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ABSTRACT

Mapping markers from linkage data continues to be a task performed in many genetic epidemiological
studies. Data collected in a study may be used to refine published map estimates and a study may use
markers that do not appear in any published map. Furthermore, inaccuracies in meiotic maps can seriously
bias linkage findings. To make best use of the available marker information, multilocus linkage analyses are
performed. However, two computational issues greatly limit the number of markers currently mapped
jointly; the number of candidate marker orders increases exponentially with marker number and com-
puting exact multilocus likelihoods on general pedigrees is computationally demanding. In this article, a
new Markov chain Monte Carlo (MCMC) approach that solves both these computational problems is
presented. TheMCMC approach allowsmanymarkers to bemapped jointly, using data observed on general
pedigrees with unobserved individuals. The performance of the new mapping procedure is demonstrated
through the analysis of simulated and real data. TheMCMC procedure performs extremely well, even when
there are millions of candidate orders, and gives results superior to those of CRI-MAP.

GENETIC (or meiotic) maps of polymorphic DNA
markers are an important resource in human ge-

netics. Information from geneticmaps is used in linkage
analysis to identify disease-predisposing genes. Genetic
maps, however, are not known with certainty. Compar-
ison studies of sequence-based physical maps and ge-
netic maps have revealed discrepancies in the order of
some markers (Matise et al. 2002; Nievergelt et al.
2004). Differences inmarker order andmarker location
between published genetic maps have also been found
(Nievergelt et al. 2004). These inaccuracies can seri-
ously bias linkage findings from genetic epidemiologic
studies (Buetow 1991; Halpern and Whittemore

1999; Daw et al. 2000). Inaccuracies in genetic maps are
due to a number of factors. The number of meioses
studied, marker informativeness, genotyping error, and
missing data all contribute tomapmisspecification.Map
accuracy is also affected by the statistical procedure used
to construct the map.

Genetic maps are most accurately constructed using
multilocus linkage methods. Two-locus procedures are
easy to implement, computationally inexpensive, and
may give results less sensitive to departures from the
assumedgeneticmodel andgenotyping errors (Buetow
1991; Shields et al. 1991). However, multilocus proce-
dures make better use of available information leading
to increased accuracy (Lathrop et al. 1984, 1985;
Thompson 1984), especially if the data are relatively

error free and there are missing data. Two issues limit
the number of loci mapped jointly. First, for data ob-
served on L markers, there are L!/2 candidate orders.
Even for a moderate number of markers, the set of
candidate orders is extremely large and increases ex-
ponentially with marker number. Second, exact calcula-
tion of multilocus likelihoods on pedigree data can be
computationally demanding. For a given marker map,
pedigree-peeling algorithms (Elston and Stewart

1971; Cannings et al. 1978) and the Lander-Green
algorithm (Lander and Green 1987) are efficient
procedures for calculating multilocus likelihoods on
pedigrees. However, pedigree-peeling computations are
exponential in marker number. Lander-Green compu-
tations are exponential in family size. Furthermore,
mapping multiple loci jointly requires calculating a
multilocus likelihood under many different parameter
values under each candidate order.

Marker loci are typically mapped using maximum-
likelihood estimation. For a given marker order and set
of marker allele frequencies, recombination fractions
are estimated by finding values that maximize the likeli-
hood. The ‘‘best’’ marker order is then the order with
the largest maximized likelihood. Maximum-likelihood
estimates are often found using the expectation-
maximization (EM) algorithm (Dempster et al. 1977).
However, obtaining maximum-likelihood estimates un-
der each candidate order from multilocus likelihoods
can be computationally challenging. Approaches to limit
the set of candidate orders and reduce the computa-
tional burden include preliminary ranking procedures
(Weeks and Lange 1987; Wilson 1988; Weeks 1991;
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Falk 1992), constructing the map stepwise (Lathrop
et al.1984), andcombining theEMalgorithmwithoptimi-
zation techniques such as branch-and-bound (Lathrop
et al. 1985) and simulated annealing (Thompson 1984;
Weeks and Lange 1987; Stam 1993). Even by reduc-
ing the set of candidate orders, multilocus maximum-
likelihood procedures are often limited to the analysis of
data on few markers jointly.
Little attention has been given to the development

of Bayesian multilocus linkage approaches for map-
ping genetic markers. This is despite Bayesian linkage
techniques showing promise for the detection and
localization of putative trait loci influencing genetically
complex diseases (Bartlett et al. 2002; Gagnon et al.
2003; Logue et al. 2003; Badzioch et al. 2004; Wijsman

et al. 2004). There are also several advantages to using
Bayesian marker mapping procedures over maximum-
likelihood approaches. First, prior information can be
correctly incorporated into the analysis. Using Bayes’
theorem, prior information is combined with observed
information to form the posterior distribution of the
model variables. Bayesian inference is then based on
this posterior distribution. Second, evidence for a
particular order is measured on the familiar probability
scale. Third, uncertainty about nuisance parameters
such asmarker allele frequencies are taken into account
instead of being assumed known.
Bayesian procedures are computationally demand-

ing. Bayesian inference requires integration of the joint
posterior distribution, often over many variables. Inte-
grating joint probability distributions over large multi-
dimensional parameter spaces is extremely challenging.
Monte Carlo procedures are an invaluable tool for
approximating integrals. Several Bayesian marker-
mapping methods have been implemented using
Monte Carlo. Stephens and Smith (1993) obtained
Monte Carlo estimates of the posterior probability of a
marker order and marker position using two-locus data.
George et al. (1999) and Rosa et al. (2002) developed a
Monte Carlo strategy for the analysis of data observed
from experimental designs. A Monte Carlo approach
capable of ordering many markers was developed
by Heath (1997a) for radiation hybridization map-
ping data. These implementations, however, restrict the
Bayesian analysis to certain types of data and/or pedi-
gree structure.
In this article, a Bayesianmultilocus linkage approach

for mapping many genetic markers simultaneously is
presented. Bayesian quantities such as posterior proba-
bilities and posterior means are approximated using
Markov chain Monte Carlo (MCMC). MCMC makes
feasible the analysis of multilocus data observed on
general pedigrees containing possibly consanguine-
ous marriages and missing information. The perfor-
mance characteristics of the MCMC procedure are
improved by combining Monte Carlo sampling with
exact computation. The methodology is demonstrated

through its application to the analysis of simulated
data and real data originating from the Framingham
Heart Study.

MATERIALS AND METHODS

Notation and assumptions: The following notation and
assumptions are used in this article. Supposemarker dataY are
observed on L arbitrarily ordered genetic marker loci fMj: j ¼
1, 2, . . . , Lg on families of arbitrary size and complexity.
Codominant multiallelic loci are assumed with allele frequen-
cies p ¼ (p1, p2, . . . , pL), where at locus Mj the set of allele
frequencies is denoted by pj. Marker loci are in linkage equilib-
rium within the population. Markers are ordered d ¼ ðd1;
d2; . . . ; dLÞ, where dk is the kth element in the ordered list
of marker indexes. Let u ¼ ðu1; u2; . . . ; uL�1Þ be the vector of
(sex-averaged) recombination fractions between pairs of
adjacent loci, where uk is the recombination fraction between
Mdk and Mdk11

. To demonstrate, suppose data are observed
on five markers fMj: j ¼ 1, 2, . . . , 5g ordered M1 M4 M5 M2

M3. Then d ¼ ð1; 4; 5; 2; 3Þ and u ¼ ðu1; u2; u3; u4Þ, where u1,
u2, u3, and u4 are the recombination fractions between
markers M1 and M4, M4 and M5, M5 and M2, and M2 and M3,
respectively.

Meiosis indicators are used to trace the passage of unobserv-
able founder alleles (or identical-by-descent genes) through a
pedigree. Founder alleles are latent because marker data ob-
served on families are incomplete. Data on large families may
be only sparsely observed with many individuals unavailable
for sampling. Also the parental origin of an observed allele is
unknown and cannot always be inferred from parental in-
formation. Let S denote the array of meiosis indicators Sij
for i ¼ 1, 2, . . . , m and j ¼ 1, 2, . . . , L, where m is the total
number of meioses in the families. Here, Sij is 0 or 1 if the
copied founder allele is the parent’s maternal or paternal
founder allele, respectively. The set of meiosis indicators can
be partitioned on loci S ¼ (S�1, S�2, . . . , S�L) or partitioned
on meioses S ¼ (S1�, S2�, . . . , Sm�), where S�j is the set of
meiosis indicators atMj and Si� is the set of meiosis indicators at
meiosis i.
Bayesian model: A Bayesian probability model for mapping

many markers jointly is presented. The probability model
defines the joint posterior distribution of the model variables
d, u; p; and S conditioned on the observed marker data Y. In
presenting the probability model, first the functional form of
the joint prior distribution is given and prior distributions
are specified. Second, the probability of the data given the
variables (i.e., the likelihood) is constructed and its calculation
is discussed. Third, the likelihood and the priors are combined
to form the joint posterior distribution.

The Bayesian paradigm provides opportunity for the in-
clusion of prior information through the specification of prior
distributions on the model variables. The joint prior distribu-
tion on ðu;p; d; SÞ is

pðu; p; d; SÞ}pðSjd; uÞpðdÞpðpÞpðuÞ:

Here, the meiosis indicators are assumed to be conditionally
independent of the marker allele frequencies given the
marker order and recombination fractions. That is, the prob-
ability of S depends only on d and u. Marker order, recom-
bination fractions, and marker allele frequencies are assumed
independent a priori. The prior distribution on S, assuming
meioses are independent, is pðSjd; uÞ ¼

Qm
i¼1 pðSi�jd; uÞ,

where Si� is the vector of meiosis indicators at meiosis i
across loci. Assuming independence of recombination events
in disjoint marker intervals (i.e., no interference), the prior
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distribution on Si� is pðSi�jd; uÞ ¼
QL�1

j¼1 ð1� ujÞ1�jbj ðujÞjbj,
where jbj ¼ jSidj11

� Sidj j ¼ 0 if no recombination event has
occurred between the j1 1th and jth ordered locus and 1 if a
recombination event has taken place. Equal prior probability
is assigned to each candidate marker order by placing a
uniform prior on d such that pðdÞ}K , where K is a constant.
The marker allele frequencies, under the assumption of
linkage equilibrium, are independent at different loci such
that pðpÞ ¼

QL
j¼1 pðpjÞ. The Dirichlet distribution, a multivar-

iate generalization of the beta distribution, is placed on pj. For
analyses conducted in this article, the parameters of the
Dirichlet distribution, which can be thought of as counts, are
set to 1. Equal prior probability is assigned to all combinations
of allele frequencies at a marker locus. Recombination
fractions, assuming no interference, are independent such
that the prior distribution on u is pðuÞ ¼

QL�1
j¼1 pðujÞ. A

truncated beta distribution B(aj, bj) is placed on uj over the
interval [0, 0.5]. A special case of the beta distribution, used
here, is when aj¼ bj¼ 1. The beta distribution then becomes a
uniform distribution.

The likelihood is the joint probability of the observed
marker data Y given the marker allele frequencies p and
meiosis indicators S, where

PðYjp; SÞ ¼
YL
j¼1

PðY�j jpj ; S�jÞ:

The joint probability of Y is the product of L single-locus
probabilities since the data Y�j depend only on the allele fre-
quencies and descent of founder alleles at Mj. Calculation of
the single-locus probability P(Y�jjpj, S�j) is due to Thompson
(1974) and requires identifying all possible assignments of
marker allelic type to founder alleles that appear in observed
individuals. Kruglyak et al. (1996) present an efficient algo-
rithm for identifying all valid assignments. The probability of a
particular assignment, under Hardy-Weinberg and linkage
equilibrium, is then the product of the appropriate marker
allele frequencies. The value of P(Y�jjpj, S�j) is obtained by
summing these probabilities over all possible assignments
(Thompson and Heath 1999).

The joint posterior distribution of ðu; p; d; SÞ conditional
on Y is

pðu; p; d; SjYÞ}pðSjd; uÞpðdÞpðpÞpðuÞPðYjp; SÞ; ð1Þ

where each term on the right-hand side has been discussed
above. From (1) it is clear that the joint posterior distribution
combines prior knowledge with information from the ob-
served data. Also note that for given values of the model
variables, calculation of (1) is computationally inexpensive, a
feature exploited in MCMC.
MCMC procedure: Bayesian inference requires integrat-

ing over (1), a high-dimensional probability distribution.
Here, analytic solution is not possible. An alternative is Monte
Carlo integration via MCMC. MCMC, namely the Metropolis-
Hastings (M-H) algorithm (Hastings 1970) and the Gibbs
sampler (Geman andGeman 1984), is a procedure for drawing
dependent realizations of the model variables from high-
dimensional probability distributions. These dependent real-
izations form a Markov chain with the distribution of interest
as its stationary distribution. Bayesian quantities are then
estimated via averages of the dependent realizations.

The MCMC procedure begins by generating an initial
configuration ðuð0Þ; pð0Þ; dð0Þ; Sð0ÞÞ. Starting values for u; p,
and d are easily drawn from their prior distributions. However,
generating an initial set of meiosis indicators is challenging. If
S is initialized using its prior, many starting configurations are
rejected before a set of meiosis indicators consistent with the
observed data is generated. Instead, S(0), consistent with the

observed data and Mendelian inheritance, is generated using
sequential imputation (Kong et al. 1993, 1994). Sequential
imputation is an importance-sampling technique that can be
used to impute latent genetic data. Loci are processed in
sequence where for a given locus j, S�j is generated conditional
on the observed data Y�j and previously processed loci. The
dependence between loci is only partially captured since only
data for loci to one side of a given locus contribute to im-
putation at that locus. However, for the purpose of initializing
the MCMC procedure, sequential imputation leads to ade-
quate starting configurations.

To draw ðu; p; d; SÞ from the joint posterior distribution
pðu; p; d; SjYÞ such that a Markov chain ðuð1Þ; pð1Þ; dð1Þ;
Sð1ÞÞ; . . . ; ðuðN Þ; pðN Þ; dðN Þ; SðN ÞÞ with equilibrium distribution
pðu; p; d; SjYÞ is constructed, the following update steps are
performed:

Step 1. Meiosis indicators are updated either across loci or
across meioses using a joint Gibbs sampler.

Step 2. Marker allele frequencies are updated for a randomly
chosen locus using the M-H algorithm.

Step 3. Marker order and recombination fractions are jointly
updated using the M-H algorithm with an integrated accep-
tance probability. To complete the move, meiosis indicators
of select loci are also updated.

These steps can be performed in any order. After completion
of these three steps, a new sample is realized and the process is
repeated. Each step is now discussed.

In step 1, S is updated via one of two randomly chosen
strategies: a block update of all meiosis indicators at each locus
(in random order) using the whole-locus Gibbs sampler (L-
sampler) or a block update of themeiosis indicators for all loci
in each meiosis (in random order) using the whole-meiosis
Gibbs sampler (M-sampler). The L-sampler (Heath 1997b),
using single-locus pedigree peeling, jointly updates the
complete set of meiosis indicators at a locus conditional on
the observed data at that locus and current values of the locus
order, recombination fractions, and meiosis indicators at
neighboring loci. The M-sampler (Thompson and Heath

1999; Thompson 2000), using the forward-backward Baum
algorithm (Baum et al. 1970), jointly updates the complete set
of meiosis indicators in a meiosis conditional on the observed
data and current values of the locus order, recombination
fractions, and meiosis indicators at other meioses. A combi-
nation of L- and M-sampler steps is used here to improve the
performance characteristics of the MCMC procedure (Heath

and Thompson 1997).
In step 2, for a randomly chosen marker locus Mj, marker

allele frequencies pj are updated using aM-H step. A proposed
set of allele frequencies for Mj, p9j, is drawn from a Dirichlet
distribution with parameters set to 1 and accepted with M-H
probability aðpðiÞ

j ; p9jÞ. Here, aðpðiÞ
j ; p9jÞ is the M-H acceptance

probability of the Markov chain moving from the current state
pðiÞ
j to a proposed state p9j. The acceptance probability is

a p
ðiÞ
j ; p9j

� �
¼ min 1;

pðu*; p9; d*; S*jYÞ
pðu*; pðiÞ; d*; S*jYÞ

� �
;

where * denotes realization (i) or (i 1 1) depending on the
update order and p(�) is the joint posterior distribution (1)
evaluated at themodel variable values. If themove is accepted,
the proposed set of marker allele frequencies becomes the
current state where pði11Þ

j ¼ p9j . If the move is rejected, pðiÞ
j

becomes the current state where pði11Þ
j ¼ pðiÞ

j .
In step 3, d and u are jointly updated as follows: First, a block

of k adjacent markers is randomly chosen from the currently
orderedmarker loci. These markers are referred to as selected
markers andmarkers not included in the block are referred to

MCMC Map Construction 793



as unselected markers. Second, the block of markers is moved
to a new chromosomal position and positioned using a uni-
form distribution on [0, 0.5]. Current values of the recom-
bination fractions are preserved between adjacent selected
markers and, where possible, between adjacent unselected
markers. This proposal mechanism results in a new d9 and u9.
Third, the proposed values are accepted with M-H integrated
acceptance probability aððdðiÞ; uðiÞÞ; ðd9; u9ÞÞ. The acceptance
probability is based on a probability distribution where the set
of meiosis indicators at either or both end block markers is
integrated out of pðu; p; d; SjYÞ via single-locus pedigree
peeling. This updated M-H promotes good mixing and has
previously been used in updating the position of a disease
locus (George and Thompson 2003) and a quantitative trait
locus (Heath 1997b) relative to a fixed marker map. If d9 and
u9 are accepted, the move is completed by using the L-sampler
to sample the meiosis indicators at either or both end block
markers. Further details are given in the appendix.
Description of data and analyses: Simulated data and

analysis: Multilocus data are generated on 11 extended fami-
lies originating from the Framingham Heart Study (Dawber

et al. 1951; Feinleib et al. 1975). These families are three- and
four-generation pedigrees having multiple founding couples
and ranging in size from 26 to 47 individuals. A total of 396
meioses are contained in the pedigree data. Data are first
generated assuming all individuals are observed. Marker data
on randomly chosen individuals are then removed and a new
set of data created. The probability of an individual being un-
observed changes with generation number (Table 1), resulting
in �50% of the individuals being unobserved. These proba-
bilities are based on patterns of missing data observed in the
Framingham study.

Data are generated under two different marker maps, an
8-cM map and a 1-cM map. The 8-cM map has eight ap-
proximately evenly spaced microsatellite markers along a
78-cM chromosomal segment with an average intermarker
distance of 8 cM. Each marker has between 6 and 13 possible
alleles although only a subset of these is observed in any given
family. Marker positions are derived from the Marshfield map
for chromosome 9. Marker allele frequencies are based on
previous estimates obtained from the Framingham Heart
Study. The 1-cMmap is based on the same eight microsatellite
markers but the markers span an 8-cM chromosomal segment
with an average intermarker distance of 1 cM. Hence, this
simulation study is composed of four data sets: an 8-cM map
and full data (8-F), an 8-cM map and missing data (8-M), a
1-cMmap and full data (1-F), and a 1-cMmap andmissing data
(1-M). The simulated marker order isM1 M2 M3 M4 M5 M6 M7

M8 and for notational convenience, dS ¼ (1, 2, 3, 4, 5, 6, 7, 8).
There are 8!/2¼ 20,160 candidate orders and eachmarker set
is replicated 100 times.

MCMC analyses of the data are performed as follows. Using
the same starting configuration, the run length is gradually
increased until the posterior probability of a marker order
stabilizes across visited marker orders. Four repeated MCMC
analyses of each data replicate are then performed using
different randomly generated starting configurations to access
the variation in Bayesian estimates. The analysis is concluded
by examining plots of the sequence of realizations of the
model variables. Systematic patterns of values in these plots
may suggest poorMCMCperformance and a run length that is
too short.

For comparison, maximum-likelihood analyses via the
software package CRI-MAP (Lander and Green 1987) are
also performed. CRI-MAP contains several interactive and
automated routines for constructing and refining genetic
maps. Here, markers are first ordered using the ‘‘build’’
routine. This routine uses maximum-likelihood estimation
for the stepwise construction of marker maps, where markers
are added in decreasing order of informativeness. The in-
tegrity of this initial order is then tested via the ‘‘flips’’ routine.
The flips routine reverses the order between a pair of markers
and recalculates the likelihood under the new order. If this
results in an increase in the likelihood, then the initial order is
replaced by this new order. Analysis via the flips routine is
repeated until the likelihood no longer increases with a
change in marker order.

The simulation study is concluded by examining themixing
characteristics of the MCMC procedure. MCMC can suffer
mixing problems if markers are tightly linked (Thompsonand
Heath 1999). Tightly linked markers, the pattern of observed
and unobserved individuals, and the laws of Mendelian
inheritance constrain the model space. A MCMC sampler
can become ‘‘trapped’’ in a local part of the model space. To
investigate this, exact multilocus likelihoods are calculated on
all eight markers jointly, under each candidate order, for
replicates one and two from 1-F. This data set was chosen
because the markers are tightly linked and likelihood compu-
tations are tractable. Calculating a single eight-locus likeli-
hoodon replicates from1-Mor 8-Mwas estimated to takemany
months. Exact likelihoods are computed using SUPERLINK
V1.4 (Fishelson and Geiger 2002). Each replicate is gener-
ated such that the number of crossover events between any two
loci is known. The true recombination fractions are then easily
calculated from the simulated data and used as the parameter
values in the likelihood calculation.
Real data and analysis: Real data observed on the families

used in the simulation study are also analyzed. Multilocus
data are available on 12 linked microsatellite markers on
chromosome 9. These markers span a chromosomal segment
of 123 cM with an average intermarker distance of 10 cM. As
in the simulation study, each marker has between 6 and
13 possible alleles. Approximately 50% of the individuals are
unobserved. Markers are ordered 1, 2, . . . , 12 (on the basis
of the Marshfield map), where for clarity of exposition mark-
ers are referenced by their marker indexes. MCMC and CRI-
MAP analyses of these data are performed as described above.
There are over 200 million candidate marker orders. All
analyses are performed on a Linux-based workstation using a
single AMD Athlon 28001 processor.

RESULTS

Simulation study: Results are presented from the
analysis of data sets 8-F, 8-M, 1-F, and 1-M. A single
MCMC analysis of a replicate from 8-F or 1-F consists
of 3 3 105 iterations and takes �2 hr. A single MCMC

TABLE 1

The probability distribution used in the simulation study
to generate families with missing data

Generation Pr(unobsjgen)

Last 0.0
2nd last 0.50
3rd last 0.90
4th last 0.98
$5th last 1.0

Pr(unobsjgen), the conditional probability of an individual
being unobserved given the individual’s generation.
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analysis of a replicate from 8-M or 1-M consists of 63 105

iterations and takes �4 hr. There is little variation in
Bayesian estimates across repeated analyses. Hence,
only results from a single MCMC analysis of a replicate
are reported below.

The estimated posterior probabilities of the marker
orders for each replicate are plotted in Figure 1. These
estimates are obtained by normalizing the number of
times amarker order is sampled within aMCMC run. To
help visualize the departure of a sampled order from the
simulated marker order, dðiÞ are converted into dis-
tances using the measure

PL�1
j¼1 ðjd

ðiÞ
j11 � d

ðiÞ
j j � 1Þ. Here,

the larger the distance, the greater the departure of the
sampled order from dS. For example, for sample orders
(1, 2, 3, 4, 5, 6, 7, 8), (1, 2, 3, 4, 5, 8, 7, 6), and (8, 7, 6, 3, 2,
1, 4, 5), the distances are 0, 2, and 4, respectively.

From Figure 1, the impact of tightly linked markers
is obvious. Under an 8-cM map, the posterior probabil-
ity of dS is near one across replicates when data are
observed on all individuals (Figure 1A). Even for
analyses of families containing unobserved individuals,
the average posterior probability of dS is 85% and all but
one of the MCMC analyses result in dS having the
highest posterior probability (Figure 1B). Under a 1-cM
map, several marker orders may be supported. In Figure
1D, the average estimated posterior probability of dS is
24% and in only 38 replicates is dS assigned the highest
posterior probability. Also, by using a probability scale to
measure the strength of evidence, a better appreciation
of the uncertainty associated with a marker order is
obtained. For example, consider the analysis of repli-

cate 9 from 1-M. The estimated posterior probabilities
of orders (1, 2, 3, 4, 5, 6, 7, 8), (1, 2, 3, 5, 4, 6, 7, 8), (1, 3,
2, 4, 5, 6, 7, 8), and (1, 3, 2, 5, 4, 6, 7, 8) are 0.25, 0.20,
0.31, and 0.24, respectively. Here, the simulated marker
order is not assigned the highest posterior probability
but it is clear that a single unique ordering of the
markers is not supported by the data.

In Figure 2, the marker ordering capabilities of
the MCMC procedure and CRI-MAP are compared.
The marker order with the highest estimated posterior
probability is converted into a distance and plotted
against replicate number. For clarity, only results from
the analysis of the first 50 replicates are shown. The
marker order (converted into distances) with the largest
maximized likelihood obtained via CRI-MAP is also
plotted against replicate number. Here, the benefits of
using MCMC for marker ordering are evident. By
making good use of the available data, it is possible to
obtain clear evidence in favor of the simulated marker
order despite substantial missing data (Figure 2B). Also,
MCMC generally identifies marker orders closer to the
true simulated marker order.

The MCMC procedure allows a variety of Bayesian
quantities to be calculated on the model variables
including posterior means, posterior modes, standard
deviations, and credible intervals. These quantities are
easily derived from averages of the MCMC samples.
Table 2 reports the posterior means and posterior
modes of u under the simulated marker order averaged
over analyses. The accuracy of the estimator is measured
via the mean square error (MSE). For comparison,

Figure 1.—The estimated posterior
probabilities of a marker order from
the Bayesian analysis of data sets (A)
8-F, (B) 8-M, (C) 1-F, and (D) 1-M.
The numbers are distances measuring
the discrepancy between the sample
order and the simulated marker order.
For clarity, results are shown only from
the analysis of the first 50 replicates.
The simulated marker order has a dis-
tance of 0.
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maximum-likelihood estimates obtained via CRI-MAP
of u under the simulated marker order and their MSEs
are also reported.
FromTable 2, the average posteriormeans andmodes

agree closely with the true values under which the data

are generated. As expected, an estimator’s MSE in-
creases if the data contain missing information. MCMC
and CRI-MAP give similar results but other statistics
such as standard errors and confidence intervals are not
easily obtained via CRI-MAP. In contrast, MCMC does

Figure 2.—The marker order with
the highest estimated posterior proba-
bility is converted into a distance and
plotted against replicate number for
data sets (A) 8-F, (B) 8-M, (C) 1-F,
and (D) 1-M. Also, the marker order
(converted into a distance) with the
largest maximized likelihood obtained
via CRI-MAP is plotted against repli-
cate number. For clarity, results are
shown only for the first 50 replicates.
x, a result obtained using the MCMC
procedure; *, a result obtained using
CRI-MAP. The simulated marker order
has a distance of 0.

TABLE 2

The estimated posterior means (Mean) and modes (Mode) of the recombination fractions (u1, . . . , u7), under the simulated
marker order, from the Bayesian analysis of data sets 8-F, 8-M, 1-F, and 1-M

Recombination fractions

Data set Implementation 1 2 3 4 5 6 7

8-F MCMC True 0.15 0.11 0.12 0.07 0.09 0.04 0.11
Mean 0.15 (6.3) 0.11 (3.8) 0.12 (4.2) 0.08 (2.5) 0.09 (2.8) 0.04 (1.7) 0.11 (3.5)

CRI-MAP Mode 0.15 (6.4) 0.11 (3.8) 0.12 (4.2) 0.07 (2.5) 0.09 (2.9) 0.04 (1.6) 0.11 (3.6)
MLE 0.13 (6.9) 0.10 (3.4) 0.11 (4.3) 0.07 (2.0) 0.08 (2.8) 0.04 (1.3) 0.10 (3.5)

8-M MCMC True 0.15 0.11 0.12 0.07 0.09 0.04 0.11
Mean 0.16 (15.9) 0.12 (8.2) 0.13 (8.6) 0.08 (5.4) 0.10 (5.3) 0.05 (3.7) 0.11 (6.5)

CRI-MAP Mode 0.16 (13.5) 0.11 (7.5) 0.13 (7.9) 0.08 (5.0) 0.09 (5.0) 0.04 (3.4) 0.11 (6.2)
MLE 0.12 (23.9) 0.08 (13.2) 0.10 (14.5) 0.06 (7.5) 0.07 (10.1) 0.03 (4.7) 0.08 (11.9)

1-F MCMC True 0.02 0.01 0.01 0.01 0.01 0.00 0.01
Mean 0.02 (0.7) 0.01 (0.4) 0.02 (0.5) 0.01 (0.3) 0.01 (0.4) 0.01 (0.2) 0.01 (0.4)

CRI-MAP Mode 0.02 (0.7) 0.01 (0.4) 0.01 (0.5) 0.01 (0.2) 0.01 (0.3) 0.00 (0.1) 0.01 (0.3)
MLE 0.02 (0.6) 0.01 (0.3) 0.01 (0.4) 0.01 (0.2) 0.01 (0.3) 0.00 (0.1) 0.01 (0.4)

1-M MCMC True 0.02 0.01 0.01 0.01 0.01 0.00 0.01
Mean 0.02 (1.7) 0.02 (1.1) 0.02 (3.1) 0.01 (2.5) 0.02 (9.4) 0.01 (1.3) 0.02 (0.7)

CRI-MAP Mode 0.01 (1.3) 0.01 (0.7) 0.02 (2.1) 0.01 (1.7) 0.01 (7.4) 0.01 (0.7) 0.01 (0.6)
MLE 0.01 (1.8) 0.01 (1.0) 0.01 (1.0) 0.01 (0.5) 0.01 (0.7) 0.00 (0.3) 0.01 (0.3)

For comparison, average maximum-likelihood estimates (MLEs) obtained via CRI-MAP are also given. The accuracy of the es-
timator is measured via the mean square error (MSE3106).
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offer opportunity for a more detailed investigation of
the data since the entire joint distribution of the model
variables is realized.

The six marker orders with the largest exact multi-
locus log likelihoods from replicates 1 and 2 in 1-F are
given in Table 3. The estimated posterior probabilities
of these orders are also given. The results from Table 3
suggest that the sampler is performing well. In the
analysis of replicate 1, the three marker orders with
the largest log likelihoods are visited most often by the
MCMC sampler. The two marker orders not sampled
have log likelihoods up to 5 log units smaller than the
log likelihood under the simulated marker order. In the
analysis of replicate 2, the four marker orders with
the highest log likelihoods are close in value. This is
mirrored by the estimated posterior probabilities for
these orders, which are also close in value. The two
marker orders not sampled have log-likelihood values
up to 12 log units smaller than the log-likelihood value
under the simulatedmarker order. These results suggest
that marker orders with relatively high likelihoods are
being sampled by the MCMC procedure.

Real data: The estimated posterior probabilities of a
marker order from the Bayesian analysis of the Framing-
ham data are presented in Table 4. Only the five marker
orders sampled with the highest frequency are given,
although many more orders are sampled. Each MCMC
run consists of 53 105 iterations and takes �20 hr. This
run length is excessive but it does give the MCMC
sampler opportunity to visit marker orders of low
posterior probability. The published marker order (1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) has the highest posterior
probability, ranging between 80 and 86% across the
repeatedMCMC analyses. The threemarker orders with
the highest estimated posterior probabilities are the
same across the repeatedMCMC analyses and are visited
with approximately equal frequency.

The markers could be only partially ordered using
CRI-MAP. The best marker order was (1, 2, 3, 4, 5, 6, 8,
9), where the remaining markers could not be uniquely
positioned with certainty. This is in contrast to the Bayes-
ian analysis where there is strong a posteriori evidence in
favor of the published marker order.

DISCUSSION

In this article, a new MCMC procedure has been
developed, implementing a Bayesianmultilocus linkage
approach for ordering many markers jointly on general
pedigrees. These pedigrees may be large, have com-
plex structures, and contain unobserved individuals.
Ordering multiple markers simultaneously is challeng-
ing because the number of candidate orders increases
exponentially with marker number. Furthermore, cal-
culating exact multilocus likelihoods on general pedi-
grees is often computationally intractable. The MCMC
procedure presented here circumvents these problems
by using Monte Carlo sampling to form a Markov
chain with pðu; p; d; SjYÞ as its stationary distribu-
tion. Bayesian quantities are then formed from averages
of the dependent realizations.

The MCMC procedure is demonstrated through the
analysis of simulated and real data on 11 extended

TABLE 3

The estimated posterior probability of d for the six marker orders with the largest exact
log likelihoods (log L) for replicates 1 and 2 from 1-F

Replicate 1 Replicate 2

Marker order log L Posterior prob Marker order log L Posterior prob

1 2 3 4 5 6 7 8 �1903.19 0.967 1 2 3 4 5 6 7 8 �1888.35 0.284
2 1 3 4 5 6 7 8 �1905.52 0.018 1 2 3 4 5 7 6 8 �1888.35 0.264
3 1 2 4 5 6 7 8 �1906.67 0.015 1 3 2 4 5 7 6 8 �1888.47 0.217
1 2 3 5 4 6 7 8 �1907.42 NS 1 3 2 4 5 7 6 8 �1888.47 0.235
1 2 3 4 5 6 8 7 �1908.17 NS 1 2 3 4 6 5 7 8 �1892.91 NS
3 2 1 4 5 6 7 8 �1909.60 0.001 1 3 2 4 6 5 7 8 �1893.10 NS

NS, a marker order not sampled by the MCMC procedure.

TABLE 4

Results from the Bayesian analysis of chromosome 9 data
from the Framingham Heart Study

MCMC analysis

Marker order 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 0.8008 0.8247 0.8146 0.8635
12 1 2 3 4 5 6 7 8 9 10 11 0.1187 0.1011 0.1121 0.1133
1 2 3 4 5 7 6 8 9 10 11 12 0.0497 0.0352 0.0259 0.0113
1 2 3 4 5 6 7 8 9 10 12 11 0.0126 0.0035
1 2 3 4 5 6 7 8 10 9 11 12 0.0124 0.0282 0.0378 0.0058
12 1 2 3 4 5 7 6 8 9 10 11 0.0067
12 1 2 3 4 5 6 7 8 10 9 11 0.0041

The five marker orders with the highest posterior probabil-
ity are shown. Four MCMC analyses with different starting
configurations are shown. The published marker order is
1, 2, . . . , 12, where markers are referenced by their marker
index. Markers ordered differently from the published order
are underlined.
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pedigrees. These pedigrees are large, contain half-
sibships, and have multiple founding couples. The
simulation study focuses on the analysis of multilocus
data generated under two different genetic maps: one
map with an average intermarker distance of 8 cM
(8-cM map) and the other with an average intermarker
distance of 1 cM (1-cM map). It was possible to un-
ambiguously order markers from data generated under
an 8-cMmap using the estimated posterior probabilities
of a marker order. However, there was insufficient
information in the data generated under a 1-cM map
to unambiguously order markers. The MCMC pro-
cedure was superior to CRI-MAP for identifying the
correct marker order when the data contained un-
observed individuals. Real data on 12 microsatellite
markers on chromosome 9 were also analyzed. With
.200 million possible orders, the MCMC procedure
predominantly sampled the published marker order,
resulting in a posterior probability of�80%. Here, CRI-
MAP could only partially order the markers in the
published map. It should be noted that results pre-
sented in this article should not be construed as a
general failure of the CRI-MAP software. CRI-MAP is an
excellent package for the rapid construction of multi-
locus linkage maps from data on nuclear families or
CEPH-like pedigrees. Even data on extended pedigrees
can be analyzed. However, as warned in the user
documentation, likelihoods on extended pedigrees
with unobserved individuals are approximated with
the accuracy of the approximation yet to be tested.
The Bayesian probability model presented in this

article can be extended in several ways. First, the
Bayesian probability model can be extended to accom-
modate genotyping errors. Aberrant marker observa-
tions can bias linkage findings where map lengths are
inflated and even the marker order is misspecified
(Buetow 1991; Goldstein et al. 1997). Accounting
for aberrant data, however, does increase the computa-
tional complexity of the analysis since any marker
phenotype is now potentially consistent with any latent
marker genotype. The calculation of P(Y�jjpj, S�j) now
requires a procedure analogous to pedigree peeling
(Thompson and Heath 1999). Bayesian quantities can
still be estimated using theMCMCprocedure presented
in this article. Second, the Bayesian probability model
can be extended to make use of known information.
Given detailed physical and genetic maps, the partial
order of some markers, their relative distances, and
marker allele frequencies may be known with a high
degree of certainty. This information is not easily in-
corporated into a maximum-likelihood-based linkage
analysis. However, by placing subjective priors on the
model variables, this information can be incorporated
into a Bayesian analysis. Again, Bayesian quantities can
be estimated using the MCMC procedure described in
this article. Third, the Bayesian probability model
can accommodate genetic interference by replacing

pðSjd; uÞ, the transmission probabilities of S under no
interference, by pðIÞðSjd; uÞ, the transmission probabil-
ities of S under interference. Again, the MCMC pro-
cedure previously discussed can also be used here.
However, the first-order Markov property of the indica-
tors S�j over the loci j, upon which the M-sampler is
based, is no longer true under interference. Hence, the
whole-meiosis Gibbs update is replaced by a M-H step. A
new set of indicators at meiosis i, Si�, is proposed, using
the M-sampler assuming no interference. But instead of
immediately accepting these values as before, the pro-
posed indicators are accepted with M-H probability

min 1;
pðIÞðS9i�jd; uÞpðSi�jd; uÞ
pðIÞðSi�jd; uÞpðS9i�jd; uÞ

" #
:

See Thompson (2000) for further details. Fourth, the
Bayesian probability model can be extended to accom-
modate differences in male and female recombination
fractions. The joint posterior distribution of the model
variables conditioned on Y is pðum; uf ; p; d; Sm;
Sf jYÞ}pðSmjd;umÞpðSf jd;ufÞpðpÞpðumÞpðufÞPðYjp;Sm;
SfÞ, where the subscripts m and f denote male and
female, respectively, and it is assumed that sex-specific
recombination fractions and paternal and maternal
founder alleles are independent a priori. The same
MCMC procedure previously described can be used
here except that step 3 is modified to use the M-H
algorithm with an integrated acceptance probability to
jointly sample d, um, and uf . It should be noted that the
challenge in implementing these extensions lies in the
development of efficient computer code.
A computer software package implementing the

Bayesian marker-ordering methodology and some of
the extensions discussed above is currently under de-
velopment. This software will allow users to construct
and refine genetic maps from multilocus data on
general pedigrees using MCMC. Options will include a
facility to map a single marker relative to a fixed marker
map, to map a group of markers relative to a fixed
marker map, and to map many markers simultaneously.
The software will accept linkage-formatted files and
results will be reported as text and graphically. A ver-
sion of this software will also be distributed with the
MORGAN package for Monte Carlo genetic analysis
(http://www.stat.washington.edu/thompson/Genepi/
MORGAN/Morgan.shtml).

I am grateful to the University of Iowa’s Center for Statistical
Genetics Research for the use of their computational resources. This
work was funded by a University of Iowa Internal Funding Initiative
(85022911).
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APPENDIX: JOINT M-H UPDATING OF d AND u

The joint updating of d and u via theM-H algorithm consists of three steps. First, new values of d and u are proposed
as follows: A block of k adjacent loci is randomly selected wheremarkers are ordered dðiÞ. Loci within themarker block
are referred to as selected markers and loci outside the marker block are referred to as unselected markers. At each
iteration, k is drawn from a uniform distribution on [1, 3, 4, . . . , L � 1]. Here, to simplify the calculation of the
integrated acceptance probability, moves involving blocks of only two loci are not considered. If the block consists of
three or more markers, with 50% probability, the order is reversed. A marker interval I 2 f0, 1, . . . , L � kg is then
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chosen, where 0 is the interval to the left of the first unselected locus, 2, . . . , L� k� 1, are intervals between adjacent
unselected loci, and L� k is the interval to the right of the last unselected locus. Themarker block is positioned within
a randomly chosen interval by sampling the recombination fraction between neighboring unselected and end block
markers from a uniform distribution on [0, 0.5].
To illustrate this proposal mechanism, suppose data are available on markersM1,M2,M3,M4,M5, andM6. Markers

are currently ordered dðiÞ ¼ ð1; 2; 3; 6; 5; 4Þ and positioned uðiÞ ¼ ð0:1; 0:2; 0:04; 0:23; 0:15Þ. Suppose a block of
three markers is chosen, say M2, M3, and M6. Here, the selected markers are M2, M3, and M6, and the unselected
markers areM1,M4, andM5. In Figure A1A, the marker block is moved to the left of the unselected markers, resulting
in a proposed order d9 ¼ ð2; 3; 6; 1; 5; 4Þ. To position the marker block, u3 is drawn from a uniform distribution
where u3 is the recombination fraction between M6 and M1. The recombination fractions between the other pairs of
markers are calculated or obtained directly from uðiÞ. The proposed set of recombination fractions then becomes
u9 ¼ ð2:2; 0:04; u93; 0:38; 0:15Þ. In Figure A1B, themarker block is placed betweenM5 andM4, resulting in a new order
d9 ¼ ð1; 5; 2; 3; 6; 4Þ. To position the marker block relative to the unselected markers, u2 and u5 are drawn from a
uniform distribution where u2 is the recombination fraction betweenM5 andM2, and u5 is the recombination fraction
between M6 and M4. From uðiÞ and the sampled recombination fractions, the new set of recombination fractions is
u9 ¼ ð0:38; u92; 0:2; 0:04; u95Þ.
Second, the proposal is accepted with probability aððdðiÞ; uðiÞÞ; ðd9; u9ÞÞ, where a(�) is the (integrated) M-H

probability of the Markov chain moving from the current state ðdðiÞ; uðiÞÞ to the proposed state ðd9; u9Þ. The M-H
acceptance probability is

aððdðiÞ; uðiÞÞ; ðd9; u9ÞÞ ¼ min 1;
pðu9; p*; d9; S*�J jYÞqðdðiÞ; uðiÞjd9; u9Þ
pðuðiÞ; p*; dðiÞ; S*�J jYÞqðd9; u9jdðiÞ; uðiÞÞ

" #
: ðA1Þ

Here J is the set of indexes of block markers adjacent to unselected markers. For example, in Figure A1A where the
marker block is moved to the left of the unselected markers, J ¼ 6 since M6 is adjacent to an unselected marker. In
Figure A1B where the marker block is moved between unselected markers, J ¼ (2, 6) since M2 and M6 are now
adjacent to unselected markers. Also, S�J is the set of meiosis indicators across loci excluding meiosis indicators at
the locus or loci referenced in J, pðu; p; d; S�J jYÞ is the joint probability distribution of the model variables
ðu; p; d; S�J Þ with SJ integrated out of the joint posterior distribution pðu; p; d; SjYÞ, and q(�) is the proposal
distribution.
Since block size, marker interval, and block position are sampled from a uniform distribution and with 50%

probability the order of the selectedmarkers is reversed, the proposal probability is qð�Þ ¼ 0:511j J j=ðL � 1ÞðL � k � 1Þ,
where j J j ¼ 1 or 2 depending on the number of elements in J. Furthermore,

pðu; p; d; S�J jYÞ}pðS�J jd; uÞpðdÞpðpÞpðuÞPðYJ jp; S�J ; uÞ

Figure A1.—The proposal mechanism for generating a new marker order and set of recombination fractions. A block of
markers (M2, M3, and M6) is moved to a new position, resulting in a new marker order and set of recombination fractions.
(A) The marker block is moved to the left of marker M1. (B) The marker block is moved between markers M5 and M4. Marker
locations are denoted by vertical lines. For the proposed state, a solid horizontal line denotes a chromosomal distance that does
not differ from the current state, and a cross-hatched horizontal line denotes a chromosomal distance that is sampled from a
uniform distribution.
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and the acceptance probability (A1) simplifies to

aððdðiÞ; uðiÞÞ; ðd9; u9ÞÞ ¼ min 1;
pðS*�J jd9; u9Þpðu9ÞPðYJ jp*; S*�J ; d9; u9Þ3 2j J 9j

pðS*�J jdðiÞ; uðiÞÞpðuðiÞÞPðYJ jp*; S*�J ; d
ðiÞ; uðiÞÞ3 2j J

ðiÞj

" #
:

If J references a single end marker, the probabilities PðYJ jp; S�J ; d; uÞ are obtained by single-locus peeling over
MJ at positions ðd9; u9Þ and ðdðiÞ; uðiÞÞ. If J references both end markers, the joint conditional probability of
YJ ¼ ðYJ1 ; YJ2Þ is

PðYJ jp*; S*�J ; d; uÞ ¼ PðYJ1 jp*; S*�J ; d; uÞPðYJ2 jp*; S*�J ; d; uÞ;

which is obtained by independently peeling over MJ1 and MJ2 . This joint conditional probability can be factorized
in this way since moves involving only two neighboring loci are not considered and due to the assumed conditional
independence structure between Y and S.

Third, if the proposal is accepted, the move is completed by updating SJ via the L-sampler. The (i 1 1)th state of
the Markov chain then becomes ðd9; u9; S9J Þ. If the proposal is rejected, the (i 1 1)th state of the Markov chain
becomes ðdðiÞ; uðiÞ; SðiÞJ Þ.
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