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ABSTRACT
If a gene is mutated and its function lost, are compensatory genes upregulated? We investigated
whether genes are transcriptionally upregulated when their synthetic sick or lethal (SSL) partners are lost.
We identified several new examples; however, remarkably few SSL pairs exhibited this phenomenon,
suggesting that transcriptional compensation by SSL partners is a rare mechanism for maintaining genetic

robustness.

HE ability to tolerate random mutation is critical to
an organism’s fitness (Kirano 2004). This toler-
ance often relies on genes or pathways that can com-
pensate for the loss of one another (ToNG et al. 2001,
2004). A key indicator of a compensatory relationship
is a synthetic sick or lethal (SSL) interaction, in which
mutation of two genes in combination yields a more del-
eterious phenotype than either single mutation alone.
The existence of genetic compensation is well ac-
cepted (Nowak et al. 1997, WINZELER el al. 1999;
WAGNER 2000; ToNG et al. 2001, 2004; Gu et al. 2003),
but the mechanism by which this compensation is
achieved remains unclear. Are compensatory genes,
expressed at wild-type levels, sufficient to buffer gene
loss? Or does the cell detect loss of a gene and respond
by upregulating compensatory genes/pathways (é.e., the
SSL interaction partners of the deleted gene)? Pre-
viously, LESAGE et al. (2004) suggested that transcrip-
tional compensation among SSL partners is rare. Now
large mRNA expression and genetic interaction data
sets offer an opportunity to address this question on a
genome-wide level.

Investigating transcriptional compensation among
SSL gene pairs: To investigate whether compensatory
genes are transcriptionally upregulated in response to
gene loss, we employed a large data set of Saccharomyces
cerevisiae mRNA expression profiles of single-gene mu-
tants (WINZELER et al. 1999; HUGHES et al. 2000a) and a
systematically generated data set of gene pairs assessed
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for SSL interaction (ToNG et al. 2001, 2004). For each
transcriptionally profiled mutant, we considered ex-
pression levels of genes previously assessed for SSL
interaction with the mutated gene. For example, if the
mutant of gene Mwas transcriptionally profiled and gene
M was also assessed for SSL interaction with a gene G,
we considered the expression level of Gin the mutant of
M. More specifically, for each M:G pair, we compared
expression of G in mutant and wild-type cells using log
ratios [log (expression in mutant/expression in wild
type) ]. We excluded profiles of known aneuploid strains
(HuGHES et al. 2000b) and took averages of log ratios in
the cases of duplicate measurements (<10%). We then
separately considered M:G pairs with (872) and without
(112,686) SSL interaction. The distributions of log ra-
tios for SSL and non-SSL pairs were similar (Figure 1).
Normalizing the log ratios using a gene-specific error
model (HuGHES et al. 2000a) produced similar distri-
butions (data not shown). These data suggest that tran-
scriptional regulation of compensatory genes does not
play a global role in maintaining robustness.

We next investigated whether transcriptional com-
pensation played a greater role among SSL M:G pairs
with homology in comparison to nonhomologous SSL
pairs. Because homologous genes were more likely than
nonhomologous genes to overlap in function, we hy-
pothesized that they may exhibit more pronounced
compensatory transcriptional effects. Our data did not
support this hypothesis (see supplementary material at
http:/www.genetics.org/supplemental /).

Transcriptional compensation among a minority of
gene pairs: Although transcriptional compensation for
gene loss did not appear to be a global phenomenon,
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F1GURE 1.—Log ratios of expression for each gene, G, in a
gene M mutant strain relative to wild type. M:G gene pairs
with an SSL interaction are plotted separately from non-
SSL pairs.

it has been previously observed for several SSL. gene
pairs (TERASHIMA et al. 2000; LESAGE et al. 2004; KAFRI
et al. 2005). To systematically identify additional cases,
we again considered M:G pairs previously assessed for
SSL interaction. Among genes significantly changed in
an M mutant (according to significance threshold P <
0.001), SSL partners of M were more likely than non-
SSL partners to be transcriptionally upregulated (P =
0.02) (see supplementary material at http:/www.genetics.
org/supplemental/). Therefore, although transcrip-
tional compensation is rare, our results confirm that it
does occur for a minority of SSL pairs.

Six of the 13 SSL gene pairs that we found to exhibit
transcriptional upregulation were previously noted
(Table 1) (ZHAO et al. 1998; LESAGE et al. 2004), con-
firming our method of analysis. Five of these 6 were
noted by LESAGE et al. (2004), who reported transcrip-
tional upregulation for 10 of the SSL pairs that we
investigated. That we observed compensation for only
5 of these 10 pairs may reflect experimental error or
differences in mutant strains or growth conditions of
the mRNA expression data sets.

For seven pairs, transcriptional upregulation in the
context of SSL interaction had not been previously
noted (Table 1). However, for the pair CDC42:GIC2,
compensation at the protein expression level was pre-
viously observed; the level of GIC2 protein increased
in the CDC42-null mutant (JAQUENOUD et al. 1998). For
the remaining six pairs, our observations may help
define functional relationships between genetic in-
teractors that exhibit compensatory transcriptional
upregulation.

The SSL pair FKSI:RIM21 exhibited transcriptional
compensation. Little information on the relationship
between the 1,3-B-p-glucan synthase FKSI and RIM21,
a protein of unknown molecular function and cellular
component, is available. Our observation of transcrip-
tional compensation by RIM21 in the FKSI-null mutant,
in the context of genetic interaction, may help deter-
mine the function of RIM21.

Another example, SHE4, is the SSL partner of CHS7.
According to the Saccharomyces Genome Database,
CHS7 is a protein of unknown function involved in
chitin biosynthesis (DOLINSKI ¢t al. 2004) and was tran-
scriptionally upregulated in the SHE4null mutant.

Surprisingly, one gene, FKS2, was downregulated in
the deletion mutant of its SSL partner, /KSI (Table 1).
This contrasts with the compensatory transcriptional
upregulation seen previously (TERAsHIMA et al. 2000;
LESAGE et al. 2004) and may represent an experimental
error (see discussion of cross-hybridization below) or
differences in the FKSI mutants or conditions profiled
(HUGHES et al. 2000a; LAGORCE et al. 2003).

In summary, we explored transcriptional upregula-
tion as a mechanism of compensation for gene loss.
While we confirmed a handful of previously observed
cases and identified several new ones, our data suggest
that transcriptional compensation among SSL partners
is rare.

Our conclusion agrees with a qualitative observation
from a smaller study, which considered SSL partners
of three genes involved in B-1,3-glucan assembly and
used a different expression data set (LAGORCE el al.
2003; LESAGE et al. 2004). By contrast, we addressed
this question quantitatively and examined the SSL in-
teraction partners of 18 query genes. Therefore, our
conclusion has broader scope, encompassing addi-
tional biological processes (see supplementary Table
S1 at http:/www.genetics.org/supplemental/ for query
genes examined).

We have likely missed some instances of upregula-
tion of compensatory genes. For example, microarrays
are not sensitive enough to detect all transcriptional
changes. Furthermore, expression experiments were
conducted in rich medium, while SSL interaction was
assessed in near minimal medium, so pairs exhibiting
compensatory upregulation in minimal but not rich
media were missed. In addition, cross-hybridization be-
tween paralogous genes may mask cases of compensa-
tory upregulation or may cause the appearance of
compensatory downregulation (HUGHES et al. 2001).
However, even using a permissive definition of ho-
mology (BLAST FEvalue <107?), only 2% of SSL gene
pairs are paralogous (TONG et al. 2004), so this source
of decreased sensitivity to compensatory upregulation
is unlikely to have affected our overall conclusion.
Finally, the SSL interaction data set has a false-negative
rate of 17-41% (ToNG et al. 2001, 2004), causing us to
incorrectly consider some pairs as non-SSL. However,
given the remarkably low frequency of compensatory
upregulation observed here, increased sensitivity to
SSL. interaction is unlikely to change our overall
conclusion.

Compensation by upregulation may be even rarer
than we report here. In some of the 13 cases that we
report, the observed upregulation may not be required to
achieve compensation. Thus, we may have conservatively
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overcounted cases of compensation by transcriptional
upregulation.

Our study has an interesting parallel to a previous
study. GIAEVER et al. (2002) identified genes required to
survive a change in environmental condition, while we
examined genes required to survive a change in genotype
(z.e., the synthetic lethal partners of deleted genes). In
both cases, genes required for surviving the change are
often not transcriptionally upregulated.

Collectively, our results and previous ones suggest
that transcriptional “retuning” in response to change,
environmental or genotypic, is rare. Given the rarity of
gene loss, a regulatory network that detects and re-
sponds to gene loss may be a large target for mutation
with only a weak selection for its maintenance. Further-
more, the potential consequences of a misregulated
network may be too costly to justify its benefit. Regard-
less of the explanation, our study suggests that robust-
ness is generally achieved without a change in mRNA
expression of compensatory genes.
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