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ABSTRACT

We describe an importance-sampling method for approximating likelihoods of population parameters
based on multiple summary statistics. In this first application, we address the demographic history of closely
related members of the Drosophila pseudoobscura group. We base the maximum-likelihood estimation of the
time since speciation and the effective population sizes of the extant and ancestral populations on the
pattern of nucleotide variation at DPS2002, a noncoding region tightly linked to a paracentric inversion
that strongly contributes to reproductive isolation. Consideration of summary statistics rather than entire
nucleotide sequences permits a compact description of the genealogy of the sample. We use importance
sampling first to propose a genealogical and mutational history consistent with the observed array of
summary statistics and then to correct the likelihood with the exact probability of the history determined
from a system of recursions. Analysis of a subset of the data, for which recursive computation of the exact
likelihood was feasible, indicated close agreement between the approximate and exact likelihoods. Our
results for the complete data set also compare well with those obtained through Metropolis-Hastings
sampling of fully resolved genealogies of entire nucleotide sequences.

ESTIMATION of population parameters in classical
population genetics has traditionally proceeded

through a moments approach, based on closed-form
expressions for the expectation and variance of sum-
mary statistics (reviewed by Hey and Machado 2003;
Beaumont 2004). For the purposes of this discussion,
we regard as a summary statistic any measure of genetic
variation that can be determined directly from numbers
of derived mutations observed in a sample without ex-
plicit reference to the genealogy of the sampled genes.

Felsenstein (1992) proposed a maximum-likelihood
(ML) approach to the estimation of population param-
eters, treating the intervals separating the nodes of the
sample genealogy as missing data. He showed that ML
methods that use knowledge of the node intervals scaled
to the mutation rate have greater statistical power than
classical moments-based methods that use summary
statistics. Metropolis-Hastings (MH) sampling to simu-
late the posterior distribution of the gene genealogy
based on entire nucleotide sequences now forms the
basis of the dominant ML and Bayesian approaches to
both population parameter estimation and phylogeny
reconstruction (Kuhner et al. 1995; Huelsenbeck and
Ronquist 2001).

Among the appealing properties of estimation pro-
cedures based on summary statistics are greater simplic-
ity and potential for customization to specific biological
systems. While computation of summary statistics by
definition requires no knowledge of the genealogy of
the sample, the intimate relationship between the pat-
tern of segregating variation and the sample genealogy
lies at the core of coalescence theory and molecular
population genetics (Ewens 1972; Watterson 1975).
In deriving not only the first two moments but also
entire probability distributions of summary statistics, those
works laid the basis for parameter estimation through
likelihoods as well as for the parametric tests for which
they are well known. Our objective here is to develop a
likelihood-based method for inferring demographic
history from multiple summary statistics.

Classes of segregating mutations: Wakeley and Hey

(1997) introduced a set of summary statistics suitable for
exploring the demographic history of two groups: num-
bers of sites polymorphic in both groups, polymorphic
in only one group, or showing fixed differences. Our
classification expands theirs by using an outgroup to
distinguish between ancestral and derived bases (see
materials and methods). With respect to the genes
sampled from a given group, we describe each segregat-
ing derived mutation as absent (a), segregating (s; pres-
ent in at least one but not all), or fixed ( f ; present in all).
A joint classification with respect to two groups com-
prises only seven types because segregating mutations
are neither absent nor fixed in both groups.
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Distinguishing between the effects of recent diver-
gence and introgression after divergence on the sharing
of polymorphisms between closely related species can
be difficult, particularly in single-locus analyses (Wang

et al. 1997). To address the time since divergence alone,
we chose to study variation at DPS2002, a noncoding
region for which tight linkage to a paracentric inversion
strongly associated with multiple reproductive isolating
mechanisms precludes its introgression between the
closely related Drosophila species Drosophila pseudoobs-
cura and D. persimilis (Noor and Smith 2000; Noor et al.
2001a,b) (see materials and methods).

Table 1 shows the array of mutations observed in
DPS2002 haplotypes sampled from D. persimilis and two
subspecies of D. pseudoobscura, D. p. pseudoobscura and
D. p. bogotana (Machado et al. 2002). Consistent with the
absence of introgression at DPS2002, the D. persimilis
sample shares no mutations with the D. p. bogotana sam-
ple and only one ( f/s) with the D. p. pseudoobscura
sample. In contrast, the two subspecies of D. pseudoobs-
cura share 10 mutations, suggesting recent divergence
or ongoing gene flow. In the interspecific comparison
involving D. p. bogotana (per/bog), the observation of
both reciprocal arrangements of fixed differences ( f/a
and a/f ) indicates that the most recent common
ancestor (MRCA) of genes sampled from each species
postdates any between-species coalescence events: the
DPS2002 gene genealogy shows reciprocal monophyly.
While the reciprocal numbers of DPS2002 polymor-
phisms restricted to one species (s/a and a/s) appear
similar between D. p. bogotana and D. persimilis, D. p.
pseudoobscura shows fourfold more polymorphisms than
D. persimilis, perhaps reflecting larger effective popula-
tion size. These observations suggest that the numbers
of the various kinds of mutations segregating in the
sample contain information about genealogical and de-
mographic history.

Models of speciation: Under the Dobzhansky-Muller
scenario for the origin of species (reviewed by Turelli
et al. 2001), genetic factors contributing to reproduc-
tive isolation arise during an initial phase of allopatry

between the incipient species. We identify species diver-
gence with the onset of the allopatric phase and not in
particular with the origin of genetic isolating mecha-
nisms. Speciation corresponds to a change in coalescence
structure, the most recent point at which ancestral
lineages with descendants in different species can have
coalesced.

We assume that the paracentric inversion that pre-
cludes introgression at DPS2002 between D. pseudoobs-
cura and D. persimilis arose as a neutral mutation and
became associated with isolating barriers during the
allopatric phase. That this second chromosome region
is homosequential in D. pseudoobscura and outgroup D.
miranda (Dobzhansky and Tan 1936) indicates that it
is the D. persimilis arrangement that is derived. This
inversion appears to correspond to a fixed difference,
not only in our sample but also between the species
(Dobzhansky and Powell 1975). For simplicity, we
assume instantaneous fixation of the alternative gene
orders in the two descendant species, with the inversion
having arisen immediately before the MRCA of the
sampled inverted chromosomes.

Likelihoods from summary statistics: Marjoram

et al. (2003) introduced a Markov chain Monte Carlo
(MCMC) method that directly approximates the poste-
rior distribution of the model, obviating the need to
determine the probability of the data. Numerically gen-
erating genealogical and mutational histories that
match the data may require extensive simulation.

We address methods that base inferences about
demographic history and population parameters (M)
on a set of summary statistics (D). Implementation of
likelihood-based approaches entails the development
of a practical means of determining or approximating
probability distributions that depend on the unknown
genealogical history (G) of the sampled genes and the
number and location (U) of mutations that occurred
on it,

LðM Þ ¼ PM ðDÞ ¼
X
G

X
U2VG

PM ðD;U ;GÞ; ð1Þ

for VG, the set of all possible placements of mutations
on a given G. We adopt the infinite-sites model, under
which neutral base substitutions occur independently,
with the number in a given time interval following a
Poisson distribution. Many likelihood-based methods
proceed from the prior distribution of the genealogy,
dependent on the population parameters alone, while
others, including fully Bayesian approaches (Wilson

and Balding 1998), incorporate the posterior distribu-
tion of histories given D (reviewed by Stephens and
Donnelly 2000).

With respect to time since divergence of populations,
exact analytical expressions are available for certain sim-
ple demographic histories (Watterson 1985; Takahata
et al. 1995); however, the derivation of closed-form so-
lutions is intractable for most systems of biological

TABLE 1

Segregating mutations

Type Group 1 Group 2 pera/pseb per/bogc bog/pse

1 Segregating Absent 16 16 9
2 Fixed Absent 5 6 0
3 Absent Segregating 65 18 57
4 Absent Fixed 0 2 0
5 Segregating Segregating 0 0 9
6 Fixed Segregating 1 0 1
7 Segregating Fixed 0 0 0

a D. persimilis, 13 sequences.
b D. p. pseudoobscura, 19 sequences.
c D. p. bogotana, 13 sequences.
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interest. Uyenoyama and Takebayashi (2004) de-
scribed a method for the recursive determination of
exact likelihoods from joint probability-generating
functions of correlated summary statistics (compare
Griffiths and Tavaré 1996). Takebayashi et al. (2004)
used this approach to obtain a maximum-likelihood
estimate (MLE) of the rate of recombination between
a determinant of mating type in a flowering plant and
a closely linked marker locus from the numbers of seg-
regating sites at the two loci. While this method can
in principle accommodate multiple summary statistics
and general evolutionary models, the computation time
makes its application impractical.

Likelihoods have been approximated by simulating
complete genealogical and mutational histories under a
coalescent model and computing summary statistics for
each realization (for example, Fu and Li 1997; Weiss

and von Haeseler 1998; Pritchard et al. 1999). While
full simulation can accommodate a wide range of evo-
lutionary questions, analysis of even small data sets
under simple models may impose a considerable com-
putational burden (Wall et al. 2002; Wall 2003),
reflecting the exceedingly low probability of any par-
ticular realization (Stephens and Donnelly 2000;
Marjoram et al. 2003).

Tavaré et al. (1997) introduced an acceptance-
rejection algorithm for the estimation of the age of
the MRCA of a sample of genes that entails simulating a
gene genealogy and accepting the value for this random
variable on the basis of the probability for the tree of
the observed total number of segregating mutations.
Beaumont et al. (2002) used a local regression method
to approximate the likelihood of the actual data from
realizations within a certain tolerance (Estoup et al.
2004; Tallmon et al. 2004; Hamilton et al. 2005).

Alternatively, the ‘‘fixed-S ’’ approach (e.g., Hudson

1993; Depaulis and Veuille 1998) entails generating
a genealogy under a standard coalescent model, ran-
domly placing the observed total number of segregating
sites (S) on the genealogy, and determining the fraction
of outcomes consistent with the remaining observed
summary statistics (H, for D ¼ fS, Hg). Markovtsova

et al. (2001) showed that the distribution generated by
this procedure does not in fact approximate PM(HjS),
the conditional distribution of H given S. In particular,
the genealogy should be sampled, not from a prior
distribution determined by the standard coalescent, but
from a conditional distribution, given S and the model
parameters M. This discrepancy can become problem-
atic under large departures of the observed value of S
from its expectation (Depaulis et al. 2001; Markovtsova

et al. 2001; Wall and Hudson 2001).
Approach through importance sampling: We develop

an importance-sampling (IS) approximation (see Liu
2001) to the likelihood (1). We use a proposal distribu-
tion to sample a genealogical and mutational history
consistent with the observed array of seven types of seg-

regating sites and then correct the bias by determining
the exact probability of the history.

Here, a genealogical path (G) corresponds to an
ordered list of the states assumed by the process at the
nodes of the full genealogy, without specification of the
mutations. Observation of the segregating sites present
in a sample (D) provides multiple kinds of information,

D ¼ fD1;D2g;

for D1 the types and D2 the numbers of base substitu-
tions observed. We rewrite (1) as

LðM Þ ¼ PM ðDÞ

¼
X
G

X
U2VG

PM ðD;U ;GÞ
QM ðD;U ;GÞQM ðD2;U jD1;GÞQM ðD1;GÞ;

ð2Þ

for QM(D1, G), the stationary distribution of genealogies
compatible with D1, and QM(D2, UjD1, G), a heuristic
distribution of placements of mutations on G compat-
ible with D2. We approximate this average (2) by

PM ðDÞ � 1

m

Xm
i¼1

PM ðD;Ui ;GiÞ
QM ðD;Ui ;GiÞ

; ð3Þ

for (Ui, Gi) independent and identically distributed
(i.i.d.) samples from the proposal density QM(D2, UjD1,
G)QM(D1, G).

Likelihoods approximated through this procedure
may serve as the basis of either Bayesian or maximum-
likelihood analyses. Here, we use IS to determine MLEs
of the time since divergence between closely related
species of Drosophila and the effective population sizes
of the extant and ancestral species.

MATERIALS AND METHODS

Sequence information: We studied the pattern of nucleo-
tide variation segregating among DPS2002 sequences ob-
tained by Machado et al. (2002) from the D. pseudoobscura
species group, including 19 D. p. pseudoobscura, 13 D. p.
bogotana, and 13 D. persimilis sequences (GenBank nos.
AF450689–AF450734). This region, �940 bp in length, shows
numerous single-nucleotide polymorphisms and variable
oligonucleotide repetitive motif tracts, but no detectable
open-reading frames. For each site segregating within the
ingroup, we assumed that the base present in the single D.
miranda sequence represented the ancestral base.

Although Machado et al. (2002) localized DPS2002 within a
fixed paracentric inversion that distinguishes D. persimilis from
D. pseudoobscura, the Noor group has recently determined that
it lies �1.5 Mb outside this inversion, on the telomeric side
(M. A. F. Noor, unpublished data). In general, recombination
in inversion heterozygotes appears to be suppressed beyond
the bounds of inversion breakpoints, perhaps reflecting dis-
ruption of chromosome pairing or production of unbalanced
gametes upon crossing over (see Navarro et al. 1997 and
references therein). In particular,DPS2002has been shown to be
tightly linked to the inverted region in inversion heterozygotes
(0/357 recombinants) (Noor and Smith 2000).
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In the present study, we assume complete linkage of sites
within DPS2002 and of DPS2002 to the inversion. Association
of the inversion with multiple reproductive isolating mecha-
nisms, including hybrid male sterility, hybrid inviability, hybrid
male courtship dysfunction, and behavioral isolation, prevents
introgression of linked regions, including DPS2002 (Noor

and Smith 2000; Noor et al. 2001a,b).
Classification of mutations: Our assumption of the absence

of intragenic recombination entails that all sites within a locus
share a single genealogical history. This common history con-
strains the observed array of neutral, independent mutations,
n ¼ ðn1;n2; . . . ;n7Þ; for ni the number of mutations of type i
(Table 2). For example, the observation of a mutation fixed in
group 1 and absent from group 2 implies a topology in which
the MRCA of the haplotypes sampled from group 1 postdates
all between-group coalescence events. This topology excludes
the presence in group 2 of mutations segregating in group
1 (s/s and s/f ). With the exception of types 1 and 3, the
presence of each mutational type excludes the presence of two
other types, implying observation of a maximum of four dis-
tinct types of mutations. Figure 1 illustrates the four possible
distinguishable topologies (modulo reciprocals) assumed by
the sample genealogy: f f/a, a/fg, f f/s, f/ag, f f/s, s/sg, and
fs/sg.

Summary statistics: We used CLUSTAL-W (Thompson et al.
1994), with minor manual modifications, to generate a
multiple alignment of the 46 DPS2002 sequences. After elim-
ination of sites with gaps in any of the sequences, 892 ho-
mologous sites remained. For each of three triads (outgroup
D. miranda and a pair of ingroup taxa), we restricted attention
to sites at which more than one base segregated within the

ingroup taxa under consideration. In accordance with an
infinite-sites model of mutation, we designated the base in the
outgroup sequence as ancestral and any other base as a muta-
tion. After removing sites at which the ancestral base was
absent from both ingroup taxa, we counted the number of
mutations in each category shown in Table 1. For sites at which
more than two bases segregated, both derived bases contrib-
uted to our mutation counts: for example, at a site at which C
was designated ancestral, C and G segregated in the sample
from one ingroup taxon, and C and T in the other, we counted
each mutation (G and T) as segregating in one group and
absent in the other. A Bioperl (Stajich et al. 2002) script for
counting the various types of mutations is available from its
author on request ( J.E.S.: jason.stajich@duke.edu).

METHODS OF ESTIMATION

We present an evolutionary model for the demographic
history of a sample of haplotypes from two species. We
then construct a recursion in the exact probability of
the observed array of the seven kinds of segregating sites
under this model and describe its importance-sampling
approximation (3).

Evolutionary model: We assume that the time since
divergence of species 1 and 2 from ancestral species 0
follows an exponential distribution with parameter l,
treating l as the rate of species fusion. During the in-
terval spanned by the gene genealogy, species i (i ¼ 0,
1, 2) maintains a constant effective size of Ni genes
(for autosomal regions, twice the effective number of
individuals).

At any point within the gene genealogy of a sample,
we classify each lineage according to its species member-
ship and the distribution of its descendants between the
two groups of the initial sample. A type 1 lineage has
descendants among the genes sampled from species 1
but not from species 2, and type 2 has those from species
2 but not from species 1. Type 3 lineages have descend-
ants in both groups. On level l of the gene genealogy
(the interval in which a total of l ancestral lineages remain),
the state or configuration of the process corresponds to
(l01, l02, l03, l11, l22), for lij, the number of ancestral lineages
of type j (j ¼ 1, 2, 3) in species i (i ¼ 0, 1, 2).

Speciation corresponds to a change in population
structure: transition from two isolated groups to a single
panmictic group. Our assumption of the instantaneous
fixation of the alternative chromosomal types upon spe-
ciation entails that postspeciation coalescence events
occur at rate

lii
2

� �
=Ni

(i ¼ 1, 2), in which

lii
2

� �
¼ 0 for lii,2:

Our speciation scenario stipulates the origin of the in-
version immediately before the MRCA of the D. persimilis

Figure 1.—Possible topologies of gene genealogies of a
nonrecombining region. Brackets below the trees indicate se-
quences sampled from the same group. Branch labels indi-
cate branch type (Table 2).

TABLE 2

Incompatibilities

Type Group 1/group 2 Incompatible Compatible

1 s/a None All
2 f/a s/s, s/f a/f or f/s
3 a/s None All
4 a/f s/s, f/s f/a or s/f
5 s/s f/a, a/f f/s or s/f
6 f/s a/f, s/f f/a or s/s
7 s/f f/a, f/s a/f or s/s
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subsample. For cases in which its origin predated the
speciation event, we assume that it segregated in the an-
cestral species at frequency p. During the interval between
the speciation event and the MRCA of the inverted chro-
mosomes, coalescence among type 1 lineages occurs at
rate

l01

2

� �
=pN0

and among type 2 lineages at rate

l02

2

� �
=ð1� pÞN0;

with no between-type coalescence events. Upon the or-
igin of the inversion, all pairs of lineages coalesce at the
same rate (1/N0), irrespective of type.

A genealogical path G corresponds to an ordered
list of descriptions of the nodes of the full geneal-
ogy, without specification of mutations or within-level
transitions,

G ¼ ðSL; SL�1; . . . ;S2; S1Þ; ð4Þ

for Sl; the entry (most recent) state on level l, and L total
sample size. For a sample comprising L1 haplotypes
from species 1 and L2 from species 2 (L ¼ L1 1 L2), the
initial state SL corresponds to (0, 0, 0, L1, L2) and the
MRCA of the entire sample S1 to (0, 0, 1, 0, 0).
Characterization of the stationary distribution of gene-
alogical paths requires only determination of Markov
matrices of within- and between-level transition rates
(appendix a). We extend the procedure introduced
by Wiuf and Donnelly (1999) to condition the gene
genealogies proposed in the IS procedure to have a
topology compatible with the observed combination of
mutational types (appendix b). Restricting sampling to
compatible genealogies affords a considerable increase
in efficiency for a modest computational cost.

Exact recursion in likelihoods: We derive a recursion
in the joint probability-generating function (PGF) for
the array of summary statistics.

Array of mutations in the sample: For each configura-
tion on level l, we determine a PGF for the array of
mutations accumulated in the subtree extending from
level l to the MRCA. Let glðaÞ denote the vector of these
PGFs, for a ¼ ða1; a2, a3, a4, a5, a6, a7) comprising PGF
parameters corresponding to the seven types of segre-
gating mutations (Table 1). Figure 2 illustrates that the
total number of mutations accumulated within the
subtree beginning on level l corresponds to the sum of
numbers accumulated on level l and in the subtree
beginning on level l � 1:

glðaÞ ¼RlðaÞgl�1ðaÞ: ð5Þ

appendix a presents the derivation of RlðaÞ; the PGF of
mutations accumulated within level l. Recursion (5) has
initial condition

g1ðaÞ[1;

reflecting that mutations in the MRCA do not segregate
in the sample. The PGF of the numbers of the seven
types of mutations observed in a sample of size L corre-
sponds to

gLðaÞ ¼
YL
l¼2

RlðaÞ;

in which the matrix product begins on the left with the
largest index value.

Recursive computation of exact likelihoods: We determine
likelihoods from a recursion in probabilities rather than
in the PGFs themselves. Taking derivatives of (5), we
obtain an expression for the probability of observing the
array p ¼ ðp1; p2, . . . , p7) of mutations in the subtree
extending from level l to the MRCA,

g
ðpÞ
l ð0ÞQ
pi !

¼
X

q

R
ðqÞ
l ð0ÞQ
qi !

g
ðp�qÞ
l�1 ð0ÞQ
ðpi � qiÞ!

; ð6Þ

in which q denotes the array of mutations that arose
within level l and p � q the remaining mutations; the
summation in q runs over all possible subsets of the total
array p; and superscripts of the form (p) indicate the
order of derivatives with respect to the parameters
representing the mutational types (the pith derivative
with respect to ai, i ¼ 1, 2, . . . , 7).

We initialize the recursion in probabilities (6) by
considering all possible assignments of mutations to
level 2,

g
ðqÞ
2 ð0Þ=

Y
qi !¼R

ðqÞ
2 ð0Þ=

Y
qi !;

for q, a subset of the observed mutations n. We then
determine g

ðpÞ
3 ð0Þ=

Q
pi ! for all possible mutational

arrays p that can occur in the subtree comprising levels
2 and 3. This recursion ends with gðnÞ

L ð0Þ=
Q

ni !; the
probability of the array of mutations observed in the
initial sample.

Figure 2.—Recursion in probability-generating functions.
Mutations in the subtree extending from the MRCA to level
l comprise those occurring within level l and those in the sub-
tree extending to level l � 1. Independence of the mutational
process in these disjunct time periods implies that the PGFs of
mutation numbers to level l correspond to the product of
PGFs of mutations to level l � 1 and within level l (5).
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Importance-sampling approximation: To approxi-
mate (2), we first sample from an analytical stationary
distribution a genealogical path G (4) consistent with
the types of mutations observed in the sample (D1) as
well as the speciation scenario, place the observed num-
bers of mutations n along G according to a heuristic
distribution, and then correct the bias introduced by the
proposal, using the exact probability of the genealogical
and mutational history.
Genealogical path: Given entry state Sl on level l, the

stationary distribution of the level l� 1 entry state Sl�1 is
given by the corresponding row of

Ṽl1ŨlṼl1Ũ2
l Ṽl1 � � � ¼ ½I� Ũl��1Ṽl; ð7Þ

for Ũl and Ṽl matrices of rates of within- and between-
level transition probabilities (appendix a), conditional
on the observed types of mutations (D1; appendix b).
Beginning with the state of the initial sample (0, 0, 0, L1,
L2), we construct a genealogical path Gi by sampling, for
each successive level until termination in the MRCA, a
path segment from the row of (7) that corresponds to
the entry state for the level.
Proposal distribution: Given a genealogical path Gi, we

propose placements of the observed mutations accord-
ing to a multinomial distribution,

QM ðD2;U jD1;GiÞ ¼
Y7

j¼1

nj !
YL
l¼2

ðrl ;jÞnj ;l
nj ;l !

;

in which nj,l represents the number of type j mutations
on level l (

P
nj ;l ¼ nj) and rl,j the probability that a

lineage on level l receives a type j mutation. For el,j the
number of lineages on level l that are eligible to receive
mutations of type j,

rl ;j ¼
el ;jwlP
L
k¼2 ek;jwk

; ð8Þ

in which wl represents the relative weight assigned to
level l. Weight wl reflects the expected duration of level
l, which has an exponential distribution with parameter
corresponding to the rate of coalescence within the
level (appendix c).

For the path segment corresponding to level l, we
obtain the true probability PM(D, Ui,l, Gi,l) from the
element of R

ðqÞ
l ð0Þ=

Q
qj ! (A8) in the row and column

associated with the entry (most recent) states on levels
l and l � 1, respectively, for q, the array of mutations
assigned to level l.
Likelihood function: Griffiths and Tavaré (1994)

described an importance-sampling procedure for gen-
erating likelihoods of arbitrary models (M) from those
obtained under a particular driving model (M0). This
approach entails first intensively sampling genealogical
paths and placements of mutations under M0 and then
characterizing the entire likelihood function by rescal-
ing the probabilities (see Griffiths and Tavaré 1994;

Kuhner et al. 1995; Felsenstein et al. 1999; Stephens
and Donnelly 2000). For (Ui, Gi) i.i.d. samples from
QM0

ðD2;Ui jD1;GiÞQM0
ðD1;GiÞ; we approximate the like-

lihood by

LðM Þ ¼ PM ðDÞ ¼
X
G

X
U2VG

PM ðD;U ;GÞ
QM0 ðD;U ;GÞQM0 ðD2;U jD1;GÞQM0 ðD1;GÞ

ffi 1

m

Xm
i¼1

PM ðD;Ui ;GiÞ
QM0 ðD;Ui ;GiÞ

:

Because the choice of M0 affects the reliability of the
approximation (Kuhner et al. 1995, 1998; Stephens
and Donnelly 2000), we first estimate the MLE through
a two-tier search (appendix d) and then sample inten-
sively under this driving model.

APPLICATION

We began our exploration with a comparison between
D. p. bogotana and D. persimilis. For this smaller data
set (Table 1, per/bog), determination of both the exact
likelihoods by recursive computation (6) and their
importance-sampling approximations was in fact feasi-
ble. Having established a basis for confidence in our IS
implementation, we then addressed the estimation of
population parameters from the comparison between
D. p. pseudoobscura and D. persimilis (Table 1, per/pse).

That the inversion difference appears to be fixed be-
tween the species as well as in our sample (Dobzhansky

and Powell 1975) suggests the absence or segregation
in very low frequency (p) of the derived gene order in
the ancestral species. In accordance with this expecta-
tion, preliminary results (not shown) indicated higher
likelihoods of lower values of p. As the data set contains
little information about this aspect, we arbitrarily as-
signed p as 0.0001 in estimating the remaining parameters.

Comparison of D. p. bogotana and D. persimilis: We
used our two-phase search procedure (appendix d) to
locate the maximum-likelihood values of the four pa-
rameters of the system (l/u, uN0, uN1, uN2). Our IS
approximations compare well to the exact likelihood
computed using (6).
Maximum-likelihood estimates: Table 3 provides the

MLE array (‘‘Unconstrained’’ column), with probabili-
ties estimated using (3), based on a sample of 4 3 106

TABLE 3

D. p. bogotana/D. persimilis divergence

Parameter Unconstrained N0 ¼ N1 ¼ N2

l/u 0.17 0.18
uN0 2.31 3.21
uN1 2.91 3.21
uN2 3.51 3.21

Likelihood 1.05 3 10�5 8.78 3 10�6

P-value 0.83
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genealogical paths. A likelihood-ratio test detected no
significant differences in effective population size among
the species (comparison to ‘‘N0-N1-N2’’).

Comparison of exact and IS likelihood curves: To assess
the accuracy of our IS approximation, we constructed
conditional-likelihood curves for the speciation rate
(l/u) with the remaining parameters assigned to their
MLE values (Table 3) under both the exact recursion
(6) and our IS method. Figure 3 presents the exact-
likelihood function and 18 IS curves, each based on
500,000 sampled genealogies generated using the MLEs
as the driving values. The average of the IS curves (blue
line), based on a total of 9 3 106 samples, corresponds
well to the exact conditional likelihood (red line), al-
though it somewhat underestimates the absolute value
of the likelihood.

Computation using (6) of a single point of the exact-
likelihood function required �4 hr on a Macintosh
PowerPC G5 (2.5-GHz processor, 3.5 GB DDR SDRAM).
Construction of the 200 points constituting the entire
conditional-likelihood curve in Figure 3 required�800 hr
using the exact recursion, compared to �30 min using
our IS method based on 500,000 sampled genealogical
histories. While computation time under the exact re-
cursion increases roughly with the product of the num-
bers of mutations observed (elements of n), observation
of more mutations has virtually undetectable effect on
computation time under IS.

Figure 4 compares the exact log-likelihood function
for the speciation rate (l/u) computed under (6) to the

IS approximation. Our IS curve provides an excellent
indication of both the MLE and the breadth of the like-
lihood function. As noted by Stephens and Donnelly

(2000), error of the IS approximation generally in-
creases farther from the driving value. In the case stud-
ied here, however, detectable discrepancies arise only in
regions quite distant from the MLE, well beyond the
�95% confidence range spanned by 2 log-likelihood
units.

Comparison of D. p. pseudoobscura and D. persimilis:
The interspecific comparison involving D. p. pseudoobs-
cura (Table 1) comprises more sequences (longer gene-
alogies) and many more mutations (87 compared to
42). Both factors, but especially the increase in mutation
number, render computation of the exact-likelihood
function impractical.

Maximum-likelihood estimates: Table 4 provides maximum-
likelihood estimates of the population parameters, de-
termined by our IS method using 4 3 106 sampled
genealogies. Likelihood-ratio tests suggest that the ef-
fective size of D. p. pseudoobscura (uN2) significantly ex-
ceeds those of both D. persimilis (uN1) and the ancestor
(uN0).

Profile-likelihood curves: Various approaches exist for
conveying a sense of the level of confidence in the es-
timate of a parameter in a multiple-parameter model
(e.g., Berger et al. 1999). Within the maximum-likelihood
framework adopted here, we have chosen to present our
results in terms of the profile likelihood, under which
the likelihood of a given value of a parameter corre-
sponds to the maximum achieved over all assignments
of the other parameters. appendix e describes our pro-
cedure for approximating the full four-dimensional
likelihood surface using interpolating splines.

Figure 3.—Exact and IS-approximated conditional-
likelihood function of the instantaneous rate of speciation
(l/u), with uN0, uN1, and uN2 assigned to their MLE values.
Using the unconstrained MLEs (Table 3) as the driving val-
ues, we generated 18 IS curves, each based on 500,000 sam-
pled genealogies. Red indicates the exact likelihood surface
of l/u, computed using (6) under the same assignments of
the other parameters, and blue shows the average of the IS
curves (9 3 106 total samples).

Figure 4.—Exact and IS-approximated log-likelihood func-
tions of speciation rate (l/u) under the same conditions as
indicated for Figure 3. The red line represents the log of
the exact-likelihood function, scaled to its maximum value,
and the blue line shows our IS approximation, based on
9 3 106 sampled genealogies.
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Figure 5 shows the profile-likelihood curve for the
relative rate of speciation (l/u), and Figure 6 shows the
relative effective size of D. persimilis (uN1). Table 5
provides 90% confidence intervals for our MLEs, de-
termined under the assumption of a x2-distribution for
the log-likelihood.

DISCUSSION

We have described a likelihood-based method for the
estimation of population parameters. This first applica-
tion addresses the time since divergence of closely
related species in the D. pseudoobscura group. More
importantly, it serves as a proof-of-concept demonstra-
tion of the speed and reliability of our approach, based
on summary statistics rather than on entire nucleotide
sequences.

Divergence between D. pseudoobscura and D. persimi-
lis: Our maximum-likelihood analysis indicates a signifi-
cantly larger effective population size for D. pseudoobscura
than for D. persimilis (Table 4) and a speciation event
somewhat more ancient than some previous estimates.

Table 6 presents our estimates (Table 5) scaled to the
rate of mutation per kilobase (ũ ¼ u1000=892; for our

892-bp region). Numbers for effective population size
correspond to ũNi (i¼ 0, 1, 2) and those for divergence
time to ũ=l; the expectation of the exponentially dis-
tributed speciation-time variable.
Calibration of mutation rate: Rescaling of our estimates

into units of numbers of years or individuals requires
determination of the rate of substitution of neutral
mutations in noncoding regions. For the same Dro-
sophila species studied here, Hey and Nielsen (2004)
(HN) estimated 5.3 3 10�6 mutations per kilobase per
year. This number, an average across 14 regions for
which their analysis indicated substantial heterogeneity,
reflects divergence in both coding and noncoding
regions and both synonymous and nonsynonymous
substitutions.

For mammals (humans and rodents), Bustamante
et al. (2002) estimated a 70% reduction in the rate of
substitution at silent sites in expressed genes compared to
their homologous pseudogenes. This accelerated sub-
stitution in pseudogenes, particularly marked in genes
with high GC content, reflects in part the release from
selective constraints on hypermutable CpG dinucleotides
(Sved and Bird 1990). In primates, Subramanian and
Kumar (2003) found a significant overall excess in neutral

TABLE 4

D. p. pseudoobscura/D. persimilis divergence

Parameter Unconstrained N0 ¼ N1 N0 ¼ N2 N1 ¼ N2

l/u 0.12 0.12 0.12 0.09
uN0 0.81 2.51 11.51 0.91
uN1 2.71 2.51 2.71 12.61
uN2 18.21 15.61 11.51 12.61

Likelihood 4.59 3 10�6 2.88 3 10�6 2.34 3 10�7 9.23 3 10�9

P-value 0.33 1.5 3 10�2 4.3 3 10�4

Figure 5.—Profile-likelihood function for the scaled in-
stantaneous rate of speciation (l/u).

Figure 6.—Profile-likelihood function for the scaled effec-
tive population size of D. persimilis (uN1).
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substitution in exons compared to noncoding regions
(pseudogenes, introns, and intergenic tracts), which dis-
appeared upon exclusion of CpG sites.

While Drosophila genomes do not show significant
CpG deficiency (Gentles and Karlin 2001), selective
constraints on codon usage do influence the pattern of
substitution at synonymous sites (Akashi 1995). Using
the skew in base composition as an index of codon usage
bias, Tamura et al. (2004) (TSK) inferred a neutral
substitution rate of 1.1 3 10�5 mutations per kilobase
per year for recently diverged (5.1 million years) Dro-
sophila species.

Effective population size: We identify Wright’s ‘‘inbreed-
ing effective number’’ of individuals (Crow and
Denniston 1988) with half the inverse of the rate of
coalescence (half the expected number of generations
to coalescence between a random pair of genes; see
Slatkin 1991). Our estimates of scaled population size
(uNi), a ratio of rates, have units of mutations per
coalescence. Division of these estimates by twice the rate
of mutation per generation converts the scale to
generations per coalescence, which we identify with
effective numbers of individuals. Table 6 reports ‘‘abso-
lute’’ effective population sizes (millions of individuals),
obtained under the assumption of four generations per
year (Schaeffer 1995) and HN and TSK mutation rates.

Under the TSK rate, our analysis suggests an effective
population size for D. p. pseudoobscura of 3.7 3 106, with

1.4 3 106 the lower bound of the 90% confidence
interval, comparable to Schaeffer’s (1995) estimates
(1.9 3 106, 4.53 106), based on theAdh region. Hey and
Nielsen’s (2004) estimate obtained from DPS2002
alone corresponds to 7.3 3 106 and 3.5 3 106 under
the HN and TSK rates, respectively. Credible intervals,
presumably obtainable from their method, were not
reported.

For the effective population size of D. persimilis, we
obtained an MLE of 0.55 3 106, with 90% confidence
interval (0.25, 1.17). Hey and Nielsen’s (2004) value
based on DPS2002 alone (‘‘u2 3 uS’’ in their Table 1)
corresponds to 0.81 3 106 and 0.39 3 106 under the HN
and TSK rates, respectively (credible intervals not
provided).

Divergence time: Under the TSK mutation rate, our
MLE of the time since speciation between D. pseudoobs-
cura and D. persimilis corresponds to �850 thousand
years (KY), identical to the number obtained by
Tamura et al. (2004) from their moments-based analysis
of nuclear protein-coding genes located throughout the
genome. Our estimate shows an insignificant excess
over that of Aquadro et al. (1991) (500 KY), based on
restriction site differences at the Amy region calibrated
by DNA-DNA hybridization data.

Hey and Nielsen (2004) based their ML analysis on
MCMC reconstruction of the gene genealogy of entire
nucleotide sequences from 14 genomic regions. It per-
mits variation among regions in rates of substitution and
introgression, but does not accommodate the popula-
tion substructuring induced by linkage of DPS2002 to
the D. persimilis inversion, which prevents its introgres-
sion. Their estimates of divergence time scaled to sub-
stitution rate (t3 uS, analogous to our ũ=l) vary over a
13-fold range across the 14 regions, and those of abso-
lute divergence time vary 238-fold. Their overall esti-
mate of absolute divergence time (589 KY) corresponds
to the average scaled divergence time divided by the
average substitution rate.

Hey and Nielsen’s (2004) estimate of divergence time
based on DPS2002 alone exceeds the average across
the 14 regions by .86%. This number corresponds to
1113 KY under the average substitution (HN) rate and
to 536 KY under the TSK rate. Expressed on the same
scale, our MLEs (l/u ¼ 0.12, uN0 ¼ 0.81, uN1 ¼ 2.71,
uN2 ¼ 18.21) show nonsignificant differences from
theirs for DPS2002 alone (0.19, 0.9, 1.9, 17.2), in which
we associate their number for divergence time with the
inverse of the parameter of the exponentially distrib-
uted speciation-time variable.

Approaches to estimation: Basing the estimation on
summary statistics rather than on entire nucleotide
sequences permits considerable simplification of the
description of genealogical history. Streamlining of the
evidentiary and computational basis affords greater com-
putational and analytical freedom to address more re-
alistic demographic scenarios and biological processes.

TABLE 5

MLEs and confidence intervals for D. p. pseudoobscura/
D. persimilis divergence

Parameter MLEa 90% confidence intervalsb

l/u 0.12 (0.02, 0.46)
uN0 0.81 (0.1, 5.0)
uN1 2.71 (1.25, 5.75)
uN2 18.21 (8, —)c

a Based on 4 3 106 sampled genealogies.
b From profile likelihood.
c Beyond bounds of approximated surface.

TABLE 6

Maximum-likelihood estimates

Absolute (3106)

Parameter Scaleda HNb TSKc

Divergence time 9.34 1.76 0.85
Ancestral effective size 0.91 0.34 0.17
D. persimilis effective size 3.04 1.15 0.55
D. p. pseudoobscura effective size 20.4 7.70 3.71

a Mutations per kilobase.
b 5.3 3 10�6 mutations/kb/year.
c 1.1 3 10�5 mutations/kb/year.
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Genealogies as nuisance parameters: Our primary inter-
ests lie in the characterization of the evolutionary
process of speciation and genetic divergence. In this
context, the genealogy of the sampled genes represents
a nuisance parameter, an unknown aspect that influen-
ces the estimation of population parameters but that
holds little interest in itself. More precisely, the gene
genealogy is not a parameter but another manifestation
of the evolutionary process under study (Donnelly and
Tavaré 1995; Stephens 2001).

To accommodate some of the diversity of evolutionary
processes, a number of methods entail estimation of a
great many parameters. For example, full genealogical
reconstruction in structured populations requires esti-
mation of the ages of all nodes, mutations, migration
events, changes in population size, and population
divergences (Beerli and Felsenstein 2001; Nielsen

and Wakeley 2001; Wilson et al. 2003; Hey and
Nielsen 2004). A given biological system may corre-
spond to a set of parameter assignments within the full
model (for example, Yang 1996; Hey and Nielsen

2004). However, a model that accommodates the unique
origin of the second chromosome inversion that pre-
vents introgression at the DPS2002 region is not nested
within available data analysis packages.

Griffiths and Tavaré (1996) showed that the variance
of estimates of population parameters obtained from
full genealogical reconstruction of entire nucleotide
sequences tends to be smaller than that based on sum-
mary statistics. Even so, one may well prefer simpler
methods based on summary statistics in cases for which
they are nearly sufficient for the estimation of the popu-
lation parameters of interest (Marjoram et al. 2003).
The development and implementation of analyses
capable of accommodating additional evolutionary pro-
cesses can demand literally years of effort (Felsenstein
et al. 1999), and even entire sequences may contain
insufficient information to support the estimation of
fully resolved gene genealogies as well as all parameters
of a heavily parameterized model (Wiuf 2003). A re-
lated observation is that less detailed models can some-
times generate more accurate estimates (Takahashi
and Nei 2000; Piontkivska 2004; Kosakovsky Pond
and Frost 2005).

Reflecting our interest in population parameters
rather than gene genealogies themselves, our method
adopts a much-condensed genealogical description. A
genealogical path in our analysis corresponds to an
ordered list of lineage types associated with the nodes of
the gene genealogy (4). It differs, in particular, from the
genealogical history of Griffiths and Tavaré (1994),
for which the state space includes the mutations.

Reduction of the computational burden invested in
estimating genealogy may permit analysis of more
realistic biological processes or demographic histories
for which full genealogical reconstruction of entire
nucleotide sequences may be altogether infeasible. For

the application at hand, our model explicitly conditions
the genealogical histories on the unique origin of the
inversion that prevents introgression in the genomic
region studied (appendix b). Incorporation of this
biological information into the estimation procedure
entailed only modification of Markov matrices of rates
of within- and between-level transitions (appendix a).
This structural flexibility may permit customization of
the analysis to a wide variety of biological systems.
Estimation of divergence times: Species divergence cor-

responds to a change in coalescence structure: the most
recent point at which ancestral lineages with descend-
ants in different species can have coalesced. Using the
age of the most recent node with descendants sampled
from different populations as a surrogate for divergence
time generates negligible error only for ancient di-
vergence events involving small ancestral population
sizes and little interpopulation gene flow (see Nichols

2001). A number of recent reviews of moment- and
likelihood-based approaches have addressed the esti-
mation of population divergence apart from node age
(Arbogast et al. 2002; Rosenberg and Feldman 2002;
Takahata and Satta 2002).

Many likelihood-based methods related to ours treat
time since speciation as a parameter. Takahata et al.
(1995), Rannala and Yang (2003), and Wall (2003)
based the estimation of divergence time and ancestral
population size on numbers of segregating sites in a
present-day sample comprising one sequence from each
of two or more species. Nielsen and Wakeley (2001)
and Hey and Nielsen (2004) used MH sampling to
approximate the posterior distribution of fully resolved
gene genealogies, including all node ages and time
since speciation.

To incorporate time into the method of Griffiths

and Tavaré (1994), for which the genealogical histories
record only the relative order of events, Nielsen (1998)
determined the probability distribution of the numbers
of ancestral lineages remaining in each group at the
divergence event. Our method characterizes the time
since speciation as an exponentially distributed random
variable and estimates the instantaneous rate of speci-
ation (l/u). This construction obviates the need to
incorporate time into the backward construction of
genealogical histories.
Unique evolutionary events: Slatkin and Rannala

(1997, 2000) based the estimation of the age of an
advantageous or deleterious mutation on the relative
magnitudes of neutral variation segregating within the
affected and unaffected subsamples. The sample gene-
alogy reflects coalescence of affected lineages only
among themselves, with the number of ancestors from
which they could have descended determined from
a branching-process model. In contrast, Wiuf and
Donnelly (1999) addressed the age of a neutral marker
restricted to a subset $ of genes sampled from a
population. Determination of the likelihood entails
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conditioning a random gene genealogy to contain a
node from which all members of $ and none of the
other sampled genes descend and requiring the occur-
rence of exactly one neutral mutation on the branch
immediately ancestral to that node. These approaches
differ with respect to more than statistical philosophy. In
the latter case, the partitioning of the sample arises only
after observation of the mutation of interest, while in
the former, the distinction between affected and un-
affected genes exists before observation of the sample.

We chose to study the DPS2002 region precisely be-
cause tight linkage to a second chromosome inversion
precludes its introgression. We have imposed the sim-
plifying assumption that the origin of the inversion
occurred immediately before the MRCA of the inverted
lineages. Further, for cases in which the MRCA of the
inverted lineages predates the speciation event, our
model assumes a constant frequency (p) of the inversion
in the ancestral species and permits coalescence only
within and not between gene orders. A more detailed
analysis would incorporate a description of evolutionary
change in p (e.g., Slatkin and Rannala 1997; De Iorio
and Griffiths 2004).

Importance sampling: The high complexity of virtually
all biological systems of interest ensures that any par-
ticular realization of the evolutionary process occurs
with extremely low probability, making approximation
of likelihoods by ‘‘naive’’ Monte Carlo simulation im-
practical (Stephens and Donnelly 2000). Importance
sampling offers a means of compensating for discrep-
ancies generated by sampling from convenient but
incorrect proposal distributions. As discussed in the
introductory section, sprinkling the observed number
of mutations over a random genealogy under the ‘‘fixed-
S ’’ procedure very rapidly generates genealogical and
mutational histories consistent with the data, but ap-
proximates an incorrect distribution (Markovtsova

et al. 2001).
Our method (2) proposes genealogical paths (4) by

sampling, not from a posterior distribution given the
full data (D ¼ fD1, D2g), but from an analytically
determined stationary distribution (7) of paths consis-
tent with the types of segregating mutations observed
(QM(D1, G)). It then sprinkles the observed numbers of
mutations on the genealogical path (QM(D2, UjD1, G))
according to a heuristic weighting scheme (8). We then
correct the bias introduced by the proposal distribution
using the exact probability of the proposed genealogical
and mutational history (appendix a).

Expansion of the evidentiary basis to include additional
summary statistics would extract more information from
the sampled sequences. Through straightforward redefi-
nition of the state space, our method can incorporate
counts of mutations of various kinds, including numbers
of mutations classified according to their distribution
among groups (Wakeley and Hey 1997; Wakeley et al.
2001), the number of haplotypes and their frequency

spectrum (Ewens 1972), and the frequency spectrum of
mutation numbers (Fu 1995). Our approach is less well
suited to summary statistics defined as various moments,
including average pairwise differences, variances, regres-
sions, and correlations. However, the distribution of
mutations among groups can replace pairwise FST values
as the basis for the characterization of gene flow (Wakeley

and Hey 1997), and the relative numbers of segregating
sites at linked loci can replace pairwise linkage disequilib-
rium as the basis for the estimation of recombination rate
(Takebayashi et al. 2004). The simplicity of our approach
(appendix a) facilitates structural modification both to
incorporate more information contained in the sampled
sequences and to broaden the scope of evolutionary
processes amenable to analysis.
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Depaulis and Veuille. Mol. Biol. Evol. 18: 1132–1133.

Navarro, A., E. Betrán, A. Barbadilla and A. Ruiz, 1997 Recom-
bination and gene flux caused by gene conversion and crossing
over in inversion heterozygotes. Genetics 146: 695–709.

Nichols, R., 2001 Gene trees and species trees are not the same.
Trends Ecol. Evol. 16: 358–364.

Nielsen, R., 1998 Maximum likelihood estimation of population di-
vergence times and population phylogenies under the infinite
sites model. Theor. Popul. Biol. 53: 143–151.

Nielsen, R., and J. Wakeley, 2001 Distinguishing migration from
isolation: a Markov chain Monte Carlo approach. Genetics
158: 885–896.

Noor, M. A. F., and K. R. Smith, 2000 Recombination, statistical
power, and genetic studies of sexual isolation in Drosophila.
J. Hered. 91: 99–103.

Noor, M. A. F., K. L. Grams, L. A. Bertucci, Y. Almendarez,
J. Reiland et al., 2001a The genetics of reproductive isolation
and the potential for gene exchange between Drosophila pseu-
doobscura and D. persimilis via backcross hybrid males. Evolution
55: 512–521.

Noor, M. A. F., K. L. Grams, L. A. Bertucci and J. Reiland,
2001b Chromosomal inversions and reproductive isolation of
species. Proc. Natl. Acad. Sci. USA 98: 12084–12088.

Piontkivska, H., 2004 Efficiencies of maximum likelihood meth-
ods of phylogenetic inferences when different substitution mod-
els are used. Mol. Phylogenet. Evol. 31: 865–873.

Pritchard, J. K., M. T. Seielstad, A. Perez-Lezaun and M. W.
Feldman, 1999 Population growth of human Y chromosomes:
a study of Y chromosome microsatellites. Mol. Biol. Evol. 16:
1791–1798.

Rannala, B., and Z. Yang, 2003 Bayes estimation of species diver-
gence times and ancestral population sizes using DNA sequences
from multiple loci. Genetics 164: 1645–1656.

Rosenberg, N. A., and M. W. Feldman, 2002 The relationship be-
tween coalescence times and population divergence times, pp.
130–164 in Modern Developments in Theoretical Population Genet-
ics—The Legacy of Gustave Malécot, edited by M. Slatkin and
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APPENDIX A: PROBABILITY-GENERATING FUNCTIONS

For convenience, we summarize the recursive determination of a PGF of the array n of segregating sites observed in a
sample of arbitrary size from the two species (see Uyenoyama and Takebayashi 2004).

Matrices Pl and and Ql, respectively, provide per-generation rates of within-level and between-level transitions for
states on level l. For state a within level l, let Cl;a denote the total rate of transition to any other configuration,
irrespective of level,

Cl ;a ¼ Pl ;a 1Ql ;a; ðA1Þ

for Pl;a and Ql;a representing row sums of the within- and between-level transition rate matrices. Matrices Ul and Vl

denote within- and between-level transition probabilities, given the occurrence of a transition,

Ul ¼ C�1
l Pl

Vl ¼ C�1
l Ql;

ðA2Þ

for Cl, a diagonal matrix in which the diagonal element in row a corresponds to Cl;a (A1).
Under a geometric distribution for the total number of mutations accumulated in the interval terminated by the

first transition from state a and a multinomial distribution, given this total number, for the number of mutations
arising on the three types of lineages, we obtain the joint PGF of mutation numbers,

fl ;aðaÞ ¼
Cl ;a

Cl ;a 1u½l1ð1 � c1Þ1 l2ð1 � c2Þ1 l3ð1 � c3Þ�
; ðA3Þ

in which a ¼ (a1, a2, a3, a4, a5, a6, a7) represents the array of seven PGF parameters corresponding to the seven types of
observed segregating mutations (Table 1), and the assignment of these PGF parameters to c1, c2, and c3 depends on the
configuration of state a:

c1 ¼
a1 if l1 . 1 or both l1 ¼ 1 and l3 . 0

a2 if l1 ¼ 1 and l3 ¼ 0

�
c2 ¼

a3 if l2 . 1 or both l2 ¼ 1 and l3 . 0

a4 if l2 ¼ 1 and l3 ¼ 0

�

c3 ¼
a5 if l3 . 1 or both l3 ¼ 1 and l1; l2 . 0

a6 if l1 ¼ 0; l2 . 0; and l3 ¼ 1

a7 if l1 . 0; l2 ¼ 0; and l3 ¼ 1:

8><>:
ðA4Þ
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These expressions indicate that the conditional transition matrices (A2) and the joint distribution of mutation
numbers (A3) depend only on the relative rates of transition and mutation: l/u, uN0, uN1, and uN2.

To obtain an expression for RlðaÞ (5), the joint PGF of mutations occurring within level l of the sample genealogy, we
consider the array of mutations that occurred before and after the most recent transition,

glðaÞ ¼ FlðaÞ½UlglðaÞ1Vlgl�1ðaÞ�; ðA5Þ

for FlðaÞ; a diagonal matrix with the PGFs of mutation numbers (A3) for states within level l arrayed along the diagonal.
Rearrangement of (A5) completes the recursion (5),

RlðaÞ ¼ ½I � FlðaÞUl��1FlðaÞVl

¼ ½I � DlðaÞPl��1DlðaÞQl;
ðA6Þ

for

DlðaÞ ¼ FlðaÞC�1
l :

Because speciation alone induces within-level transitions and occurs exactly once in a genealogy,

Pk
l ¼ Uk

l ¼ 0 for k$ 2; ðA7Þ

under which the matrix inverses in (7) and (A6) reduce to

½I � Ul��1Vl ¼ ½I1Ul�Vl

RlðaÞ ¼ ½I1FlðaÞUl�FlðaÞVl

¼ ½I1DlðaÞPl�DlðaÞQl:

In determining the recursion in probabilities (6), we observe that the PGF parameters (a1, a2, . . . , a7) appear only
in the DlðaÞ: Derivatives of these diagonal matrices with respect to the ai take the form

dDlðaÞ
dai

¼ DlðaÞ2El;i;

for El;i; a diagonal matrix of the absolute values of the coefficients of ai in the denominators of the elements of DlðaÞ
(A3). All configurations within a given block (l1, l2, l3) share the same coefficient of ai, implying that the corresponding
submatrix of El;i is proportional to the identity matrix

ulxI;

for x, the lineage type associated with ai in this block (A4). Using

PlEl;i ¼ El;iPl

and (A7), we obtain

R
ðqÞ
l ð0Þ ¼ q!

Y7

i¼1

E
qi
l;i

 !
½Dlð0Þ�q 1

Xq
j¼0

½Dlð0Þ�jFlð0ÞUl½Dlð0Þ�q�j

 !
Flð0ÞVl; ðA8Þ

in which qð¼
P

qi . 0Þ represents the total number of mutations arising on level l. The product of the El;i matrices in
(A8) is nonzero only for arrays q that specify a combination of mutations that can occur on level l.

APPENDIX B: CONDITIONED GENEALOGIES

We extend the method of Wiuf and Donnelly (1999) to restrict the genealogical paths proposed by our IS
procedure to those consistent with the kinds of mutations observed in the sample (D1). We describe the conditioning
of genealogies on each of the four possible topologies (f f/a, a/fg, f f/a, f/sg, fs/s, f/sg, and fs/sg), both with and
without the substructuring of the ancestral species induced by the presence of the chromosomal inversion that
precludes introgression at DPS2002. In the system under study, the unique origin of this inversion entails the presence
of an f/a branch (first two topologies), whether or not the data set includes an f/a mutation.

Let T0(x, y, z) represent the probability that a process presently in the prespeciation state (l01 ¼ x, l02 ¼ y, l03 ¼ z, 0, 0)
has a genealogy of the required kind, and let T1(x, y, 0) be the corresponding probability for a process in the
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postspeciation state (0, 0, 0, l11 ¼ x, l22 ¼ y). Conditioning genealogical topologies entails multiplying the within- and
between-level transition rates (appendix a) byT0(x, y, z) orT1(x, y, z), for (x, y, z) the array of lineages of types 1, 2, and 3
at the destination (ancestral) state. For data sets containing fewer than two mutational types informative for topology,
the probabilities are summed. For example, observation of an f/smutation indicates two possible topologies, f f/a, f/sg
or fs/s, f/sg, with the transition rates modified by the sum of the T0 and T1 probabilities associated with these
topologies.

Wiufand Donnelly (1999) derived a closed-form expression for the weightings to ensure a single branch of type f/a
in the genealogy of a sample from a single, unstructured population. We obtain the T0 and T1 weights recursively, for
each assignment of the parameters of the model. For the application at hand, this additional recursion (not
simulation) step imposes a modest computational burden for each set of IS driving values, but permits a vast
improvement in efficiency by guaranteeing that all genealogical histories proposed are compatible with the data.

f f/a, a/f g: Because all lineages sampled from each group must coalesce among themselves, with the only between-
group coalescence generating the MRCA, the genealogy cannot contain any type 3 lineages:

T0ðx; y; zÞ ¼ 0 for z. 0:

In the prespeciation phase without substructuring due to the chromosomal inversion, we obtain T0(x, y, 0) (x, y. 0)
by iterating

i1 j
2

� �
T0ði; j ; 0Þ ¼ T0ði � 1; j ; 0Þ i

2

� �
1T0ði; j � 1; 0Þ j

2

� �
; ðB1Þ

under boundary condition

T0ð1; 1; 0Þ ¼ 1:

Under substructuring, we replace (B1) by

i
2

� �
=pN0 1

j
2

� �
=ð1 � pÞN0

� �
T0ði; j ; 0Þ ¼ T0ði � 1; j ; 0Þ i

2

� �
=pN0 1T0ði; j � 1; 0Þ j

2

� �
=ð1 � pÞN0:

Similarly, in the postspeciation phase, we obtain T1(x, y, 0) from

i
2

� �
=N1 1

j
2

� �
=N2 1 l

� �
T1ði; j ; 0Þ ¼ T1ði � 1; j ; 0Þ i

2

� �
=N1 1T1ði; j � 1; 0Þ j

2

� �
=N2 1T0ði; j ; 0Þl;

with boundary condition

T1ð1; 1; 0Þ ¼ 1:

f f/a, f/sg: On any given level of the gene genealogy, the presence of an f/s branch excludes the existence of all other
branch types except a/s. Consequently, an f/s lineage retains its type back to the MRCA because any coalescence event
that includes it generates an ancestral branch of type f/s. Because the f/s branch must coexist with at least one a/s
branch,

T0ði; 1; 0Þ ¼ T1ði; 1; 0Þ ¼ 0 ðB2Þ

for positive i. The existence of an f/a branch excludes all type 3 branches (s/s or s/f ) other than f/s, from which it must
descend. In particular, branches of type 1 cannot occur on the same level with branches of type 3:

T0ði; j ; kÞ ¼ 0 for ik. 0: ðB3Þ

BecauseT0(0, j, k) corresponds to a state from which f/a branches cannot arise, we need consider onlyT0(x, y, 0). We
first obtain T0(1, y, 0) from

11 j
2

� �
T0ð1; j ; 0Þ ¼ T0ð1; j � 1; 0Þ j

2

� �
1T0ð0; j � 1; 1Þj ; ðB4Þ

in which

T0ð0; j � 1; 1Þ ¼ 1 for j $ 2:

In the absence of substructuring due to the chromosomal inversion, we then generate T0(x, y, 0) from
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i1 j
2

� �
T0ði; j ; 0Þ ¼ T0ði � 1; j ; 0Þ i

2

� �
1T0ði; j � 1; 0Þ j

2

� �
and, in its presence, from

i
2

� �
=pN0 1

j
2

� �
=ð1 � pÞN0

� �
T0ði; j ; 0Þ ¼ T0ði � 1; j ; 0Þ i

2

� �
=pN0 1T0ði; j � 1; 0Þ j

2

� �
=ð1 � pÞN0;

both viewed as recursions in j under (B2).
Similarly, in the postspeciation phase, we first obtain T1(1, y, 0) and then T1(x, y, 0) from

i
2

� �
=N1 1

j
2

� �
=N2 1 l

� �
T1ði; j ; 0Þ ¼ T1ði � 1; j ; 0Þ i

2

� �
=N1 1T1ði; j � 1; 0Þ j

2

� �
=N2 1T0ði; j ; 0Þl; ðB5Þ

using (B2).
f f/s, s/sg: We restrict consideration to cases without substructuring due to the chromosomal inversion because s/s

branches cannot arise in its presence. We begin with prespeciation states that include a type 3 branch. Because at least
one a/s branch must exist on any level containing the f/s branch,

T0ði; 0; kÞ ¼ 0 for i; k$ 0: ðB6Þ

We first determine T0(0, y, z) from

j 1 k
2

� �
T0ð0; j ; kÞ ¼ T0ð0; j � 1; kÞ j

2

� �
1 jk

� �
1T0ð0; j ; k � 1Þ k

2

� �
: ðB7Þ

Because states on the right side of (B7) represent those reached from the state indicated on the left, which includes an
s/s branch,

T0ð0; j ; 1Þ ¼ 1:

This expression together with (B6) for i ¼ 0 implies

T0ð0; 1; 2Þ ¼
1

3
:

Beginning with this boundary value, we use (B7) to generate T0(0, j, 2) for all positive j. For successive values of
k (k . 2), we obtain T0(0, j, k), given T0(0, j, k � 1) for all positive j, treating (B7) as a recursion in j.

Beginning with T0(0, y, z), we determine T0(x, y, z) given T0(x � 1, y, z) for arbitrary positive y and z from

i1 j 1 k

2

� �
T0ði; j ; kÞ ¼ T0ði � 1; j ; kÞ

i

2

� �
1 ik

� �
1T0ði; j � 1; kÞ

j

2

� �
1 jk

� �
1T0ði � 1; j � 1; k1 1Þij

1T0ði; j ; k � 1Þ
k

2

� �
:

ðB8Þ

We first treat (B8) as a recursion in k under the assignment i ¼ x and j ¼ 1 and then as a recursion in j for arbitrary k.
For states that lack a type 3 branch, we determine T0(x, y, 0) from

i1 j
2

� �
T0ði; j ; 0Þ ¼ T0ði � 1; j ; 0Þ i

2

� �
1T0ði; j � 1; 0Þ j

2

� �
1T0ði � 1; j � 1; 1Þij ; ðB9Þ

for T0(i � 1, j � 1, 1) obtained from (B8). In the postspeciation phase, we generate T1(x, y, 0) from (B5) under (B6).
fs/sg: Because genealogies designated fs/sg contain no branches of types f/s, s/f, f/a, or a/f,

T0ði; 0; 1Þ ¼ T0ði; 1; 0Þ ¼ T0ð1; j ; 0Þ ¼ T0ð0; j ; 1Þ ¼ 0

T0ð0; 0; kÞ ¼ 1;

for positive i, j, and k. Using these boundary conditions, we obtain T0(x, y, z) with positive z from (B8), T0(x, y, 0) from
(B9), and T1(x, y, 0) from (B5).
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APPENDIX C: PROPOSED PLACEMENT OF MUTATIONS

Our proposal density reflects the placement of mutations on levels of a given genealogical path according to the
expected length of the levels (8). In the prespeciation phase, the most recent event entails either a within-type
coalescence or, in the absence of more than one type 1 lineage, a between-type coalescence. Waiting times to these
various transitions correspond to exponentially distributed random variables. Because the minimum of two or more
independent exponentially distributed random variables also has an exponential distribution, with parameter equal
to the sum of the parameters of the base variables, the expected time to the most recent event corresponds to the
inverse of the sum of their parameters:

wl ;0 ¼
N0=

l
2

� �
for l01 # 1

1=
l01

2

� �
=pN0 1

l02

2

� �
=ð1 � pÞN0

� �
for l01 . 1:

8>>><>>>: ðC1Þ

In the postspeciation phase, the most recent event involves coalescence in species 1, coalescence in species 2, or
speciation, with expected time to the most recent event given by

wl ;1 ¼ 1=
l11

2

� �
=N1 1

l22

2

� �
=N2 1 l

� �
:

Speciation implies transfer of the lineages to the ancestral population without termination of the level, with some
additional time required for coalescence. However, because our experimentation with the weights suggests that
increasing the weight of the level by wl,0 (C1) for levels that include the speciation event tends to generate more error,
our present implementation weights such levels by the expected time to the most recent event rather than to the most
recent coalescence.

APPENDIX D: APPROXIMATION OF LIKELIHOODS

Our method for locating the mode of the likelihood function V̂ ¼ ðp̂; dl=u; duN0 ; duN1 ; duN2Þ relies on a two-phase
search procedure. The first phase characterizes the major features of likelihood surface across the five-dimensional
parameter space and determines a preliminary estimate of V̂: This point is then used to seed a more refined, steepest-
descent search for V̂:

Random search: Likelihoods of a large number of points randomly chosen in the five-dimensional parameter space
are estimated. The parameter space is subdivided into bins and the likelihoods of points falling within the same bin are
averaged to obtain an estimate of the likelihood of the point at the center of the bin. In the study described here,
preliminary exploration of the likelihood surface suggested a trust region spanning the zero point up to a limit for
each of the five parameters (p, 1; l/u, 1.5; uN0, 10; uN1, 10; uN2, 40) within which the likelihoods of �200,000 random
points were estimated, each from 10,000 sampled histories. The size of the bins corresponded to 0.01 for the p and l/u
dimensions and 0.1 for uN0, uN1, and uN2.

For each parameter, we generate an approximate Bayesian posterior marginal distribution under uniform prior
distributions for all parameters. Our preliminary estimate of the maximum-likelihood parameter set corresponds to
the modes for the five parameters. For each parameter, a conditional-likelihood curve is estimated using 500,000
sampled histories under a driving value corresponding to the preliminary ML parameter values. The seed passed to
the second phase of the mode search corresponds to these preliminary MLEs, subject to small modifications to
improve the correspondence between the driving values of the conditional-likelihood curves and their modes.

Steepest-descent search: Beginning with the assignment of the seed point as the driving model, the steepest-ascent
code determines a succession of driving models. For iteration iwith driving modelV(i), a local estimate of the direction
of higher likelihoods is determined by comparing likelihoods at points on a lattice around V(i). For the jth parameter
V

ðiÞ
j ; we consider three values,

V
ðiÞ
Kj

¼ V
ðiÞ
j 1K e;

for K 2 f�1, 0, 1g and e a small step size. The lattice point with greatest IS-estimated likelihood determines the search
direction D. Restricting consideration to search direction D, we then determine for each parameter the best number
(up to a specified maximum) of steps of size e by estimating likelihoods at all combinations of step numbers for all
parameters. We propose a move to Ṽ; corresponding to the point with the highest likelihood.
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We accept the proposed point Ṽ only if its likelihood estimated using itself as the driving model exceeds that
estimated using the present V(i) as the driving model. Upon acceptance, the algorithm sets

Vði11Þ ¼ Ṽ

and initiates another cycle. Upon rejection, it either terminates, after a specified number of consecutive rejections, or
initiates another cycle from V(i).

To guard against settling on local modes, we repeat this procedure several times, beginning from perturbations of
the seed value.

APPENDIX E: PROFILE-LIKELIHOOD SURFACE

Having assigned p as 0.0001, we used IS with the MLEs (Table 4) as driving values to approximate the likelihood
surface over the remaining four dimensions at 20,000 grid points (l/u, 10 values beginning at 0.0 with a step size of
0.1; uN0 and uN1, 10 values from 0.01, step size 0.75; uN2, 20 values from 0.01, step size 2.0), each based on 300,000
sampled genealogical histories. Invoking the csapi function of the MatLab spline toolbox, we approximated the full
four-dimensional likelihood surface using multivariate cubic splines (de Boor 2001). We then discretized the
interpolated surface on a finer grid, beginning at zero for each of the four parameters with smaller step sizes (l/u,
0.02; uN0 and uN1, 0.25; uN2, 1.0). From these .1.7 3 106 estimated and interpolated points, we generated the profile-
likelihood curves by determining for each value of a given parameter the values of the remaining three parameters
that gave the highest likelihood.
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