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ABSTRACT

Bayesian segregation analyses were used to investigate the mode of inheritance of osteochondral lesions
(osteochondrosis, OC) in pigs. Data consisted of 1163 animals with OC and their pedigrees included 2891
animals. Mixed-inheritance threshold models (MITM) and several variants of MITM, in conjunction with
Markov chain Monte Carlo methods, were developed for the analysis of these (categorical) data. Results
showed major genes with significant and substantially higher variances (range 1.384–37.81), compared to
the polygenic variance (s2

u). Consequently, heritabilities for a mixed inheritance (range 0.65–0.90) were
much higher than the heritabilities from the polygenes. Disease allele frequencies range was 0.38–0.88.
Additional analyses estimating the transmission probabilities of the major gene showed clear evidence for
Mendelian segregation of a major gene affecting osteochondrosis. The variants, MITM with informative
prior on s2

u, showed significant improvement in marginal distributions and accuracy of parameters. MITM
with a ‘‘reduced polygenic model’’ for parameterization of polygenic effects avoided convergence prob-
lems and poor mixing encountered in an ‘‘individual polygenic model.’’ In all cases, ‘‘shrinkage estimators’’
for fixed effects avoided unidentifiability for these parameters. The mixed-inheritance linear model
(MILM) was also applied to all OC lesions and compared with the MITM. This is the first study to report
evidence of major genes for osteochondral lesions in pigs; these results may also form a basis for under-
pinning the genetic inheritance of this disease in other animals as well as in humans.

OSTEOCHONDROSIS (OC) is a term used to de-
scribe a variety of joint diseases, all of which

involve abnormal cartilage and/or bone development.
These diseases can affect the shoulder, elbow, knee, or
hock joints in animals. Degenerative osteoarthritis and
necrosis will be a resulting outcome as abnormalities
within the joint lead to further wear and tear and joint
degeneration. Osteochondrosis is thought to have a
multifactorial etiology but genetic factors that affect
weight gain, growth rate, and body conformation/type
are undoubtedly involved in the etiology of osteo-
chondrosis (e.g., Kadarmideen et al. 2004). By virtue of
its etiology, this disease affects all food animals such
as cattle (e.g., Trostle et al. 1997), pigs (Kadarmideen

et al. 2004), and deer (Audige et al. 1995) and com-
panion animals such as dogs (e.g., Neàs et al. 1999) and
horses (e.g., Barneveld and van Weeren 1999), as well
as humans (e.g., Seidler et al. 2001).

Modern food production programs from pigs need
to consider osteochondrosis as recent findings suggest
that selection for high growth and meat yield has an-
tagonistic/unfavorable genetic effects on susceptibility

to this disease in pigs (Kadarmideen et al. 2004). How-
ever, breeding pigs for resistance to osteochondrosis
would be difficult by conventional breeding programs
due to low (polygenic) heritability and the high cost of
data recording on the farm or station. Identification
and use of quantitative trait loci (QTL) for OC disease
may help in breeding for disease resistance but would
need costly resource populations and QTL mapping
experiments. Before such experiments, it is worthwhile
to conduct a statistical analysis to test existing pheno-
typic data on OC disease for evidence of a segregating
major gene. Segregation analysis is the most powerful
statistical method to identify a major gene, using only
phenotypic data and without DNA marker informa-
tion (e.g., Guo and Thompson 1992; Janss et al. 1995,
1997; Thaller et al. 1996). Inbreeding and marriage
loops in a typical segregation analysis using pedigreed
populations make the exact computations of likeli-
hoods or marginal densities impossible. This problem
has been overcome by the development of a Bayesian
method implemented via Gibbs sampling, a Monte
Carlo Markov chain (MCMC) methodology (Guo and
Thompson 1992), and the application of this meth-
odology to livestock populations ( Janss et al. 1997;
Hagger et al. 2004; Ilahi and Kadarmideen 2004) as
well as to companion animals (Cargill et al. 2004).
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No investigations have been carried out so far to de-
termine the mode of inheritance of osteochondrosis in
animals (in particular, pigs) by a complex segregation
analysis. In addition, the development and application
of a ‘‘liability or threshold model,’’ in the context of
segregation analysis of polygenic diseases in complex
animal pedigrees with MCMC methods, have not been
explored extensively.

The main objective of this study was to investigate
whether inheritance of osteochondral diseases in pigs is
determined as a mixed inheritance (of polygenes and a
major gene) by the mixed inheritance threshold or
liability models (MITM). The emphasis is on the de-
velopment of the MITM method and investigation of its
variants for segregation analysis of polygenic diseases
observed as binary traits.

MATERIALS AND METHODS

Osteochondral disease: The company SUISAG provides
herd book, field, and station tests and artificial insemination
and conducts a national pig-breeding program in Switzerland.
Detailed descriptions of breeding program and station-tested
traits in SUISAG were given by Kadarmideen et al. (2004).
Trained personnel in SUISAG conducted pathological-
anatomical examination of front and hind leg bones of slaugh-
tered pigs and recorded OC lesions with a score of 1 equaling
‘‘normal’’ and 4 or 5 or 6 equaling ‘‘severely affected,’’
depending on the lesion. Figure 1 (from Kadarmideen et al.
2004) shows positions on the bones on which different lesions
are scored: head of humerus (HK), condylus medialis humeri
(CMH), condylus lateralis humeri (CLH), radius and ulna
proximal (RUP), distal epiphyseal cartilage of ulna (DEU),
head of femur (FK), and condylus medialis femoris (CMF).
More details and description of OC lesions were given in
Kadarmideen et al. (2004). Disease data were available on
1163 station-tested pigs born to 194 boars and 697 dams. Data
could be characterized by 23 year-months of testing, 59 stable
periods, four breeds (Swiss Large White, Swiss Large White-
sire line, Swiss Landrace, and Duroc), and two sexes (male and
female). As seen in Figure 2, 70–98% of observations of all OC
lesions (except DEU) had a score of 1 (normal). For this
reason and to investigate the threshold model segregation
analysis of binary data, all lesions (except DEU) were recoded
such that ‘‘healthy’’ animals with a score of 1 received 0 and
‘‘diseased’’ animals with a score of 2 and above received a score
of 1, creating a 0 or 1 binary trait. Pedigrees were traced as far

back as possible, which included 2891 animals. The descrip-
tion of the data used for segregation analyses is given in Table 1.

Two more ‘‘new’’ traits were created: all OC lesions within
front legs were summed to give ‘‘total front leg’’ lesions (TFL)
as TFL ¼ CMH 1 CLH 1 RUP 1 HK 1 DEU and those within
hind legs were summed to give ‘‘total hind leg’’ lesions (THL)
as THL ¼ CMF 1 FK scores. This summing of scores was
performed on the basis of the assumption that all OC lesions
within the front or the hind leg bones were likely controlled by
similar genes. The TFL resulted in six categories with 175, 483,
318, 135, 48, and 4 animals in categories 1–6, respectively.
Since the incidence of FK was nearly zero (Figure 2; only 2
animals were affected with a score of 2), THL was basically
equal to CMF, except that there was an increase in the number
of animals in category 1 of 1289 and in category 2 of 2 animals.
The distribution of animals within each category of TFL and
THL is also given in Figure 2.

MITM: A genetic model describing polygenetic and mono-
genetic factors for the inheritance of the osteochondral dis-
ease (so-called mixed-inheritance model) was used to detect
the presence of a major gene in the inheritance of OC in pigs.

Threshold-liability models for analysis of binary data were
first proposed by Wright (1934) and were later adapted for
the analysis of a mixed inheritance by Morton and MacLean

(1974) and to QTL detection and mapping in backcross and F2

populations (e.g., Rebai 1997) and in outbred populations on
a within-family basis (Kadarmideen et al. 2000a; Kadarmideen

and Dekkers 2001). These models assume the presence of
an underlying continuous random variable, called liability, l¼
flig. Under the liability scale, the MITM model has the form

l ¼ Xb1Zu1ZWg1 e; ð1Þ
where lN31 is the vector of liability to OC lesions and b is a
vector of nongenetic fixed effects that included: stable period,
which is a time period nested within stable in the testing

Figure 1.—Illustration of positions of differ-
ent osteochondral lesions found on bones in
pigs. Lesions are scored from 1 to 6 with score
1 showing normal and scores 2–6 showing from
mild to severe lesions. HK, head of humerus (1–
4); CMH, condylus medialis humeri (1–4);
CLH, condylus lateralis humeri (1–4); RUP,
radius and ulna proximal (1–4); DEU, distal
epiphyseal cartilage of ulna (1–6); FK, head
of femur (1–4); CMF, condylus medialis femo-
ris (1–6) (from Kadarmideen et al. 2004).

Figure 2.—Distribution of nine osteochondral (OC) le-
sions scored on 1163 station-tested pigs.
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station; year and month of performance test; breed, consisting of
Swiss Large White, Swiss Landrace, Swiss Large White sire line,
and Duroc breed; Sex, being a male and female; and weight at
end of test as a covariate. Polygenetic effects are modeled by u,
while major gene effects are modeled by Wg, composed of a
matrix W assigning one of three genotypes to each individual
and a vector g to parameterize the genetic effects of the major
gene (see details below). The X and Z are incidence matrices,
connecting the unknowns in b, u, and Wg to the observations.
Finally, e is a vector of random residuals for l.

The ‘‘liability,’’ l in model (1) is such that the observed
binary (disease) responses (y ¼ fyig) are the result of the
relationship

yi ¼
0 if li #T

1 if li .T ;

�
ð2Þ

where T is a fixed threshold. Here, yi ¼ 0 denotes a healthy
animal and yi ¼ 1 denotes a diseased animal, depending on
whether their liability, li, exceeded the ‘‘threshold point,’’ T,
for manifestation of the disease.

Note that li’s are not observed; however, they are used to
simplify the likelihood and the construction of the MCMC.
Often, liabilities are assumed to be normally distributed with
mean vector m and covariance matrix R ¼ Is2

e. Further, as a
consequence of the well-known identification problem, the
threshold and the dispersion parameter can be set equal to
some arbitrary values (here, T ¼ 0 and s2

e ¼ 1).
Assumptions: Prior distribution for the ‘‘fixed’’ effects b was

N(0, 10). This normal distribution with relatively large var-
iance (residual variance is set to 1) will apply a mild shrinkage
to these fixed effects to avoid unidentifiability and poor con-
vergence of their solutions on the liability scale. Distributional
assumptions for polygenic effects were u � N ð0;As2

uÞ, where
A is the numerator relationship matrix accounting for the
additive genetic relationship between individuals with data
and their parental generations (Henderson 1984) and where,
in our standard implementation of the MITM, the prior dis-
tribution for polygenic variance s2

u was a uniform on [0, 2].
The major gene was modeled as an autosomal biallelic

(alleles A and B) locus, initially, with Mendelian transmission
probabilities. The allele A is defined to decrease the pheno-
typic value (lower the OC scores, i.e., associated with healthy
phenotypes), and the allele B is defined to increase the
phenotypic value (increase the OC scores, i.e., associated with
diseased phenotypes). The prior distribution for genotypes
can be specified as founder genotypes to have prior probabil-
ities of ( f�)2, 2f�f1, and ( f1)2 for genotypesAA,AB/BA, and BB,

respectively, and as nonfounder genotypes to have prior prob-
abilities conditional on parental genotypes given Mendelian
transmission. Hence, this parameterization assumes a single
population and Hardy-Weinberg equilibrium for prior prob-
abilities in founders, although actually multiple subpopula-
tions were present within the founders. However, this prior
distribution in founders generally has only a small influence,
being largely overruled by the data, which is also reflected by a
generally low accuracy to estimate founder allele frequency;
hence we consider that this parameterization is also adequate
for the data being analyzed here. For founder allele frequency,
only f � is estimated ( f 1 ¼(1 � f �)), and a flat prior distribu-
tion on [0, 1] was assigned for f �. Effects of the three geno-
types AA, AB/BA, and BB were modeled as g9 ¼ (�a, 0, a),
assuming no dominance, because in our experience the
estimation of dominance on a liability scale is difficult, often
leading to implausible estimates with large overdominance.
The prior distribution for the additive effect awas taken asN(0,
5), which, similarly as for fixed effects, applies a mild shrinkage
to a major gene effect. For the model (1), the matrix W and the
vector g are given as

Wg ¼

1 0 0

1 0 0

0 0 1

0 1 0

0 0 1

1 0 0

..

. ..
. ..

.

0 1 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

N33

�a

0

a

0
@

1
A

331

;

where W selects, with a 1 in column 1, 2, or 3, depending on
whether each individual has genotype AA, AB/BA, or BB,
respectively, and g specifies the effect of the genotype. Note
that W and g are unknown and have to be estimated by the
segregation analysis; that is, the actual genotype of the N
individuals and its corresponding genotypic effects are un-
knowns. Note further that, in the MCMC implementation, W
indeed contains 0’s and 1’s, not probabilities; probabilities can
be obtained by averaging multiple realizations of W from the
Markov chain.

The above assumed Mendelian transmission of alleles from
parents to offspring canbe relaxed, bymodeling thepriorprob-
ability of nonfounder genotypes using transmission probabil-
ities tAjAA, tAjAB, and tAjBB, which represent the probabilities of
receiving an A allele from a parent with genotype AA, AB (and

TABLE 1

Descriptive statistics for OC lesions from 1163 station-tested pigs

Traits Units Abbreviations of traits Mean SD Min Max Incidencea

Weight at end of test kg WET 103.53 3.50 90.41 115.21 —
Age at end of test Days Age 168 12 136 215 —
Head of humerusa 1–4 HK 1.02 0.15 1 3 1.4
Condylus medialis humeria 1–4 CMH 1.11 0.37 1 3 10.0
Condylus lateralis humeria 1–4 CLH 1.02 0.14 1 3 2.0
Radius and ulna proximala 1–4 RUP 1.04 0.20 1 3 4.0
Distal epiphyseal cartilage of ulna 1–6 DEU 2.30 0.92 1 5 —
Condylus medialis femorisa 1–6 CMF 1.33 0.52 1 4 31.0
Total front leg 1–6 TFL 6.49 1.04 5 10 —
Total hind leg 1–4 THL 1.33 0.52 1 4 —

a OC lesions were transformed to two categories (binary data) as healthy (original score ¼1) and diseased (original score .1);
‘‘incidence’’ was calculated as percentage of diseased pigs.
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BA), and BB, respectively (Elston and Stewart 1971; Lynch

and Walsh 1998, pp. 366–369). The Mendelian case is
expressed as tAjAA ¼ 1, tAjAB ¼ 0.5, and tAjBB ¼ 0. A general
expression for the transmission probability of a progeny
genotype given parental genotypes then is

Prðprogeny genotypeCDjsire genotype EF ;dam genotypeGH Þ ¼ tC jEF tDjGH ;

ð3Þ
whereC,D, E, F,G, andH represent any of the two allelesA orB.
The above general expression distinguishes between the two
heterozygotes, and terms tBj.. arising are 1� tAj... By estimation
of the transmission probabilities, extra safeguards against de-
tection of false-positive major genes can be made: as suggested
by Elston and Stewart (1971) a robust indication for the
segregation of a major gene is obtained only when estimated
transmission probabilities do not deviate significantly from
Mendelian, but do differ significantly from equal transmission
probabilities, in conjunction with overall significance of the
major gene component in the model. Estimation of trans-
mission probabilities was done by fixing obtained major gene
parameters and polygenic variance to estimated values, allow-
ing the estimation of transmission probabilities to indicate
whether the inferred major gene might have been caused by
other sources.

Variants of MITM: The informative prior model: Polygenic
variance of OC lesions under threshold models previously
estimated with a pure polygenic model by restricted maximum
likelihood and a generalized linear mixed model (REML/
GLMM) methodology by Kadarmideen et al. (2004) was used
as a prior fors2

u [the informative prior model (MITM-IP)]. This
can be seen as a conservative approach to inference for a
mixed inheritance, because this prior suggests that all genetic
variance should be polygenic. In conjunction with the prior
for s2

u a weighting factor is also specified; with higher weights
attached to this prior for s2

u, the sample (and the marginal
posterior distribution) is kept closer to the prior value for s2

u,
but with low weights it is allowed to still deviate considerably.
The reduced polygenic model: A ‘‘reduced polygenic model’’

(MITM-RM) was used instead of an ‘‘individual polygenic
model,’’ estimating only polygenic effects of parents in the
form of ‘‘transmitting abilities’’ (TA), or half breeding values.
This reduced-model approach was shown to be particularly
useful for threshold models (as shown in Janss and Bolder

2000). In model (1), u is then replaced by v, the subset of u that
pertains to parents, and the design matrix is altered so that the
record of an individual i is linked to the TAs of the two parents
of i. This model is equivalent to the previous model as long as
parents do not have records, but would become approximate
otherwise. Relationships between parents were taken into
account, by taking the prior for v �N(0, Av s

2
v ), where Av is the

numerator relationship matrix specifying the relationships
between parents in the analysis. The variance component for
TAs expresses one-quarter of polygenic variance, and with
every record modeled with two TAs, the total variance fitted
is s2

p ¼ s2
e 1 2s2

v ¼ 11 2s2
v . In this model an unbounded flat

prior for s2
v was used.

One representative lesion each from front and hind leg
bones that had reasonable incidence was chosen. These were
CMH and CMF (10 and 31%, respectively) and the above
model variants were applied only to these lesions to be able to
draw reasonable conclusions.

The Gibbs sampler: Gibbs sampling (Geman and Geman

1984) was used to obtain marginal posterior distributions of
model parameters. The Gibbs sampling strategy with blocking
of parents and progeny developed by Janss et al. (1995) was
used. For liability-based genetic analysis of polygenic diseases
in livestock, Bayesian methods have been used by, e.g.,
Kadarmideen et al. (2001). The MaGGic 4.1. software pack-

age, developed by Janss (1998), was used to derive marginal
posterior distributions of model parameters in (1) for each
OC lesion. OC lesion FK was dropped in the final analysis; FK
had only 0.1% incidence and zero variance. The addition of FK
to CMF (THL) did not make any difference for the reason
mentioned above and hence THL was not analyzed. The
generation of samples in the MCMC scheme proceeded as
follows.
Liabilities: The liabilities li are resampled every MCMC cycle

according to Equation 1 by resampling the error term, con-
ditioning on current values of all model parameters b, u, W,
and g. According to the model definition, errors come from a
N(0, 1) distribution. A straightforward rejection sampler was
implemented to sample from a truncated normal such that the
conditions from Equation 2 are met; i.e., for yi ¼ 0, errors are
sampled until li # T and for yi ¼ 1, errors are sampled until
li.T. Conditional on sampled liabilities, estimation of all other
model parameters can proceed as if continuous normal data
are available. For a general linear model with normal errors this
has been described by Wang et al. (1994) and for a mixed-
inheritance model with normal errors by Janss et al. (1995).
Fixed effects: Fixed effects are handled per effect, separating

b into b1, . . . , b5 with corresponding incidence matrices (or
covariate vector) X1, . . . , X5 for the mentioned effects of
stable, year-month, breed, sex, and weight. Then, using cor-
rected liability data l̃ ¼ l�

P
j 6¼i Xjbj � Zu � ZWg, new bi

are sampled from a normal distribution with mean ðX9iXi1
10IÞ�1ðX9il̃Þ and variance ðX9iXi110IÞ�1

s2
e, where the 10I orig-

inates from the normal ‘‘shrinkage’’ prior used for fixed ef-
fects, and here s2

e ¼ 1. Because X9iXi has a simple diagonal
structure, the sampling can be simplified to scalar sampling of
each element of bi, leading to the sampling given by Wang

et al. (1994).
Polygenic effects: Polygenic effects are equally sampled from

normal distributions (Wang et al. 1994), using corrected
liability data as l̃ ¼ l� Xb� ZWg and mean and variance
of u as ðZ9Z1kA�1Þ�1ðZ9l̃Þ and ðZ9Z1kA�1Þ�1

s2
e, respectively,

where k ¼ s2
u=s

2
e, and s2

e ¼ 1. The elements of u are sampled
scalar-wise, correcting for each ui the off-diagonals arising
from A�1, which involves only correction terms from parents,
progeny, and mates. A scalar equation for ui is given in Janss

et al. (1995) and also follows from Wang et al. (1994). For the
model with reduced parameterization of polygenic effects
(MITM-RM) sampling follows analogously, with the principal
difference being the differently defined incidence matrix Z.
Genotypes: For genotype sampling, the blocking strategy

described by Janss et al. (1995) was used to avoid poor mixing
due to ‘‘lock-up’’ in large families. The most general equation
is the equation to compute probabilities for the genotype wi

for a sire i,

PrðwiÞ} f ðl̃i jwiÞPðwi jwS ;i ;wD;iÞ
Y
j

Pðwj jwi ;wM ;jÞ

�Y
k

X
Wk¼1;3

Pðwk jwi ; wM ;kÞf ðl̃k jwkÞ; ð4Þ

where l̃i are corrected liabilities; in this step l̃ ¼ l� Xb� Zu,
the first term is the likelihood or penetrance of the cor-
rected liability of individual i with normal kernel expð�1

2ðl̃i�
wigÞ2Þ, the second term is the transmission probability for the
genotype of individual i conditional on its parental genotypes,
the third term is a product over all progeny j of i that are also
parents themselves (nonfinal progeny of i), computing the
product of transmission probabilities for progeny genotypes wj

conditional on wi and the genotype of the other parent of j,
mate of i, and the last term is a similar product over all progeny k
of i but for progeny that are not parents themselves (final
progeny of i), making a weighted sum of the transmission
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probabilities for progeny genotypes wk conditional on wi and
the genotype of the other parent of k, mate of i, with the weight
being the likelihood of the corrected liability of individual k (see
above). The last term arises from the blocked sampling strategy
to jointly sample sires and final progeny, giving as a first step this
reduced conditional for the sire genotype probabilities; after
the sire genotype has been sampled, the blocked sampling
proceeds by sampling all genotypes of final progeny. For dams
the above equation is simplified by considering all progeny
within the third term, for final progeny the above equation
reduces to the first two terms only, and for founder individuals
the second term is replaced by the genotype probabilities in
founders ð f �Þ2, 2f �f 1, and ð f 1Þ2. The actual sampling of a
genotype within the MCMC scheme proceeds by selecting one
genotype for the individual i according to these probabilities,
after normalization, by drawing a random uniform deviate.
Polygenic variance: Using an informative prior as in MITM-IP,

s2
u, conditional on all parameters and data, is taken to be

distributed as ðu9A�1u1ns2
uÞx�2

q1n (Wang et al. 1994), where q
is the number of levels in u, s2

u is the prior value used fors2
u, and

n is the weight attached to that prior value, expressed in degrees
of freedom. The quadratic u9A�1u can be computed in a scalar
form as exemplified in Janss et al. (1995). For a flat prior, as in
our standard MITM, s2

u ¼ 0 and n ¼ �2 (Wang et al. 1994). To
implement a bounded flat prior on [0, 2] in MITM, s2

u was
sampled until a sample was obtained in the required interval.
Additive allele effect: Conditional onb, u, and W the model for

liabilities can be rewritten as l̃ ¼ l� Xb� Zu ¼ ZWg, which
shows a structure for solving and sampling of g similar to that
for fixed effects, considering ZW now as a composite known
design matrix. Hence, g is also normally distributed with mean
ðZW9ZW 1 5IÞ�1ðZW9l̃Þ and variance ðZW9ZW 1 5IÞ�1

s2
e,

where the 5I originates from the normal shrinkage prior used
for the allele effect, and here s2

e ¼ 1. The allele effect was
constrained to be positive so that the AA genotype remained
identifiable as the genotype to lower the liabilities, by rejecting
and repeating the sampling in case a negative allele effect was
sampled.
Founder allele frequency: These frequencies were sampled

from a beta distribution on the basis of counts nA and nB
of alleles A and B in the founder individuals using f ��
ð f �ÞnA ð1 � f �ÞnB . An acceptance-rejection technique was used
to sample a new f � from this beta distribution as described in
Janss et al. (1995), computing the required terms on a log scale.
Transmission probabilities: These were similarly sampled from

beta distributions, on the basis of counts of allele transmissions
from parents to progeny. Because our basic parameterization
of genotypes did not distinguish between the two heterozy-
gotes, in a first step this distinction was made for all hetero-
zygotes in the pedigree; e.g., a heterozygote from a BB sire and
an AA dam was marked to be ‘‘BA’’ to indicate that it inherited
the B allele from its sire and the A allele from its dam. When
both heterozygotes were possible, one of the two heterozy-
gotes was selected randomly. Subsequently, starting with the
transmission probability tAjAA, the number of A alleles nA and
the number ofB alleles nB to be transmitted from anAA parent
were counted, after which tAjAA was sampled using tAjAA �
ðtAjAAÞnA ð1 � tAjAAÞnB with a technique similar to that for
sampling of allele frequency. The same counts and sampling
were subsequently performed for the other transmission
probabilities. The transmission probabilities were constrained
so that tAjAA . tAjAB . tAjBB to prevent the Markov chain from
switching to insensible mirror configurations where A alleles
become predominantly transmitted by BB genotypes. This
constraint was implemented by repeating the sampling of each
transmission probability until the condition was met.
MCMC, post-MCMC analyses, and inferences: For each OC

lesion, three replicated Markov chains of 50,000 cycles were

run. A spacing of 50 cycles was used to obtain 1000 samples per
chain and 3000 samples in total for each lesion. A burn-in
period of 1000 cycles was used to allow the Markov chains to
reach the equilibrium. The following parameters were saved
from the MCMC cycles: polygenic variance component s2

u (or
s2

v for MITM-RM), additive effects at the major gene a, and
allele frequency f �. The following functions of model param-
eters were derived from each Gibbs cycle to also allow
inference on these parameters:

Additive variance due to major gene: s2
a ¼ 2f �f 1 ½a�2

Polygenic model heritability : h2
p ¼ s2

u

s2
u 1 1

Mixed-inheritance model heritability : h2
m ¼ s2

u 1s2
a

s2
u 1s2

a 1 1

Polygenic heritability in the MITM-RM: h2
p ¼ 4s2

v

2s2
v 1 1

Mixed-inheritance heritability in the MITM-RM: h2
m ¼ 4s2

v 1s2
a

2s2
v 1s2

a 1 1

For the post-Gibbs analysis of the samples, an analysis of
variance was used to check for equality of multiple chains. This
test also yields information about the effective number of
samples by comparing within-chain and between-chain var-
iances ( Janss et al. 1997).

The following summary statistics for model parameters were
made on the basis of the samples: the marginal posterior
means were used as point estimators; marginal posterior
standard deviations were computed as measures of inaccuracy;
nonparametric density estimates were constructed using the
average shifted histogram method of Scott (1992); and on
the basis of the latter, highest posterior density regions
(HPDR) were determined. The HPDR is constructed in such
a way that it includes the part (1 � a) of the probability mass
about the smallest possible region of sampled parameter
values (Box and Tiao 1973). The HPDR (as opposed to
simple quantiles) can include the boundary of a parameter
space, e.g., zero in the case of a variance component.

Hypothesis testing was based on HPDRs, using 1 � a¼ 0.95
and denoted as HPDR95%. For testing significance of the major
gene component in the mixed inheritance, it was determined
whether the HPDR95% of s2

a (major gene variance) excluded
zero. Testing whether transmission probabilities were not
significant from Mendelian was done by determining whether
the HPDR95% of tAjAA, tAjAB, and tAjBB included the Mendelian
values of 1, 0.5, and 0, respectively. Testing whether these
transmission probabilities were significantly different from an
equal transmission model was done by testing whether the
HPDR95% of these parameters did not overlap.

Mixed-inheritance linear model: The mixed-inheritance
linear model (MILM) was applied to DEU, which was the only
OC lesion, with many observations in different categories;
lesions were distributed into all five of the six possible classes
(Figure 2). The MILM was also used to analyze the newly
created trait, TFL. The statistical model was basically the same
as that in Equation 1 except that the MILM was applied to the
original observed data (y) instead of to liability (l). MILM was
also applied to some OC lesions to compare it with regular
MITM (without its variants, MITM-IP or MITM-RM).

RESULTS

MITM: The results of segregation analyses of osteo-
chondrosis (CMH, CLH, RUP, CMF, and HK), using
threshold models and our basic parameterization with
polygenic effects for all individuals (MITM), are given in
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Table 2. Table 2 shows the posterior means and standard
deviations of marginal distributions of all parameters.
All results (except allele frequencies) from MITM relate
to the underlying liability to have the disease. The ex-
istence of the major gene for any OC lesion was con-
firmed by magnitude and significance of genetic variance
contributed by the major gene (s2

a) in the mixed model;
with the use of average shifted histograms, density esti-
mates were made to supply an HPDR95% to formally test
whether these estimates were significantly different from
zero at 95% probability.
CLH: Polygenic variance was lower than major gene

variance (s2
a) and h2

m (0.65) was higher than h2
p (0.48).

Frequency of the positive allele that increases the ge-
notypic value of the disease (from healthy to diseased or
from score 1 to 4), f 1, was (0.41) lower than that of the
one that decreases it. The marginal posterior mean of
additive major gene effect was 1.445. However, the
major gene is not significant as the HPDR95% of its var-
iance component (s2

a) includes zero.
CMH: Polygenic variance was substantially lower than

the additive major gene variance, resulting in higher h2
m

(0.96) than h2
p (0.55). Frequency of the disease allele, f1,

was higher than that of the one that decreases it. The
marginal posterior mean of additive major gene effect
of 8.745 OC score, together with the high frequency of
the disease allele, makes the h2

m much higher than h2
p.

The HPDR95% for parameters of CMH did not include
zero for the variance components (including s2

a), as well
as for the corresponding derived parameters, h2

p or h2
m.

Hence contributions of both a major gene component
and additional polygenic background genes are statisti-
cally significant.
RUP: Major gene variance (s2

a) was substantially
higher than polygenic variance resulting in h2

m of 0.85
vs. h2

p of 0.53. The frequency of the disease allele, f1, was
higher than that of the one that decreases the inci-

dence. However, the major gene component, judged by
its variance, was not significant as its HPDR95% included
zero; note that the allele effect for the major gene would
be tested to be different from zero, but this is generally
not a reliable guide for testing a major gene effect.
CMF: Point estimates of s2

a were ?s2
u, resulting in h2

m

of 0.69 and h2
p of 0.36. The additive effect was 4.35 OC

liability units. The frequency of the disease allele, f1, was
(0.39) lower than that of the one that decreases the
incidence ( f1 ¼ 0.62). In general, however, estimates of
genetic components for CMF were rather inaccurate,
showing zero to be included in the HPDR95% for both
the polygenic variance and the major gene variance, as
well as the derived polygenic heritability. This does not
necessarily mean that there is no genetic component for
CMF; rather, it appears difficult to distinguish between
these two genetic components, rendering both of them
inaccurate when modeled jointly.
HK: Major gene variance (s2

a) was substantially higher
than polygenic variance, resulting in h2

m of 0.91 vs. h2
p of

0.51. The frequency of the disease allele, f1, was (0.89)
higher than that of the one that decreases the in-
cidence. The HPDR95% for all parameters of HK did
not include zero, which shows genetic components as
well the presence of a major gene for this lesion.

The MITM-RM: With the MITM-RM, two OC lesions
(CMH and CMF) were reanalyzed. Results are given in
Table 3 and are compared with those from standard
MITM without reduced polygenic parameterization (in
Table 2). For CMH, the posterior mean of s2

u increased
substantially from 1.30 to 10.89, and s2

a increased
relatively less from 37.82 to 45.57 with a slight increase
in additive effect from 8.75 to 10.21. Consequently, both
h2

p and h2
m increased to 0.97 and 0.98, respectively. These

results show the difficulties of estimating polygenic
variance, where this reduced parameterization is consid-
ered to provide the more reliable estimates. Clear

TABLE 2

Marginal posterior means and standard deviations of model and derived parameters for osteochondral diseases (transformed to
healthy or diseased) in pigs by Bayesian mixed-inheritance threshold models modeling polygenic effects for all individuals

in the pedigree and using a flat bounded prior for polygenic variance (MITM)

CLH CMH RUP CMF HMK

Parameters Mean SD Mean SD Mean SD Mean SD Mean SD

s2
e 1.013 0.086 1.015 0.082 1.021 0.087 1.052 0.083 1.008 0.075

s2
u 1.074 0.523 1.301 0.438 1.286 0.493 0.731a 0.496 1.168b 0.514

s2
a 1.384a 1.834 37.815 13.137 10.287a 7.567 17.993a,b 20.254 12.505 8.274

h2
p 0.480 0.150 0.556 0.098 0.533 0.124 0.364a 0.175 0.506b 0.138
h2

m 0.647 0.142 0.969 0.033 0.852 0.139 0.688 0.275 0.905b 0.058
f 1 0.407 0.173 0.604 0.032 0.668 0.109 0.385 0.086 0.885 0.052
f � 0.593 0.173 0.396 0.032 0.332 0.109 0.615 0.081 0.115 0.019
a 1.445a 0.993 8.745 1.724 4.490 2.400 4.358a 4.238 7.991 3.364

Results are based on 10,000 Gibbs samples from three replicated chains.
a The 95% highest probability density region of this parameter (HPDR95%) included 0.0.
b The 95% highest probability density region of this parameter (HPDR95%) included 2 HPDRs.

1200 H. N. Kadarmideen and L. L. G. Janss



evidence for a major gene remain confirmed for CMH.
For CMF, the posterior mean of s2

u decreased to 0.56
(from 0.73) while s2

a increased to 31.18 (from 17.99).
There was a slight increase in additive effect from 4.36
to 6.36. Consequently, both h2

p and h2
m increased to 0.55

and 0.72, respectively. However, both genetic compo-
nents remained to include zero in their HPDR95% and
therefore indicated no significant contribution from
either component. Hence, also with the reduced poly-
genic parameterization it appears difficult to distinguish
between the two genetic components for CMF.

The MITM-IP: With the MITM-IP, two OC lesions
(CMH and CMF) were reanalyzed. Results are given in
Table 3 and are compared with those from standard
MITM without informative prior for polygenic variance
(in Table 2).

For CMH, the posterior mean of s2
u decreased from

1.30 to 0.84 and s2
a also decreased from 37.81 to 28.92.

The h2
p and h2

m decreased from 0.56 to 0.43 and from
0.97 to 0.96, respectively. There was also a slight de-
crease in additive effect. Overall, the prior for polygenic
variance therefore had a tempering effect on all genetic
components, but did not affect the general conclusion
about presence of a major gene, whose variance com-
ponent remained significant.

For CMF, the posterior mean of s2
u did not change

much but s2
a more than doubled (from 17.99 to 37.28),

becoming comparable to the estimate from MITM-RM
(31.18). There was also a twofold increase in additive
effect (from 4.35 to 8.24). Consequently, the h2

p did not
change much but h2

m increased from 0.69 to 0.85. Now,
accuracy of polygenic variance was improved, although
this cannot be taken as an appropriate measure of
accuracy because it includes prior information. Most
importantly, accuracy of major gene variance remained

low and major gene variance remained not significantly
different from zero.

Tests for Mendelian segregation: Representative OC
lesions, one each from front and hind leg bones that
had reasonable incidence, were chosen (as per Figure 1
and Table 1). These were CMH and CMF (with inci-
dence 10 and 31%, respectively) and the additional tests
for presence of a major gene were applied only to these
lesions.

Mendelian transmission probabilities for CMH and
CMF were estimated as follows. First, the variance
components, allele affect, and founder allele frequency
from the basic model (MITM) were fixed, and then the
model was rerun while estimating jointly fixed effects,
polygenic effects, genotypes, and transmission proba-
bilities. Results for estimated transmission probabilities
are in Table 4. For CMH, Mendelian transmission prob-
abilities (1, 1

2, or 0) were not rejected, while the test for
equal transmission probabilities was rejected, as con-
firmed by HPDR95% (Table 4). This confirms evidence
of a segregating Mendelian major gene for this OC
lesion.

For CMF, the test for Mendelian transmission prob-
abilities (1, 1

2, or 0) rejected Mendelian segregation, but
also the test for equal transmission probabilities was
rejected as two transmission probabilities did not have
overlapping HPDR95% (Table 4). This confirms evi-
dence of some segregating genetic factor for this OC
lesion, although it is likely not Mendelian.

Posterior distributions: For each parameter, a uni- or
bimodal density was found (graphs not shown for all
diseases and parameters). In all cases (models and
diseases), mode was very close to the corresponding
marginal posterior mean (Tables 2 and 3). In cases of
bimodal densities with two peaks, two corresponding

TABLE 3

Marginal posterior means and standard deviations of model and derived parameters for osteochondral diseases in pigs by
Bayesian mixed-inheritance threshold models using a reduced parameterization for polygenic effects with

parental effects only (MITM-RM) or using an informative prior for polygenic variance suggesting
a priori a pure polygenic inheritance (MITM-IP)

MITM-RM MITM-IP

CMH CMF CMH CMF

Parameters Mean SD Mean SD Mean SD Mean SD

s2
e 1.007 0.073 1.039 0.073 1.020 0.074 1.041 0.076

s2
u 10.889b 3.885 0.562a,b 0.516 0.844 0.426 0.712 0.453b

s2
a 45.573b 13.805 31.182a,b 29.399 28.923 8.051 37.281 21.46a,b

h2
p 0.974 0.012 0.545b 0.253 0.426 0.122 0.371 0.146

h2
m 0.986b 0.005 0.715b 0.312 0.962 0.034 0.852 0.253

f1 0.7192 0.026 0.603 0.103 0.621b 0.055 0.674 0.057
f � 0.281 0.026 0.397 0.103 0.379b 0.055 0.326 0.057
a 10.217b 1.692 6.358a,b 5.252 7.813 1.250 8.244 4.111a,b

Results are based on 10,000 Gibbs samples from three replicated chains.
a The 95% highest probability density region of this parameter (HPDR95%) included 0.0.
b The 95% highest probability density region of this parameter (HPDR95%) included 2 HPDRs.
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HPDR95% were available. For showing the differences
between models with and without informative prior
(MITM vs. MITM-IP) and between full vs. reduced
polygenic models (MITM vs. MITM-RM), CMF was
chosen as a representative disease as the population in-
cidence was 31%. The densities of s2

u and s2
a for OC

lesions in DEU and TFL were compared with those in
CMF, to show the impact of different phenotypic
distributions on the posterior distribution of two im-
portant model parameters, s2

u and s2
a.

The posterior densities of s2
u and s2

a for CMF from
MITM and its two variants MITM-IP and MITM-RM are
plotted in Figure 3a through Figure 4c. Analyses of liabil-
ity to CMF by MITM produced asymmetric distributions
(bimodal), showing possibly the poor mixing of the Gibbs
chains and/or convergence. However, comparing this
with segregation analysis with the informative prior for s2

u

(MILM-IP), there is a marked difference. For example,
distributions of s2

u in Figure 3a vs. Figure 3b and of s2
a in

Figure 4a vs. Figure 4b show the bimodal distribution be-
coming unimodel as well as more area under the curve
for both s2

u and s2
a. The corresponding HPDR95% also

changed from being nonsignificant to significant (includ-
ing zero to not including zero) fors2

a (Table 2 vs.Table 3).
In the case of the reduced polygenic model, MITM-

RM, sampling of polygenic values or transmitting abili-
ties was for parents only. The density distributions
are given in Figure 3c for s2

u and in Figure 4c for s2
a.

Comparing Figure 3a and Figure 3c, the posterior mode
is confirmed by MITM-RM to correspond to the first
peak in Figure 3a although the density of the second
peak became much smaller in MITM-RM. For s2

a, there
was not much difference between shapes of the densities
but the area under the curve was larger under MITM-
RM than under MITM (Figure 4a vs. Figure 4c).

MILM analyses: DEU: With the linear model, all es-
timates were on the original (observed) scale. Point
estimates of s2

a were approximately two times more than
that of s2

u, resulting in h2
m of 0.22 vs. h2

p of 0.12. The
additive gene effect was 0.73 OC units and dominance
effect was �0.98 OC units. The HPDR95% for all pa-
rameters of DEU did not include zero, except s2

a. These
results show genetic components as well the presence of
a major gene for this lesion.

TFL: With the linear model, all estimates were on the
original (observed) scale. The h2

p was 0.07 whereas h2
m

was 0.11. The major gene variance was much larger than
polygenic variance. The frequency of the disease allele,
f1, was (0.65) higher than that of the one that decreases
the incidence, like many other OC lesions. As a result of
combining different (genetically correlated) lesions in
the front leg into one, the polygenic variances as well as
major gene variances (s2

u and s2
a) were much higher

than those for other individual lesions in front legs
(results not shown). Despite such high genetic vari-
ances, the heritabilities (both h2

p and h2
m) decreased, due

to substantially larger residual variances, s2
e, relative

to that of other lesions in the front leg. The impact of
large residual variance was such that most of the model
parameters were nonsignificant and inaccurate; the
HPDR95% included zero for all but s2

e.

DISCUSSION

The results reported here clearly showed familial
transmission and evidence for a segregating major gene
for an important disease, osteochondrosis. Results for
analysis of the CMH showed significant major gene
variance in a mixed-inheritance model and passed the
tests for Mendelian transmission. This is the first in-
vestigation to report the results from segregation or
mixed-inheritance model analysis of osteochondrosis in
pigs or in any other animal species. Hence none of the
results from our study could be compared with the
literature, except for polygenic parameters for osteo-
chondrosis (e.g., Kadarmideen et al. 2004). In addition,
only a few studies have investigated complex segrega-
tion analysis for ordinal or binary data (e.g., Thaller

et al. 1996; Cargill et al. 2004) but this is the first study
to extensively investigate a liability or threshold model
method for identifying major genes for binary diseases
in complex pedigrees with inbreeding and marriage loops.
The basic theory and algorithms developed in this
study could also be used in humans and companion an-
imals (e.g., horses, cats, and dogs) where (poly- or oligo-
genic) diseases/disorders are observed in categorical
form. While reporting evidence for major genes for
osteochondrosis, this study also investigated and

TABLE 4

Estimated Mendelian transmission probabilities, expressed as the probability of receiving an A allele from
a parent with genotype AA, AB, or BB, for osteochondral diseases CMF and CMH in pigs by Bayesian

mixed-inheritance threshold models (MITM)

Transmission
probability

CMF CMH

Mean SD HPDR95% Mean SD HPDR95%

Prob(AjAA) 0.890 0.065 0.988–0.761 0.967 0.025 1–0.922
Prob(AjAB) 0.552 0.063 0.668–0.442 0.538 0.033 0.600–0.475
Prob(AjBB) 0.243 0.110 0.455–0.051 0.028 0.026 0.081–0
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compared different approaches that can be adopted in
the segregation analysis of categorical disease data, using
threshold or liability models.

The magnitude and significance of genetic variance
at the major gene (based on HPDR95%) was used to
confirm the presence of a segregating major gene. This
criterion is appropriate because it collectively represents
the magnitude and significance of individual major
gene parameters of the model and has been used by
several studies (e.g., Janss et al. 1997; Ilahi and
Kadarmideen 2004). General transmission models
(Elston and Stewart 1971; Lynch and Walsh 1998,
pp. 366–369) are usually not considered in animal pop-
ulations, arguing that there are usually no nongenetic
relationships or environmental resemblances between

parents and progeny and that families are dispersed and
linked through multiple marriages. Nevertheless, we
have also fitted the general transmission model to fur-
ther substantiate the presence of a Mendelian segrega-
tion. For CMH, results showed that the mixed-inheritance
models gave a significant fit (as confirmed by HPDR of the
major gene component) and that a model of equal
transmission was rejected along with a failure to reject
Mendelian transmission probabilities (Table 4). Thus, for
CMH, all classical tests for providing evidence of a seg-
regating major gene are passed. Results of the general
transmission model for CMF were less clear, but showed
a potential other use of this general model. Here,
Mendelian segregation was rejected, but also an equal

Figure 3.—Marginal posterior distributions of polygenic
variance from the mixed-inheritance threshold models: (a)
without informative prior (MITM), (b) with informative prior
(MITM-IP), and (c) under the reduced polygenic model
(MITM-RM) for the lesion condylus medialis femoris scored
on a binary scale (CMF).

Figure 4.—Marginal posterior distributions of major gene
variance from the mixed-inheritance threshold models: (a)
without informative prior (MITM), (b) with informative prior
(MITM-IP), and (c) under the reduced polygenic model
(MITM-RM) for the lesion condylus medialis femoris scored
on a binary scale (CMF).
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transmission model was rejected, concluding that some-
thing genetic, but not Mendelian, might be present,
which may point to, e.g., an imprinted, X-linked, or
digenic (epistatic) model.

When binary data have very low incidences, fitting
several cross-classified ‘‘fixed’’ effects in a model may
cause convergence problems and produce illogical es-
timates (e.g., due to all healthy or diseased phenotypes
in a given class). This problem has been encountered in
the genetic analysis of binary data (e.g., Kadarmideen

et al. 2000b, 2001). We solved this problem by using
shrinkage estimators for fixed effects. Apart from fixed
effects, polygenic effects with an individual polygenic
model parameterization also cause problems in the
discrete data analyses with linear or threshold models
(as shown by Kadarmideen et al. 2000b, 2004). One
alternative is to fit a ‘‘sire’’ model but in MITM analysis,
the genotype probabilities would still have to be esti-
mated at an individual level. In an alternative parame-
terization we considered modeling only polygenic
values of the parents. With this approach, the estimation
of polygenic variance was similar to that used in the
reduced polygenic model. A few OC lesions were re-
analyzed by this reduced polygenic model with no restric-
tions on polygenic variances and other model parameters;
however, this model still resulted in a much larger poste-
rior mean for polygenic variances (Table 3 and Figure 3c).
This result shows the impact of very small family sizes in
the data (with the larger families, this approximation
usually works well). In principle, the reduced parameter-
ization can also be developed for genotypes, but this
model is less straightforward to develop, because a
heterogeneity of variance within families, dependent on
parental genotypes, would result. We retained the full
parameterization with individual genotypes and also
applied a shrinkage estimator for the allele effect of the
major gene, which appeared to work well.

The other approach investigated was the use of an
informative prior for polygenic variance and the study of
its impact on model parameters and their significance.
Results (Table 3 and Figures 3b and 4b) showed sig-
nificant improvement in point estimates and distribu-
tional properties of polygenic variance as well as major
gene parameters. This shows the advantage of Bayesian
methods over likelihood-based methods in segregation
analysis with respect to the ability to include and update
an informative prior.

The DEU lesion was the only lesion with many obser-
vations in different categories; lesions were distributed
into all five of six possible classes (Figure 2). Hence, this
trait by definition should mimic a continuous trait and
give more reliable estimates/information than those
traits with fewer categories and/or skewed distributions
(e.g., binary traits with very high/low incidence). For
this reason, this trait was analyzed by the MILM. It has
been shown that there is a loss of information from
continuous or ordinal data to binary data and it severely

reduces power and accuracy in QTL mapping (Rebai

1997; Kadarmideen et al. 2000a). The distributional
properties or advantages of DEU were reflected in good
mixing of chains, convergence, and hence more reliable
parameter (point) estimates (as seen in posterior
distributions in Figure 5, a and b) than those traits with
extreme distributions.

The TFL was defined as the sum of all OC lesions in
front legs, which was meant to treat all the OC lesions in
the front leg as one OC lesion; this also resulted in a trait
that created more categories with a sufficient number of
records to be analyzed by the MILM (Figure 6). The
‘‘clustering’’ of front leg lesions was based on our earlier
findings (Kadarmideen et al. 2004) that they were
genetically correlated traits (genetic correlation rang-
ing from 0.57 to 0.69). The results based on the TFL
lesion should be more reliable than those based on
individual lesions, as they created six categories instead
of only four (except for DEU) as well as ensured a
reasonable number of animals in each category (Figure
2). The variances due to polygene and major gene did
increase (as expected) but simultaneously there was a
drastic increase in residual variance also, as there were
very high environmental/error correlations among
front leg lesions. In general, this approach shows how
one can perform clustering of genetically related dis-
eases in segregation analysis, when individual diseases
have very low incidences.

Figure 5.—Marginal posterior distributions of polygenic
variance (a) and major gene variance (b) from the mixed-
inheritance linear model (MILM) for the lesion, distal epiph-
yseal cartilage of ulna (DEU).
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We also applied MILMs to most OC lesions on the
original scales (scores from 1 to 6 depending on the
lesions) to make a comparison with the standard liability
model (MITM) analysis of the binary form of the same
OC data. Comparing results (not shown), the point
estimates on the observed vs. liability scales, the major
gene parameter h2

m increased from 0.40 to 0.65, 0.40 to
0.96, 0.44 to 0.85, and 0.64 to 0.69 for CLH, CMH, RUP,
and CMF, respectively. The frequency of the allele that
increases the liability to the disease ( f1) actually de-
creased when estimated with MITM; the f1 reduced
from 0.83 to 0.41, 0.73 to 0.61, 0.80 to 0.67, and 0.47 to
0.39 for CLH, CMH, RUP, and CMF, respectively. Hence,
on the discrete observed scale, major gene variances
were generally higher, but must also be considered to be
less reliable. The analysis of discrete traits by the linear
model may have introduced some biases because it tries
to match disease genotype (BB) directly to OC scores
(1, 2, 3, . . . , etc) which may give a better fit but also
causes an upward bias. The threshold model, in con-
trast, fits the genotypes to data on a continuous liability
scale (rather than on a ‘‘one score-to-one genotype’’ fit
in linear models). Hence, the genotypic values and
frequencies are more reliable under liability models.
This difference explains probably why the disease allele
frequencies were overestimated by the linear model.
Linear models typically are more sensitive/less robust

to extreme (too low/high) incidence of diseases than
threshold models (e.g., Kadarmideen et al. 2000a,b,
2001; Kadarmideen and Dekkers 2001). In this study,
MILM results for CLH and RUP OC lesions (with inci-
dence 2 and 4%, respectively) produced illogical polygenic
and major gene parameter estimates. The advantages of
MITM would be that gene-environment interactions
could be handled more easily on the underlying scale
than on the observed scale (Kadarmideen et al. 2004).

All results (except allele frequencies) from MITM
were on the underlying liability (to have the disease)
scale and on this scale one would expect the magnitude
to be larger than that on the observed scale. These higher
magnitudes of estimates from MITM (e.g., major gene
heritabilities of liability to disease; Tables 2 and 3) should
contribute to larger and faster genetic progress in selec-
tion for resistance/tolerance to osteochondrosis in pigs.
Regardless of the method, very low incidence rates for
certain lesions (as low as 1%) created problems in mixing
of the chains and convergence. Similar problems were
also encountered by other studies (e.g., Thaller et al.
1996). According to the central limit theorem, more
power and accuracy in analysis of categorical/ordinal
data could be obtained by increasing the population size
and by intermediate incidences (Kadarmideen et al.
2000a, 2001). From a practical point of view, it may be
financially prohibitive to collect data on diseases that re-
quire manual or anatomical-pathological examinations.

The results presented here open up a new possibility
for investigating the presence of major genes in the in-
heritance of osteochondral lesions in other species such
as humans, companion animals (e.g., horses, dogs, and
cats), and other farm animals, as these species are known
to have osteochondrosis and may also have similar pat-
terns of mixed inheritance. Andersson-Eklund et al.
(2000) reported very large QTL for osteochondrosis on
chromosome 5 as well as on chromosomes 13 and 15. Lee

et al. (2003) conducted QTL mapping in Large White 3

Meishan crossbred pigs and found no QTL for osteo-
chondrosis but found a QTL for Physis, another closely
related bone abnormality, in pig chromosome 7. The
evidence collected from the current segregation analysis
in Swiss pigs and from QTL for Physis and osteochon-
drosis in the United Kingdom and Swedish pig popula-
tions justifies that a resource/commercial population of
pigs could be genotyped for these candidate chromo-
somes to fine map QTL for osteochondrosis.

CONCLUSION

The research conducted in this study is the first of
its kind in that no study has so far investigated osteo-
chondrosis in pigs or other animals for the evidence of a
major gene by complex segregation analyses, accounting
for inbreeding and marriage loops, commonly found in
animal pedigrees. In the analysis, novel approaches such
as Bayesian threshold mixed-inheritance models were

Figure 6.—Marginal posterior distributions of polygenic
variance (a) and major gene variance (b) from the mixed-
inheritance linear model (MILM) for the lesion, total front
leg (TFL).
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introduced for the analysis of diseases observed as binary
data, healthy or diseased, and compared with different
alternative approaches as well as with linear mixed-
inheritance models. All models provided significant evi-
dence that osteochondrosis is not only under a polygenic
mode of inheritance but also importantly affected by a
major gene with Mendelian transmission (at least for
osteochondrosis in the condylus medialis humeri). Mod-
els with an informative prior for polygenic variance and/
or sampling only parental/grand-parental polygenic
values resulted in higher efficiency of Gibbs sampling
algorithms and corresponding accuracy of model param-
eters. Marginal distributions of major gene and polygene
parameters in threshold models were for underlying
liability of the animals to develop this disease while
linear models provided the estimates for the disease
episode; by virtue of the scale, the liabilities were higher
in magnitude than observed scales. These results, in gen-
eral, should be confirmed by molecular genome map-
ping for the disease loci in pig populations via linkage
analysis and quantitative trait loci mapping methods.
Since osteochondrosis is a health and welfare problem
and has unfavorable (genetic) effects on many traits that
are economically and functionally important, the evi-
dence of a segregating major gene from this study pro-
vides an opportunity to select against this disease. The
results from this study not only are useful for pig breed-
ers but also may function as a ‘‘pig model’’ for un-
derpinning genetic inheritance of this disease in other
animals and in humans.
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