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ABSTRACT

There is currently considerable interest in genetic analysis of quantitative traits such as blood pressure and
body mass index. Despite the fact that these traits change throughout life they are commonly analyzed only
at a single time point. The genetic basis of such traits can be better understood by collecting and effectively
analyzing longitudinal data. Analyses of these data are complicated by the need to incorporate information
from complex pedigree structures and genetic markers. We propose conducting longitudinal quantitative
traitlocus (QTL) analyses on such data sets by using a flexible random regression estimation technique. The
relationship between genetic effects at different ages is efficiently modeled using covariance functions
(CFs). Using simulated data we show that the change in genetic effects over time can be well characterized
using CFs and that including parameters to model the change in effect with age can provide substantial
increases in power to detect QTL compared with repeated measure or univariate techniques. The asymptotic
distributions of the methods used are investigated and methods for overcoming the practical difficulties in
fitting CFs are discussed. The CF-based techniques should allow efficient multivariate analyses of many data

sets in human and natural population genetics.

UANTITATIVE traits such as cholesterol levels in
humans, milk yield in dairy cows, and fruit size
in tomatoes are known to change over time; they are
inherently longitudinalin nature. A major aim of genetics
is to better understand the composition of such traits.
With the advent of inexpensive molecular marker tech-
nology a wide variety of quantitative trait locus (QTL)
mapping techniques have been developed to allow the
dissection of quantitative traits in outbred populations
(e.g., HASEMAN and ELsTON 1972; GOLDGAR 1990; AMOs
1994; HOESCHELE et al. 1997; ALMASY and BLANGERO
1998; GEORGE et al. 2000). While these allow the ex-
traction of information from univariate data (one trait
measure per individual), techniques for QTL mapping
when there are multiple trait measures are less well
developed.

Existing univariate techniques can be readily applied
to data measured at different stages of life but such ap-
proaches fail to capture the correlations between the
components underlying traits such as cholesterol. At the
other extreme, analyses are readily performed if we are
prepared to assume that there is no change in the ge-
netic composition of the trait over life [i.e., that the
measures made are simply repeated realizations of ex-
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actly the same trait (LyncH and WALSH 1998) . Neither
of these approaches is satisfactory for many traits. A
further alternative involves treating the individual trait
measures (taken at different times) as distinct trait
measures and modeling the covariance between the
different traits in a multivariate analysis (e.g., EAVES et al.
1996). Such techniques, however, are difficult to apply
in practice, may involve too many parameters in the
model, and do not take the time element into account.

Ideally longitudinal traits would be modeled allowing
for the fact that the multiple measures are ordered in
time. To address this, KIRKPATRICK et al. (1990) intro-
duced covariance functions (CFs) to describe the relation-
ship between different ages; CFs are simply continuous
functions (often polynomials) that specify the covari-
ance between two given ages. By fitting CFs with fewer
parameters (e.g., alow-degree polynomial) than required
to specify the full set of covariances between the dif-
ferent ages present in the data, the covariance structure
of the data can be parsimoniously described. Using
maximum-likelihood (ML)-based extensions of the
KIRKPATRICK el al. (1990) study, polygenic CF-based
analyses of data from structured populations have been
reported in recent years (MEYER 1998; PLETCHER and
GEYER 1999; JAFFREZIC and PLETCHER 2000).

In this study we extend the covariance function ap-
proach, previously applied only to polygenic effects
(MEYER 1998; KIRKPATRICK e al. 1990), to allow QTL
mapping in a longitudinal framework. We show how the
CF-based technique can be derived by extending the
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previously developed univariate and (unstructured co-
variance) multivariate approaches. Simulations are per-
formed to investigate the properties of the different
approaches available. Comparisons are made between
the powers of the univariate, repeated measures, full
multivariate (with unstructured covariances), and CF-
based techniques.

MATERIALS AND METHODS

Theory: Univariate model: A method for single-trait QTL
mapping, building on the theory of ML estimation of (poly-
genic) variance components (VC) (LANGE et al. 1976; HOPPER
and MATHEws 1982), was initially proposed by GOLDGAR
(1990). Since then various extensions have been described
in (Amos 1994; ALmAsYy and BLANGERO 1998). For the uni-
variate model we give only basic notation; for more details see
ArLMAsY and BLANGERO (1998).

The univariate VC model is based on the covariance be-
tween individuals 7 and j (with phenotypes y; y;). This can be
written in terms of the coefficient of coancestry, ®; (LyNcH
and WaLsu 1998), and Rj, the fraction of genes shared
identical-by-descent (IBD) at the QTL,

p(yi, ¥) = Ri]-(r?] + 2@,:j(r§,

where o2 is the polygenic variance and GZ is the variance at-
tributable to the QTL. Assuming that R;;can be estimated from
marker data, the method can be applied to general pedigrees
(ALMasy and BLANGERO 1998). Assembling the ®;and R;;into
matrices A and R (i.e, [A]; = 2@)27 and [R]; = R;), the co-
variance matrix can then be written as

Q:R0'2+A(r§+10'z. (1)

Parameter estimation is performed by assuming multivariate
normality of the phenotypes and applying likelihood-based
methods.

Multivariate model: The univariate variance component ap-
proach can be extended to deal with multiple-trait measures.
We write the data as

y=ntatq+te, (2)
Wherey: (ylla 1y111/7 y21’ DR wa, s ynl’ DRI yn,m)T9 w =
(Ml co s Moor =+ 5 IoDs - -+ » M) " is the vector of fixed effects,
a= (alb s Mgy A215 -+ 5 A2qps -+ - 5 Apls - - anw)TiS the vec-

tor of additive genetic effects, q = (qi1, --- 5 Qra» Go15 -+ - >
Guws -+ s Gnl> -+ > Guw) " 18 the vector of QTL effects, and e =
(€115 + -+ » Clus €21 + -+ » €y -+ » €nls - -+ » €ny)’ 18 the vector of
environmental effects for traits 1 to w. The phenotypic data are
written with traits ordered within individuals. Let N = nuw,
where n is the number of individuals. Modifications for cases
in which data are missing are also possible (e.g., MRODE 1996).

For many traits there will be a correlation between the dif-
ferent trait measures within an individual. We can rewrite
Equation 1, accounting for the covariances between relatives
and between multiple-trait values as

Q= A®K, +R®Kq +1, 9Ky, (3)

where K, is 2 w X wmatrix of additive genetic covariances be-
tween traits, Kg is 2 w X w matrix of additive QTL covariances
between traits, and Kg is a w X w matrix of environmental
covariances between traits. ® denotes the direct product

of two matrices. We refer to this as the full multivariate
model. When there are more than a few traits, estimation of
the w(w + 1)/2 parameters in each of K,, Kg, and Kg will
become increasingly difficult and methods that model the
data more parsimoniously will be required.

Repeatability model: A special case of the full multivariate
model where there are multiple measurements of the same
trait is often called the repeatability model. This model as-
sumes that the polygenic and QTL correlations across multiple
measures are 1 and that their variances do not change over
time. In this case the computational demands are considerably
lower because a single parameter can be used to model the
effect of the QTL and polygenic genetic effects. Since there
may be environmental effects that are not constant over time
there are two effects fitted alongside the QTL and polygenic
effects. The first of these, commonly called the permanent
environmental effect, models environmental effects that are
present in all of an individual’s trait measures. The variance
associated with this permanent environmental term is labeled
a2. The second effect models the additional environmental ef-
fects that are not constant over time; this is the temporary
environmental term, with associated variance term denoted
a2. This second term also serves as an error term for effects not
modeled by the other random effects.

Phrasing the repeatability model in terms of the full mul-
tivariate model, the covariance matrices, K, and Kg, model-
ing the relationship between the different trait measures in
Equation 3, are now 1,17¢2 and lu,lzTu(rfl, respectively. The
matrix of environmental effects Kg is split into two under the
repeatability model, with separate terms for the permanent
and temporary environmental terms. The overall covariance
matrix is hence

Q=A®(1,1102) + R®(1,1%02) + L, ® (1,110%) + Iyo? (4)

wa w q w" p

with only four parameters to estimate.

Longitudinal analysis: Although the repeatability model as-
sumption may be a tenable one for some traits that have mul-
tiple measures over time, in most cases it will not be reasonable.
Many longitudinal traits are likely to change in composition
over the life of the individual and are the main focus here. For
longitudinal traits it is desirable to explicitly model the rela-
tionship between age and the genetic and environmental com-
ponents of the trait. To achieve this, a multivariate analysis is
performed in which the unstructured covariance structure
from the full multivariate model is replaced by one that uti-
lizes the natural ordering in time of the trait measurements.
KIRKPATRICK ¢t al. (1990) suggest amethod suitable for “function-
valued” (varying with time) traits. Although in practice the trait
may be observed only at a finite number of time points [i.e., w,
giving w(w + 1) /2 distinct (co)variances in a w X w covariance
matrix, G], it is useful to consider a continuous function,
linking the different covariance values. This continuous func-
tion, referred to as CF, is denoted 3. For ages # and ¢ the CF is

S3(to, t1) = cov(yio, yi),

where y;, and y; denote the trait values at times # and .
Separate CFs are fitted for the QTL effect, the polygenic effect,
and the permanent environmental effect, with the effects
assumed to be independent of each other. The overall pheno-
typic CF is given by summing the component CFs.

To estimate CFs from the available data, polynomials of age
can be used. While a degree w — 1 polynomial will fit the w-trait
data exactly by fitting a curve through all the points, in reality a
smoother curve that ignores stochastic variation (around the
true curve) is required. In practice, orthogonal polynomials
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are used because they behave well numerically. Legendre or-
thogonal polynomials are used here. Such polynomials are
defined on (-1, 1) and hence the age values of interest are
scaled to have maximum value 1 and minimum value —1.
An expression for the CF of interest, J, can be written in
terms of the polynomials chosen, ¢;(x), and a matrix of
coefficients, C,

k k

3(to, 1) ZZ[CL,¢ (n), (5)

=0 j=0

where £k is the degree of the polynomial chosen and ¢ and ¢
are the scaled ages.

KIRKPATRICK et al. (1990) propose a method whereby one
can estimate the matrix of coefficients, C, using least squares.
Unfortunately this approach proves difficult to apply in prac-
tice and we consider instead likelihood-based analysis.

Estimation of the coefficient matrix in a general pedigree using
random regression: A random regression (RR) model is one that
includes a polynomial for both fixed and random effects
(JAMROZIK et al. 1997; MEYER 1998; JAFFREZIC and PLETCHER
2000). RR is useful because the covariance between polyno-
mials of age in a RR can be related to the covariance function
coefficients of interest. The random regression model that
allows this is

kp

1=t 3+ 3 )+ 3 )

m=0 m=0
(6)

ko, kp, and kq denote the degree of the polynomial for the
additive genetic, permanent environmental, and QTL ran-
dom effects, respectively. ¢;is the time at which the measure y;;
is taken. Each individual has w; measures, and it is possible that
w; # wfor some individuals. The covariance structure of such a
model is

ke ka

COV(yijv yl] ZO;COV Qi azl)d)m(tl])(bl(t‘f ) (7)
+ Z Z COV l)imu [)1/ (tij)d)l(tl_]') (8)
m=0 [=0
by b
+ Z Z COV(qim7 qil)d)m(ti]‘)d)l(tij’) (9)
m=0 [=0
+ Cov(eij7 €i]"). (10)

Each of the covariance terms (7), (8), and (9) can now be seen
to be of the same form as Equation 5. If these covariance terms
can be estimated in a random regression, the covariance ma-
trix for each of the additive genetic, permanent environment,
and QTL effects is then given by the equation G = ®CP",
where [®]; = d;(;) (numbering the matrix indexes 0 to k).

To fit the RR model the full multivariate model is repar-
ameterized. In this reparameterization the set of trait meas-
ures is replaced with a degree k polynomial for each effect of
interest (permanent environment, polygenic, or QTL). The
full multivariate model is then fitted with these polynomial
coefficients regarded as correlated traits (MEYER 1998). To do
this, we begin by writing Equation 6 in matrix notation,

yR =R +2ZyaR + ZQqR + prR + ek,

T

where YR = (ylh sy Yawyy Y21y oo v s Yowey oy Yl s ynw“)
he phenotypes, p* = ( )"

are the p ypes, [ Moy vy Mgy ooe s Bopy oo s By
is the Vector of fixed effects, a® = (ay0, ..., @11 -+ » Ao,
-y ay,)" is the (k, + l) X nvector of polygenic random re-

gression coefficients, Q® = (qioy -+ s @iy -« » Guoy - - - an)
is the (kq + 1 X n vector of QTL random regression
coefficients, p® = (Proy -+ Piass -+ s Puos -+ 5 Pur,) is the

(kp + 1) X n vector of permanent environmental random
regression coefficients, and e® is the )", w;(= W, say) vector
of temporary environmental terms (note that this is w X nifall
nindividuals are measured for all traits, i.e., if w; = w for all i).
Zy is a W X n(k, + 1) matrix of orthogonal polynomial co-
efficients. Zg and Zp are defined similarly, with %, replaced
by kq or k,. The covariance terms for the vector a® are given
in Equation 7 and, assuming the systematic age effects have
been removed by the fixed effects, can be written as a® ~ N
(0, A®KR), where KX is the (k, + 1) X (k, + 1) matrix of CF
coefficients (named C above) for the polygenic effects. In
a similar fashion q® ~ N(0, R®KR) andp® ~ N(0, I, ®KR).
Written as a full variance-covariance matrix,

Q =Z,(A®K})Z} + Zo (R®KY)Z), + Zp(L, ®K)Zp + ol

where o2 is the temporary environmental variance term.
Estimation is performed by assuming multivariate normality
of the phenotypes and applying likelihood-based methods.
k now has (k, + 1) (k, + 2)/2 entries for the polygenic effect
and equivalent terms for the QTL and permanent environ-
mental cases. Note that when the number of time points minus
1 equals the degree of the polynomial fitted for a RR, the
number of parameters is the same for RR as for the full mul-
tivariate case; this means a separate error term (o?) is no
longer required.

Simulation: To assess the properties of the models described
for longitudinal data analysis, computer simulations were
performed. The main interest was in QTL detection and
characterization in samples of sizes realistically attainable in
human and natural population genetic studies. In all simu-
lations 150 four-sib nuclear families (900 individuals) were
simulated. All individuals were given phenotypes at five evenly
spaced time points. To mimic a dense marker map all
individuals were typed for a highly polymorphic (20-allele)
marker, completely linked to the simulated QTL. All pheno-
type values were generated as the sum of a permanent
environmental effect, a temporary environmental effect, and
a QTL effect. All effects were drawn as random effects from
normal distributions with appropriate variances.

Models of QTL effect: Three models of QTL effect over time
were considered. These increase in complexity from model A
to model C. First, the QTL was modeled under a repeatability
model with the same QTL effect (same variance) across the
five time points (simulation model A). One thousand repli-
cates in which the QTL variance was 0.2, the permanent
environment variance was 0.5, and the temporary environ-
mental variance was 0.5 were considered (summarized in
Table 1).

Second, the QTL was modeled to increase its effect linearly
over time but the QTL effects were constrained to be
completely correlated over time (simulation model B). That
is, there is a change in QTL variance but a “flat” correlation
structure or equivalently, a repeatability model with heteroge-
neity of variance. Three sets of variance values, B1, B2, and B3,
were considered (see Table 1). Two hundred replicates were
used.

Third, the QTL was modeled to change in effect (change in
variance) over time and to have QTL correlations of <1
between time points (simulation model C). The correlation
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TABLE 1

Parameters used in simulations A-C

Simulation o2 Ohimes fmm env o2 peny QTL correlation Change in QTL variance
A 0.2 0.2 0.5 0.5 1 No change

Bl 0.2 0.33 0.5 0.5 1 Linear

B2 0.2 0.4 0.5 0.5 1 Linear

B3 0.2 0.33 0.75 0.25 1 Linear

Cl 0.2 0.4 0.5 0.5 See matrix in text Linear

c2 0.2 0.4 0.5 0.5 See matrix in text Logarithmic

Perm env, permanent environment; temp env, temporary environment.

structure is hence “sloping.” The specified QTL correlation
matrix was

1 09 08 0.7 06
09 1 09 08 0.7
08 09 1 09 08
0.7 08 09 1 09
06 0.7 0.8 09 1

This is perhaps a more realistic model of the change in
genetic (QTL) effect over time than one that constrains the
correlation to remain at 1. Since this represents a deviation
from the assumptions of the repeatability model, any model
that allows the correlations to be <1 (such as a first- or higher-
degree RR) will give a better fit than the repeatability model,
even when the genetic variance does not change over time.
Simulation C was repeated twice (denoted C1 and C2), once
with a linear increase in QTL variance and once with a
logarithmic increase (see Figure 3, triangles); the parameters
used are in Table 1. Two hundred replicates were generated.
Note that the simulated covariance function was not gener-
ated from a polynomial. Although the true shape of the co-
variance function will not be known in practice, it is highly
unlikely to look exactly like that generated from a polynomial.

Analysis methods applied: Univariate, repeatability (Re), RR,
and full multivariate models were used to analyze the data
simulated under the simulation models described above. Note
that although no polygenic effects were simulated a single
term for a polygenic effect was fitted in all analysis methods. Re
and first-degree RRs are applied to data from simulation
model A. This allowed an empirical evaluation of the adequacy
of the asymptotic approximation (to 1x}:30orix3:30, see
below) for the case where a first-degree RR is compared with
the Re method. The agreement between the asymptotic dis-
tribution and the calculated statistics (see below for details of
statistics used and hypothesis testing) was assessed graphically.

The data from simulation model B were used to evaluate the
performance of the univariate, Re, and RR methods. The tests
of interest with these data are the test for the significance of
the slope term (power to detect change in QTL variance) and
the test for the overall significance of the QTL effect (power to
detect QTL). For the test of the slope term a first-degree RR is
compared with a Re model. In the case of the test for overall
QTL effect, a first-degree RR was evaluated alongside a Re
model and univariate models (see below for details of hypo-
thesis testing). A further test of significance of the QTL effect
could be obtained by fitting a full multivariate model [é.e., 15
(co)variances] or higher-degree polynomial RRs to the data
and comparing this with the univariate, Re, and first-degree
RR models. Fitting these models to the data generated under
simulation model B (QTL correlations equal to 1), however,
proved impossible in practice. The estimation of large num-

bers of parameters is very difficult when the traits of interest
are highly correlated. Estimation was more readily achieved
with data from simulation model C where the correlation
between the traits was reduced.

Finally, the Re, RR (with degrees from one to four), and full
multivariate models were used to examine the data simulated
under simulation model C. The full multivariate model fits five
variances for the five different ages in the data and attempts to
estimate separately all 10 covariances between the effects at
different ages. This model should give identical likelihoods to
those of the saturated fourth-degree RR model. Both fit the
same number of parameters for the QTL effect (15in all). The
lower-degree RRs use polynomials to smooth the covariance
function, reducing the number of parameters in the model.
Under simulation model C, methods that do not model the
covariance between the trait values at different ages (such as
Re analysis) were expected to perform poorly and the main
comparisons were between RR and full multivariate analyses.

The required likelihood maximizations were done in
ASREML (GILMOUR et al. 2002), with IBD estimation done in
SOLAR (ALmAsY and BLANGERO 1998). One practical prob-
lem we overcame was the incorporation of IBD information
into the analysis. ASREML requires the inverse of the IBD
matrix as input but this matrix can be singular. To circumvent
this problem we added a small value (0.0001) to the diagonal
entries of each IBD matrix to render it nonsingular. This ad
hoc approach has been shown to give results that are indis-
tinguishable from those obtained from SOLAR (which does
not require the inverse of the IBD matrix) in simplified uni-
variate cases (MACGREGOR 2003) and was hence used in all the
simulations described here. Scripts to allow application of the
methods described are available on request.

Hypothesis testing: Hypothesis testing was done by calculating
Prvalues on the basis of asymptotic results. Hypothesis tests for
the univariate model have well-known properties (SELF and
Lianc 1987; ALmasy and BLANGERO 1998), namely that the
2 In likelihood-ratio (LR) test statistic for QTL vs. no QTL is
distributed as %Xf :%0 under the null hypothesis of no QTL
effects. For the univariate tests of multiple time points the
maximum 2 In(LR) test statistic from the five time points and
from the mean of the five trait values was used (statistic Sy ,;);
also computed was a Bonferroni-corrected version, Snip)-
Since the Re model has one variance parameter to estimate for
the QTL, the 2 In(LR) test statistic is asymptotically %X?:%O
(statistic Sep).

For the tests of RR models, the asymptotic distributions of
the 2 In(LR) statistic will also be mixtures of x*distributions.
The simplest RR-based test is for the significance of the first-
degree RR compared with that of the Re model (equal to a RR
model with only the intercept fitted). This model can be tested
in two ways. First, the significance of the linear term (g;) in the
RR can be tested with the covariance between the linear and
the constant term (g,) constrained to be zero. In this case
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TABLE 2

Summary of statistics, simulations A and B

QTL RR coefficients in

Asymptotic distribution

Test statistic Ly 1, of 2 In(L,/Ly) Notes

Sarepl dio dio> a1 éxf :%O Deviation from Re model test
Shrep? dio dio> ¢i1> €ovV(Gio, ¢in) éx% :%O Deviation from Re model test

Step None ¢y %xf :%O Power to detect QTL test

Suni NA NA %xf :%O Power to detect QTL univariate test
Srr1 None g, ga, cov(gio, qn) D3G50 Power to detect QTL test

twice the log-likelihood difference [2 In(LR), statistic Sarep1
(statistic for deviations from repeatability model), see Table 2]
between the RR and the Re model is expected to be distributed
as %Xf :%O. This follows because under the null hypothesis the
additional variance term is on the boundary of the parameter
space. Second, if both the variance and the covariance terms
are fitted in the RR (subject to the constraint that the co-
efficient matrix remains positive definite), the 2 In(LR) test
statistic (Sarep2) for the RR vs. the Re model is a 50:50 mixture
of xg and a point mass at zero (x3). Note that this test statistic
(with the covariance unconstrained) is nota mixture of x3 and
X5 (as suggested in STRAM and LeE 1994 and MEvYER 1998).
This is because when the variance term associated with the ¢;
term is zero the covariance between the ¢, and ¢; terms must
also be zero, resulting in a point mass at zero (x2) not at x2.

Tests of higher-degree RR terms can be constructed
analogously to those for the linear RR terms. For the test of
the full-degree k + 1 RR (i.e., all elements of the CF estimated)
vs. the degree k model (statistic S;), 2 In(LR) was compared
with afx7, | :30 distribution. An alternative test uses the degree
k + 1 RR with the correlations between the (k + 1)th diagonal
term of the CF and the first k RR coefficients constrained to
zero (analogous to Sxrep1 above, with the correlations between
the first k coefficients left unconstrained). The 2 In(LR)
statistic comparing this constrained fit to the degree k RR
[statistic ] has a 1x}:30 distribution. The coefficient ma-
trix as a whole was constrained to be positive definite. In
simulation C the best-fitting model was selected by increasing
the degree of the RR until the addition terms were found to
not significantly increase the likelihood. The higher-degree
RR was deemed significantly better if the Pvalue for the
higher-degree model was <0.01.

Also of interest are tests of the overall significance of the
QTL terms in a RR model. The main test of interest here is the
first-degree RR-based test of QTL (with constant and slope
terms, together with their covariance) vs. no QTL [all three
(co)variances set to zero]. The 2 In(LR) statistic for this test
(statistic Sggr;) is assumed to be distributed asymptotically
ng :%Xf :}10. This follows because there are two variance terms
and these are on the boundary of the parameter space under
the null. When performing the likelihood-ratio test, one-
quarter of the time both of the variances are estimated to be
positive (and their covariance can be nonzero), one-half of
the time one of the variances is at zero [together with the
covariance, cov(gp, ¢a1), from Equation 9], and one-quarter
of the time all three (co)variances are at zero. In simulation
B the power of Sgri, Sreps Sunis and Sunin) to detect the sim-
ulated QTL was assessed at three significance levels: 0.001,
0.0001 [asymptotically equivalent to a univariate base 10
logarithm of odds (LOD) of 3], and 0.00001. For reference,
the statistics calculated in simulations A and B are given in
Table 2.

The RR-fitting procedure models the random deviations
from a fixed curve for each regression coefficient. To ensure
valid LR tests comparing different polynomial degrees for the
RRs this same set of fixed effects (i.e., fy + fit; + fotf + fs1 +
Jati*) was used for all fitted models. If the fixed effects are
changed with the degree of the RR, the LR test is not valid. For
the simulated data, no systematic change over time was sim-
ulated so while a constant (f)) and age-dependent (f;, i =
1, ..., 4) fixed curve terms were fitted in the RR analyses, they
were expected to yield estimates that are close to 0. For real data,
suitable fixed effects (e.g., a polynomial of age with degree equal
to or greater than the highest-degree random term) should
be fitted to the data to ensure that the random regression
coefficients model deviations from the population trajectory.

RESULTS

Simulation A: The agreement between the expected
asymptotic and simulation-based empirical distribu-
tions when fitting the RR model to data simulated to
fit the repeatability model (no change in variance over
time and correlation between effects at different ages
equal to one) was excellent. The two statistics of inter-
est, Sarep1 and Sarepe, are expected to follow %xf :%O and
%Xé :%O distributions, respectively. They are shown in
Figure 1. For comparison the 1x3:3x] distribution is
shown; this shows that neither Sxrep1 NOT Sprepe cON-
verges to this mixture (as suggested in STRAM and LEE
1994 and MEYER 1998). Note that although the covari-
ance is not constrained to 0 in Saep2 the overall coef-
ficient matrix (C) is constrained to be positive definite.

Simulation B: Deviations from repeatability model: The
power in each case is given in Table 3. Sp,.p2 was more
powerful than Sj.ep1 at detecting deviations from the
repeatability model. Reducing the relative amount of
temporary environment (ratio of permanent to envi-
ronmental variance was 75:25 instead of 50:50) resulted
in the change in genetic variance over time being easier
to detect.

Power to detect QTL: RR, Re, and univariate models: The
power to detect a simulated QTL was determined using
three statistics, Suni> Srep> and Sgri- The power (pro-
portion of 200 replicates, expressed as a percentage) at
different significance levels for variance sets B1, B2, and
B3 is given in Tables 4, 5, and 6, respectively.
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12

"50:50 Mixture: ChiSq 2, Point mass at zero"
"Simulation Output: Covariance unconstrained"
"50:50 Mixture: ChiSq 1, Point mass at zero"

10 H"Simulation Output: Covariance constrained to 0"
"50:50 Mixture: ChiSq 1, ChiSq 2"

Test Statistic

i

0.4 0.5 0.6 0.7 0.8 0.9 1
Probability

FiGure 1.—Simulation A results. Fit of the statistics Sarep1
and Spyepe (for data simulated under the repeatability model)
to the expected asymptotic null distributions is shown.

Looking at the results from S, in Tables 4 and 6 we
see that much of the power in the repeatability analysis
lies in the reduction in temporary environmental noise
as a result of averaging over a number of measures;
when the temporary environmental effects are small the
repeatability analysis has little power to detect QTL. In
contrast, the model allowing for a change in QTL effect
over time (Sggri) gains power when the temporary en-
vironmental noise is reduced. This is because the change
in genetic variance over time can be more readily de-
tected, increasing the power to detect the QTL when a
parameter modeling the change in QTL effect over time
is fitted. Note also that a modest increase in the genetic
variance at age five (compare the results when QTL
variance is 0.33 with when it is 0.4, see Tables 4 and 5)
has a relatively large effect upon the power when Sgg; is
used; the power to detect the QTL with a LOD of 3 (as-
ymptotic significance level 10~*) rises from 43 to 78%.

Since the five trait values at the five time points have
correlation >0 but <1, the uncorrected §,,,; is anticon-
servative while the S, is too conservative. Assuming
that the true power value at the specified significance
levels can be obtained by taking a power estimate be-
tween S, and S,nip) We see that the repeatability and
univariate methods have similar power.

TABLE 3

Simulation B: power to reject the repeatability model in
favor of first-degree RR

SArepl (% ) SArep2 (%)
Bl 5 41
B2 12 76
B3 16 75

Significance level set to 0.01.

TABLE 4
Simulation B1: power to detect QTL

Significance level

Statistic 103 10~ 10-°
Scep (Re QTL wvs. no QTL) 54 30 17
Suni (univariate QTL vs. no QTL) 61 33 18
Sunipy (Bonferroni-corrected S,,,,;) 38 21 9
Sgr1 (linear RR QTL vs. no QTL) 64 43 31

Data are simulated under simulation model B with QTL var-
iance 0.2 (age 1) to 0.33 (age 5) (0.5 permanent environmen-
tal variance, 0.5 temporary environmental variance).

Simulation Cl: The procedure outlined above was
used to determine the best-fitting model for the data.
Seventy-nine percent of replicates rejected, at the 1% sig-
nificance level, the no-QTL model when the Re model
was fitted. However, in all cases (200 replicates) the Re
model was rejected in favor of the first-degree RR model
(All Pvalues <107° for Sprepr and Sprepe). This was
unsurprising since the data were simulated so that the
QTL variance changed over time and the genetic (QTL)
correlations were <l. Sixty-four percent of replicates
rejected the linear RR in favor of the quadratic RR when
Si was used to compare the two models. When Sy, was
used only 23% of replicates provided evidence for the
quadratic model. Using S for the test for a cubic RR
compared with the quadratic fit (for replicates where
the quadratic coefficient was significant) resulted in none
of the replicates indicating that the cubic fit was better.
Assessing the higher-degree models (unconstrained cubic
model and quartic model) proved difficult computa-
tionally, with many replicates failing to converge to a like-
lihood maximum. In the cubic case, roughly one-third
of replicates failed to converge (using a maximum of
100 iterations in ASREML) when the unconstrained
cubic model (z.e., S, was calculated) was fitted. Taking
the likelihoods as calculated (i.e., one-third of them are
underestimates of the true likelihood maximum, bi-
asing the test statistic for the significance of the cubic
term downward), 7% of replicates rejected the qua-
dratic model in favor of the cubic model. Onlyin 35% of

TABLE 5
Simulation B2: power to detect QTL

Significance level

Statistic 103 10~ 10-°
Seep (Re QTL wvs. no QTL) 67 41 21
Suni (univariate QTL wvs. no QTL) 75 47 24
Suni(by (Bonferroni-corrected Syy;) 53 28 13
Skr1 (linear RR QTL vs. no QTL) 85 78 65

Data are simulated under simulation model B with QTL var-
iance 0.2 (age 1) to 0.4 (age 5) (0.5 permanent environmental
variance, 0.5 temporary environmental variance).
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TABLE 6
Simulation B3: power to detect QTL

Significance level

Statistic 10 10~ 10—
Sep (Re QTL wvs. no QTL) 30 13 5
Suni (univariate QTL vs. no QTL) 39 18 6
Sunipy (Bonferroni-corrected S,,,,;) 24 8 4
Skr1 (linear RR QTL wvs. no QTL) 75 64 46

Data are simulated under simulation model B with QTL var-
iance 0.2 (age 1) to 0.33 (age 5) (0.75 permanent environ-
mental variance, 0.25 temporary environmental variance).

cases could the full multivariate model be maximized.
These results are summarized in Table 7.

For a few of the replicates all models could be
maximized and a graphic representation of the results
of one replicate is given in Figure 2. The variance terms
from the QTL RR are expressed as a proportion of the
total variance (i.e., QTL heritability). For comparison,
the univariate and repeatability model results are su-
perimposed on the same graph. This shows that the
repeatability model is a poor fit to the simulated model
and that the univariate results, while following the
simulated model to some degree, are rather noisy. All
of the polynomial-based RRs follow the simulated model
well; the first-degree model offers an excellent fit with
only two extra parameters fitted compared with the re-
peatability model. The fourth-degree polynomial fol-
lows the univariate results more closely but in this case
such variations from the simulated model are simply
random variation.

It is instructive to compare the results from simu-
lations B and C. In simulation B2, when o2 ., = 0.2,
Olmes = 0.4, Sarep1 rejected the repeatability model in
12% of cases (significance level 1%). In comparison,
when the data were simulated in simulation C1 with the
same parameters apart from a change in the correlation
structure, 100% of replicates rejected the repeatability
model (significance level 1%, although in fact all re-
jected it at significance level 0.001%). The univariate
results for simulation C1 were similar (data not shown)
to those obtained for the repeatability analysis (which is

TABLE 7

Simulation C1 [QTL variance 0.2 (age 1) to 0.4 (age 5)]:
best-fitting model (%)

Model Sk Sk(c)
Repeatability 0 0
Linear RR 36 77
Quadratic RR 57 23
Cubic RR 7 0

“ One-third of replicates failed to converge so this may be an
underestimate.
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F1GURE 2.—Sample results, Simulation CI.

equivalent to an “average across all measures” univari-
ate analysis when there is regular age spacing) and were
hence substantially less powerful than those obtained
from the RR model.

Simulation C2: In simulation C2 71% of replicates
rejected (significance level 1%) the no-QTL model
when the Re model was fitted. In all cases (200 rep-
licates) the Re model was rejected in favor of the first-
degree RR model (all Pvalues <10°° for Sprep1 and
Sarepe) - Eighty-four percent of replicates rejected the
linear RR in favor of the quadratic RR when S;, was used
to compare the two models. When the ;) was used
89% of replicates provided evidence for the quadratic
model. Note that although the likelihood ratio of S is
lower than that of S, since the null distributions differ
Sk(cy can sometimes give smaller P-values. Using S, for
the test for a cubic RR compared with the quadratic fit
resulted in 4% of the replicates indicating that the cubic
fit was better. This may be a slight underestimate as 5%
of the replicates failed to converge to a likelihood maxi-
mum. Using the unconstrained cubic model in the test
resulted in 17% of replicates rejecting the quadratic
model although almost a third failed to converge fully.
The quartic and full multivariate models could not be
reliably fitted to these data. These results are summa-
rized in Table 8. Although simulation C2 showed that
polynomial-based CFs worked well with the simulated
logarithmic increase in QTL variance with age, non-
monotonic changes in QTL variance with age were not
considered here (e.g., an increase in genetic effect at
earlier ages, followed by a decline in later life).

The results of one replicate are given in Figure 3. The
values specified in the simulation model are super-
imposed on the graph. As expected, when the change
in QTL variance is nonlinear the second- and higher-
degree RRs have more utility than the first-degree model.
Nonetheless, even the first-degree RR is substantially
better than the repeatability model. Once again the
univariate results are rather noisy; univariate methods
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TABLE 8

Simulation C2 [QTL variance 0.2 (age 1) to 0.4 (age 5)]:
best-fitting model (%)

Model Sk Skc)
Repeatability 0 0
Linear RR 16 11
Quadratic RR 67 85
Cubic RR 177 4¢

“Almost one-third of replicates failed to converge so this
may be an underestimate.

’Five percent of replicates failed to converge so this may be
a slight underestimate.

do not utilize the natural ordering in time of the genetic
effects with adjacent measures often yielding very dif-
ferent estimates of QTL heritability.

DISCUSSION

This article has described methods suitable for QTL
analysis in complex pedigrees of data sets with longitu-
dinal trait measures. The multivariate techniques re-
quired to effectively analyze such data are more involved
than those for single-trait measures. This, together with
the relative paucity of suitable data, goes some way to-
ward explaining the lack of research in this area. Longi-
tudinal traits are often not well described by single,
cross-sectional, phenotypic measures but, as has been
described, the conceptually simple full multivariate model
requires the estimation of large numbers of parameters
when there are more than a few time points. Since the
data sets commonly available for genetic studies in hu-
man or natural populations are small, the full multivar-
iate approach has somewhat limited application. Some
longitudinal traits will be relatively highly correlated
across multiple measures of the same trait compared
with nonlongitudinal multivariate measures (e.g., mul-
tivariate analysis of height and weight, say). The sim-
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FIGURE 3.—Sample results, Simulation C2.

ulations performed here showed that when traits are
highly correlated the estimation of large numbers of
parameters is difficult. The covariance function-based
approach may have considerably more utility than the
full multivariate model as it can reduce the number of
parameters in the model. Fitting a polynomial with de-
gree plus one equal to the number of age points in the
data is equivalent to a full multivariate model. Fitting
lower-degree polynomials smoothes the estimated co-
variance function, removing individual deviations that
are likely to be due to stochastic variation.

The covariance function approach will be particularly
useful when the data are measured at a large number of
ages, perhaps with irregular gaps between measures; this
is because the approach fits a polynomial through the
set of ages available for each individual. Furthermore,
individuals measured only for a few ages can still con-
tribute to the analysis by providing information on the
coefficients of the lower-degree polynomials (informa-
tion available on constant and linear terms when there
are two age measures and so on). Once the covariance
function has been estimated for a given data set, predic-
tions of future observations can be made using best
linear unbiased prediction (e.g., LyNcH and WALsSH
1998; MrRODE 1996). For example, predictions could be
made about the trait value of an individual at age 60
given their measurements until age 40 or about the trait
value at a particular age for children given the measures
taken on their parents.

In simulation B it was shown that when there was a
moderate increase in QTL variance over time fitting a
first degree RR increased the power to detect the QTL.
This increase in power came solely from the RR model-
ing the change in QTL variance. The increased effi-
ciency of the RR in modeling any decreases in the
genetic correlation between trait measures <1 was ig-
nored by simulating data with no decline in genetic
correlation with time. The increase in power was partic-
ularly large when the ratio of permanent to temporary
environment was high (e, when most of the environ-
mental “noise” affects all of an individual’s trait
measures).

At Genetic Analysis Workshop 13 (GAW13) (ALMASY
et al. 2003) reference is made to genes that change their
variance over time as slope genes (GAUDERMAN et al.
2003; GEE et al. 2003; Rao et al. 2003; YANG et al. 2003).
The data generated under simulation model B allow a
direct test for these slope genes. QTL effects, however,
may not be completely correlated across ages and a
more realistic simulation model (i.e., simulation model C)
will allow the correlations between QTL effects at dif-
ferent ages to decrease.

It is not possible to know what form real-life genetic
CFs take. It was assumed in simulation C that the decline
in correlation followed a steady decrease with increasing
time separation (i.e., we intentionally did not simulate
data under the polynomial-based analysis method used
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for the CF-based analyses; polynomials do not generate
correlation structures of the “banded” type used in si-
mulation C). The correlation was assumed to remain
relatively high over the range of ages of interest. This
seems likely to be true for QTL effects (whose constit-
uent element is one or more closely linked genes) but
may be less likely to hold for polygenic effects (whose
constituent elements are more heterogeneous and will
change over life). The shape of possible CFs for poly-
genic effects has been considered by Jarrrezic and
PLETCHER (2000); the models considered ranged from
one in which the correlation structure remained high
across ages to another in which the correlation became
negative at widely separated ages. They concluded that
polynomial-based CFs were most effective when the
correlation remained high over widely separated ages
(JarFrezic and PLETCHER 2000).

The model selection (choice of polynomial fit) in
simulation C was based on differences in likelihood. To
ensure parsimony and robustness, we advise utilization
of low-degree polynomials. Although high-degree poly-
nomials may provide a good fit to the data, if the method
is to be used for QTL detection then the benefits of
improved fit may be outweighed by the increase in the
degrees of freedom. Itis also important to note that with
most realistic sample sizes it is not possible to fit high-
degree polynomials and the problem of model selection
may be oflittle practical consequence. For genome scan-
ning we recommend application of the Re model (zero-
degree RR), the first-degree RR model, and, where
data permit (large sample size), the second-degree RR
model. The testing of multiple polynomial fits increases
the computational load and also the number of tests
done. Note that the requirement for multiple tests in
QTL analysis is not new here; many QTL mapping
methods for line crosses apply multiple models at each
location across the genome (e.g., additive model and
additive plus dominance model). If computational time
is a limiting factor, scanning could be performed with
moderate intermarker spacing with first-degree poly-
nomials with regions achieving nominal significance
(P < 0.05) followed up by spacing at 1-cM intervals with
second-degree polynomials (or a higher degree if suf-
ficient data are available). When we applied the RR
methodology to a real data set [the Framingham Heart
Study data set from GAWI13 (ALmasy et al. 2003)] we
were notable to fitasecond-degree RR (first-degree RRs
were fine) to every position across the chromosomes we
examined (MACGREGOR et al. 2003). For simplicity we
used two-generation families (parents and offspring had
phenotypes and genotypes) with a single linked marker
in our simulations. An illustration of the application of
the RR methodology to three-generation extended fam-
ilies and genome scan data are given in our GAWI13
article (MACGREGOR et al. 2003). Note that since the IBD
computation and phenotype modeling steps are sepa-
rate in our analysis the practical application of our

method is identical for single-marker or multiple-
marker (multipoint) data.

Although fitting a model that estimates the full set of
(co)variances in the data [there are w(w + 1)/2 to esti-
mate when there are w trait measures] can capture the
change in QTL variance over time, such methods are
inefficient in most cases and are difficult to apply in
practice. One of the primary aims of this article was to
investigate how much information can be extracted
from longitudinal data in realistic scenarios. The work
here and other work on human data sets (DE ANDRADE
et al. 2002; pE ANDRADE and OrswoLD 2003) indicate
that approaches that do not simplify the covariance
structure are unworkable in practice (the relatively
small data sets do not support the estimation of large
numbers of parameters). In an application of the full
multivariate model to trivariate human genetic data (DE
ANDRADE et al. 2002; DE ANDRADE and OrswoLD 2003)
the six parameters (three variances, three covariances)
could not be estimated simultaneously for all of the
random effects. When the situation was approximated
by three bivariate analyses, parameter estimation was
possible. Given that the trivariate data in these articles
(DE ANDRADE et al. 2002; bE ANDRADE and OLSWOLD
2003) support the estimation of only three parameters it
would probably be better to fit a first-degree RR to the
full set of three traits than to fit three separate full mul-
tivariate analyses to three different subsets of the data.

In the simulations presented some simplifying as-
sumptions were used. No fixed effects were simulated
and the permanent environmental effects were assumed
to be constant over time. No polygenic effects were
simulated (but note that a single polygenic effect was
estimated in all analysis methods). These simplifications
were used to allow meaningful comparison between the
methods used. The inclusion of time varying polygenic
and fixed effects would increase the observed difference
between the RR and the other analysis methods; one of
our primary aims was assessing the effects of modeling
just the QTL effect more efficiently. The simulations
also ignore one of the benefits of the RR procedure
(compared with full multivariate and repeatability ana-
lyses), namely the ability of the RR method to analyze
data with phenotypes measured at different ages in
different individuals. In the simulations all individuals
were assumed to be measured at all five ages. In reality
human data sets will often feature individuals measured
at a large variety of different ages; a full multivariate
analysis will usually require individuals at proximal
ages to be grouped together, discarding information.
Twenty alleles were simulated at the linked marker to
approximate the situation where there is abundant
marker information (through the use of either a
5-cM microsatellite marker map or the increasingly
common dense SNP marker maps). The resultant poly-
morphism information content will generally be in the
range 0.9-1.
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To allow comparison between the different methods,
asymptotic results were utilized. In the case where the
first-degree RR was compared with the Re model, the
asymptotic result was validated by simulation (Figure 1).
For the test of firstdegree RR QTL wvs. no QTL the
asymptotic result used (}lxg :%Xf :}&0) is the same as that
used in a bivariate VC analysis by AMos et al. (2001); we
note that there is disagreement in the literature on this
matter, with the described asymptotic distribution from
WANG (2003) appearing to disagree with the distribu-
tion described by Amos et al. (2001). We performed
simulations under a no-QTL model (with constant
polygenic heritability of 0.20) and found results consis-
tent with those described in Amos et al. (2001) (data not
shown). We also note that it is important to simulate
either a polygenic or a QTL effect (or both) to evaluate
the null distribution; in the univariate case the null
distribution when neither effect is simulated appears to
be 1x§ :30 (¢f. the usual §x7 : 30 in the univariate QTL test)
when a QTL plus polygenic model is compared with a
polygenic model. If the distribution of the traits is not
multivariate normal the asymptotic distribution may not
be appropriate (incorrect type I error). In such cases
gene-dropping simulations can be used to evaluate an
empirical null distribution for the test of the overall
significance of a QTL. Such simulations use the data
structure from the actual data and generate replicates
with a marker unlinked to the QTL. Although this ap-
proach requires a relatively large number of replicates
for small Pvalues this procedure needs to be done only
once per genome scan and can typically be completed in
<1 day with current computing power. Instead of simply
comparing the observed test statistic with the relevant
percentile of the empirical distribution, the number
of replicates required can be reduced either by fitting a
parametric distribution to the empirical distribution
(DUDBRIDGE and KOELEMAN 2004) or by performing a
regression of the empirical distribution on the expected
asymptotic distribution. This latter approach allows the
rescaling of the results so that the asymptotic distribu-
tion is valid and is implemented in the program SOLAR
for univariate analysis (ALMASY and BLANGERO 1998).

Genomewide significance can be dealt with when
using the methods we describe here. For human data
the Pvalue required for genomewide significance is
generally assumed to be in the range 0.0001-0.00005
(LANDER and KruGLYAK 1995). Suggestive significance
requires Pvalues <0.002. Since a number of models
may be fitted per genomic location we recommend
using slightly more stringent thresholds than those
given in LANDER and KrRuGLyak (1995); thresholds
twofold lower than the Lander and Kruglyak levels
would seem reasonable (given that no more than a
few models will be utilized and they are unlikely to be
uncorrelated). The Pvalue obtained from either the
asymptotic results or gene-dropping simulations (see
above) can be compared with the threshold values and

significance (suggestive, genomewide) declared accord-
ingly. For other species the relevant thresholds can be
determined by taking into account the species’ genome
length.

One disadvantage of the RR techniques is that the
method specifies the correlation structure and change
in variance (over time) together. A low-degree poly-
nomial may be adequate to model the change in vari-
ance over time but inadequate for approximating the
covariance structure or vice versa. Alternative models
that fit separate functions for the change in variance
and the change in correlation or covariance have been
proposed for polygenic effects (character process mod-
els, e.g., PLETCHER and GEYER 1999; D1EGO et al. 2003).

Alternative techniques for longitudinal QTL map-
ping in structured populations have been developed
recently (Ma et al. 2002; Wu et al. 2004a). Such mapping
techniques assume that the QTL is a fixed effect with a
specified number of alleles and this allows for sophisti-
cated modeling of the change in QTL effect over time
(Ma et al. 2002; Wu et al. 2004a). The application of such
fixed-effect models has led to a greater understanding
of the genetic architecture of growth in organisms such
as mice and forest trees (WU et al. 2004a,b). In contrast
to this, the methodology described here is based upon
random-effects modeling, where we assume that the
distribution of QTL effects is normal. This allows us to
circumvent the estimation of QTL allele frequencies
and facilitates ready application of our method to arbi-
trary pedigrees. Given the matrix of QTL-specific IBD
probabilities [estimated from the marker data (ALMASY
and BLANGERO 1998; GEORGE et al. 2000)] our method
can be applied without modification to a wide variety of
family structures. Further discussion of the differences
between fixed- and random-effect QTL models is given
in GEORGE et al. (2000).

A number of other methods for allowing analyses
of multivariate data have been proposed. In most cases
these are for distinct multiple traits (height, weight,
etc.) rather than for longitudinal ones (height at age 20,
atage 30, ...). The simplest approach involves perform-
ing separate univariate analyses for each trait. This ap-
proach does not take advantage of the potential power
gains inherent in the multivariate structure of the data.
Furthermore, it is unclear how to keep the significance
level at the desired level when there are multiple tests. A
Bonferroni correction can be readily applied but this is
almost certain to be overly conservative. The simula-
tions performed here showed that univariate methods
offered similar power to repeated measures methods
and were often hence substantially less powerful than
RR-based approaches. The next simplest alternative is to
transform the multiple-trait values into a single sum-
mary or composite measure, thus allowing a single
univariate analysis method to be used. This composite
measure can be constructed such that the calculated
“factor score” maximizes some parameter of interest,
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such as the heritability (BooMsMma and DoLaN 1998).
Furthermore, a multivariate segregation analysis has
been proposed for pedigree data (BLANGERO and
KONIGSBERG 1991) and this may allow the construction
of a composite measure that is particularly suitable for
mapping the major gene affecting a trait. However, even
in this second case where there may be more power to
detect a particular QTL or locus, neither method is
likely to give an optimal composite measure for other
QTL or loci (EAVES et al. 1996).

A number of authors have considered extensions of
the sib-pair regression methods to multivariate data
(Amos et al. 1990; ALLISON et al. 1998; DE ANDRADE and
OrswoLp 2003; HuaNG and JianG 2003; MIREA et al.
2003). Such methods offer advantages over the VC-based
multivariate approaches in terms of computational ease
but, in addition to their unsuitability for extended fami-
lies, they have been shown to offer less power than VC-
based approaches (for bivariate datasee AMos et al. 2001).

Multivariate linkage analysis related to that described
in MATERIALS AND METHODS has been described for sib-
pair data (EAVES et al. 1996) and livestock and experi-
mental cross data (JiaNG and ZENG 1995; KNoTT and
HarLey 2000; SORENSEN et al. 2003) and applied to
developmental dyslexia data in sib pairs (MARLOW et al.
2003). The method used by MARLOW et al. (2003) fitted
the polygenic effect as in Equation 3 but the covariance
structure of the random effect for the QTL was con-
strained such that correlation between any two trait
measures was equal to one. This means that there are
only k parameters to estimate when there are k traits
[compared with k(k + 1)/2 with an unstructured QTL
covariance matrix]. While this is unlikely to be true for
all but the most strongly related traits, this model may
allow parameter estimation in cases in which there are
limited amounts of data.

In this study we have extended the RR approach to
allow QTL analysis of longitudinal data. The methods
described appropriately take into account the ordering
in trait values over time. Computer simulations have
shown that the RR-based approach offers consider-
able increases in power compared with univariate and
repeatability-based techniques. It should be possible to
take advantage of this extra power by fitting first-degree
random regressions to most realistic human/natural
population data sets.
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