in the initial stage of procedure 2.
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