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The Petunia hybrida genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix

(BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal

cells. Mutation of PH4 results in a bluer flower color, increased pH of petal extracts, and, in certain genetic backgrounds, the

disappearance of anthocyanins and fading of the flower color. PH4 encodes a MYB domain protein that is expressed in the

petal epidermis and that can interact, like AN2, with AN1 and the related BHLH protein JAF13 in yeast two-hybrid assays.

Mutation of PH4 has little or no effect on the expression of structural anthocyanin genes but strongly downregulates the

expression of CAC16.5, encoding a protease-like protein of unknown biological function. Constitutive expression of PH4

and AN1 in transgenic plants is sufficient to activate CAC16.5 ectopically. Together with the previous finding that AN1

domains required for anthocyanin synthesis and vacuolar acidification can be partially separated, this suggests that AN1

activates different pathways through interactions with distinct MYB proteins.

INTRODUCTION

In plants, the vacuole occupies a large part (up to 90%) of the cell

volume and is important for a variety of physiological processes,

such as pH homeostasis, osmoregulation, ion transport, and stor-

age of metabolites. Moreover, it plays an important role in cell

growth, because the enlargement of a cell is mostly attributable

to an increase in the volume of the vacuole rather than of the

cytoplasm (reviewed in Taiz, 1992; Maeshima, 2001; Gaxiola et al.,

2002).

The lumen of vacuoles is acidic compared with the cytoplasm,

and in some cells (e.g., in lemon [Citrus limon] fruit) it can reach

pH values as low as 1. Among the most abundant proteins on

the vacuolar membrane are vacuolar ATPase (v-ATPase) and

pyrophosphatase proton pumps (Szponarski et al., 2004) that

transport protons from the cytoplasm into the vacuole, thereby

contributing to the acidification of the vacuolar lumen. The

resulting electrochemical gradient across the vacuolar mem-

brane is the driving force for the transport of a variety of

compounds (ions, sugars) via secondary symport and antiport

transporters and channels (reviewed in Taiz, 1992; Maeshima,

2001; Gaxiola et al., 2002).

In most species, the coloration of flowers and fruits results

from the accumulation of flavonoid pigments (anthocyanins) in

the vacuoles of (sub)epidermal cells. Because the absorption

spectrum of anthocyanins depends on the pH of their environ-

ment (de Vlaming et al., 1983), the color of a tissue depends in

part on the pH of the vacuolar lumen, thus making flower color a

convenient and reliable reporter tomonitor alterations in vacuolar

pH (Yoshida et al., 1995, 2003)

In morning glory (Ipomoea tricolor) petals, the vacuolar pH is

relatively low when the flower bud opens, resulting in a red color,

but upon further maturation, the vacuolar pH increases and the

petals acquire a strong blue color (Yoshida et al., 1995). This

color change and the increase of vacuolar pH require a putative

Naþ/Hþ exchanger encoded by the PURPLE gene (Fukada-

Tanaka et al., 2000). Most likely, PURPLE transports sodium ions

into and protons out of the vacuole, resulting in a less acidic

vacuole and a bluer color.

Petunia hybrida flowers normally have a lower pH than Ipo-

moea flowers, and the color of wild-type flowers stays on the

reddish (low pH) side of the color spectrum. By genetic analyses,

seven loci (named PH1 to PH7) have been identified that, when

mutated, cause a more bluish flower color and an increase in the

pHof crude petal extracts (Wiering, 1974; de Vlaming et al., 1983;

van Houwelingen et al., 1998), suggesting that these genes are

required for acidification of the vacuole (de Vlaming et al., 1983).

Mutations in the genes ANTHOCYANIN1 (AN1), AN2, and AN11

cause, besides the loss of anthocyanin pigments, an increased

pH of petal extracts. That this pH shift is at least in part

attributable to an increased pH of the vacuolar lumen was

evident from the bluish flower color specified by particular an1

alleles (formerly known as ph6) that lost the capacity to activate

the vacuolar acidification function but could still drive anthocy-

anin synthesis (Spelt et al., 2002).
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AN1 and AN11 are required for transcriptional activation of a

subset of structural anthocyanin genes, encoding the enzymes

of the pathway, in all pigmented tissues (Quattrocchio et al.,

1993) and encode a basic-helix-loop-helix (BHLH) transcription

factor and a WD40 protein, respectively (de Vetten et al., 1997;

Spelt et al., 2000). AN2 encodes a MYB-type transcription factor

whose function appears to be (partially) redundant, because it is

expressed only in petals and not in other pigmented tissues

(Quattrocchio et al., 1999). Moreover, even in the an2 null mutant,

pigmentation of the petals is reduced, but not fully blocked, and

the pH shift in an2 petal homogenates is smaller than that in an1

or an11 petals (Quattrocchio et al., 1993; Spelt et al., 2002). In

addition, AN1 and AN11 play a role in the development of

epidermal cells in the seed coat (Spelt et al., 2002).

The anthocyanin pathway has been shown to be activated by

similar MYB, BHLH, and WD40 proteins in a wide variety of

species, indicating that this function is well conserved (reviewed

in Winkel-Shirley, 2001; Koes et al., 2005). Several studies

revealed that these MYB, BHLH, and WD40 proteins could

interact physically, indicating that they may operate in one

transcription activation pathway and may activate their target

genes as a (ternary) complex (Goff et al., 1992; Zhang et al., 2003;

Baudry et al., 2004; Kroon, 2004; Zimmermann et al., 2004).

Besides petunia, Arabidopsis thaliana is the only other species in

which these activators are known to control multiple processes.

In Arabidopsis, the WD40 protein TRANSPARENT TESTA

GLABRA1 (TTG1) (Walker et al., 1999) is required for the syn-

thesis of anthocyanin and proanthocyanidin pigments, the pro-

duction of seed mucilage, and the development of trichomes on

stems and leaves (Koornneef, 1981), whereas in roots it sup-

presses the formation of root hairs in certain cells (Galway et al.,

1994). During the regulation of anthocyanin synthesis, trichome

development, and nonhair development in the root, TTG1 coop-

erates with two functionally equivalent BHLH proteins encoded

by GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3)

(Payne et al., 2000; Bernhardt et al., 2003; Ramsay et al., 2003;

Zhang et al., 2003), whereas synthesis of proanthocyanidins in

the seed coat depends on a distinct BHLH protein encoded by

TRANSPARENT TESTA8 (TT8) (Nesi et al., 2000). TTG1 andGL3/

EGL3 or TT8 activate these distinct processes by associating

with distinct MYB partners. During trichome development, they

interact with R2R3 MYBs encoded by GLABROUS1 (GL1) or

MYB23 (Oppenheimer et al., 1991; Kirik et al., 2001, 2005), and

for the development of nonhair cells in the root they interact with

a functionally equivalent MYB encoded by WEREWOLF (WER)

(Lee and Schiefelbein, 2001), whereas for anthocyanin synthesis,

their MYB partner is probably PRODUCTION OF ANTHOCYA-

NIN PIGMENT1 (PAP1) or PAP2 (Borevitz et al., 2000; Baudry

et al., 2004; Zimmermann et al., 2004).

The involvement of anthocyanin regulators in trichome and

root hair development is seen only inArabidopsis and not in other

species for which regulatory anthocyanin mutants have been

isolated, such asAntirrhinummajus, maize (Zeamays), or petunia.

Nevertheless, RED (R) (BHLH) and PALE ALEURONE COLOR

(PAC1) (WD40) from maize can restore the hair defects in Arabi-

dopsis ttg1 mutants (Lloyd et al., 1992; Carey et al., 2004),

indicating that the functional diversification did not depend on

alterations in these WD40 and BHLH proteins but on the diver-

gence of their MYB partners and/or their downstream target

genes. Whether these MYB, BHLH, and WD40 proteins also

activate vacuolar acidification in species other than petunia is

unclear.

To unravel the mechanisms and the biochemical pathways by

which AN1, AN11, and AN2 control vacuolar pH, we set out to

isolate the genetically defined PH loci by transposon-tagging

strategies and the downstream structural genes by RNA profiling

methods. Here, we describe the isolation and molecular char-

acterization of PH4. We show that PH4 is a member of the MYB

family of transcription factors that is expressed in the petal

epidermis and that can interact physically with AN1 and JAF13, a

functionally related BHLHprotein that can also drive anthocyanin

synthesis (Quattrocchio et al., 1998). Because PH4 plays no

apparent role in anthocyanin synthesis, we propose that AN1

activates anthocyanin synthesis and vacuolar acidification

through interactions with distinct MYB proteins.

RESULTS

Mutations That Alter pH in Petals

The petunia line R27 contains functional alleles for all of the

regulatory anthocyanin genes that color the petal (AN1,AN2, and

AN11) but contains mutations in the structural genes HYDROX-

YLATION AT FIVE (HF1) and HF2, both encoding FLAVONOID

3959 HYDROXYLASE (Holton et al., 1993), and RHAMNOSYLA-

TION AT THREE (RT), encoding ANTHOCYANIN RHAMNOSYL-

TRANSFERASE (Kroon et al., 1994); consequently, the major

anthocyanins synthesized are cyanidin derivatives (de Vlaming

et al., 1984; Wiering and de Vlaming, 1984) (Figure 1). In addition,

R27 is mutant for FLAVONOL (FL), which strongly reduces

flavonol synthesis (Figure 1) and increases the accumulation of

cyanidin derivatives (de Vlaming et al., 1984; Wiering and de

Vlaming, 1984) (Figure 1). Consequently, the flowers of R27 have

a bright red color (Figure 2A). The lines W138 and W137 derive

from R27 by dTPH1 insertions in AN1 and AN11, respectively

(alleles an1-W138 and an11-W137), and, consequently, bear

white flowers with red or pink revertant spots (Doodeman et al.,

1984a, 1984b) (Figure 2B).

Among progeny of W138 and W137, we found several new

mutations affecting flower color (van Houwelingen et al., 1998;

Spelt et al., 2002). In one class of mutants, the color of theAN1 or

AN11 revertant spots (in an an1-W138 or an11-W137 back-

ground) (Figure 2C) or of the whole corolla (in an AN1 or AN11

germinal revertant) had changed from red to purplish (Figures 2D

and 2E). Subsequent complementation analyses showed that

these mutations represented new alleles of PH2 (allele ph2-

A2414), PH3 (allele ph3-V2068), and PH4 (alleles ph4-V2166,

ph4-B3021, ph4-X2052, and ph4-V2153) (see Supplemental

Table 1 online). Yet another unstable ph4 allele (ph4-X2377) was

recovered from the Syngenta breeding program in a family

segregating 3:1 for wild types with red petals and mutants with

purplish petals with an occasional revertant red spot.

The alleles ph4-V2166, ph4-V2153, an1-W138, an1-W225,

and an11-W134 all cause a similar increase in petal extract pH

(Figure 2F) (Spelt et al., 2002). To determine at which stage AN1,
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AN11, PH3, and PH4 are active, we analyzed flowers of different

developmental stages. Figure 2G shows that wild-type petals

start to acidify around developmental stage 4, when the bud is

about to open. In an1, ph3, and ph4mutants, this acidification is

reduced but not blocked completely. This finding suggests that

multiple vacuolar acidification pathways operate in petals, some

of which are independent of AN1, AN11, PH4, and PH3. Analysis

of double mutant flowers showed that the pH of an1 ph4 or an11

ph4 petal homogenates is not significantly different from that of

any of the singlemutants, suggesting that these genes operate in

the same vacuolar acidification pathway (Figure 2F).

To test whether alterations in pigment synthesis also contrib-

uted to the color change inph4petals, we analyzed anthocyanins

in wild-type (R27) and ph4-V2153 petals of closed buds (stage 4)

by HPLC. Figure 2H shows that both genotypes accumulate a

nearly identical mixture of anthocyanins. R27 petals synthesize

only small amounts of flavonol copigments (quercetin deriva-

tives) as a result of its fl/fl genotype, and HPLC analysis did not

reveal clear differences in the accumulation of these compounds

in ph4 petals (see Supplemental Figure 1 online). Thus, the ph4

mutation has, at least in the R27 genetic background, little or no

effect on the synthesis and modification of anthocyanins.

Early genetic work had shown that a mutation in PH4 or a

closely linked gene triggers the complete fading of flower color

and the disappearance of anthocyanins after opening of the

flower bud, if combined with a dominant allele at the FADING

locus (Wiering, 1974; de Vlaming et al., 1982). Anthocyanins

with a 3RGac5G substitution pattern are particularly sensitive to

fading, whereas the 3-glucosides (as in rt mutants like R27 and

derived lines) and the 3-rutinosides show little or no fading (de

Vlaming et al., 1982). When we crossed the unstable ph4-V2166

allele into a genetic background that allows the synthesis of

3RGac5G-substituted anthocyanins, the flowers displayed

upon opening a blue-violet color and were dotted with red-violet

spots and sectors resulting from reversions of ph4 (Figure 2H). In

the next days, the color of the blue-violet (ph4) cells faded to

nearly white, whereas the red-violet (PH4) revertant sectors

retained their color. Control crosses with isogenic PH4 plants

(lines R27 and W138) yielded only progeny with evenly red-

colored, nonfading corollas, whereas crosses with a stable reces-

sive ph4-V2153 parent gave only progeny with evenly colored

blue-violet, fading corollas (ph4). This finding demonstrates that it

is the mutation of PH4, and not that of a linked gene, that triggers

fading.

The an1-G621 allele expresses a truncated AN1 protein that

can drive anthocyanin synthesis but not vacuolar acidification

(Spelt et al., 2002). When crossed into a background that allows

the synthesis of 3RGac5G-substituted anthocyanins, the an1-

G621 allele also triggered fading (Figure 2I), and similar results

were obtained with the an1-B3196 allele in distinct crosses.

Strikingly, the unstable ph2-A2414 (Figure 2J) and ph5 (data

not shown) alleles did not induce fading when crossed into an FA

background synthesizing 3RGAac5G-substituted anthocyanins,

suggesting that fading in an1 and ph4 petals is not triggered by

the upregulation of vacuolar pH alone and may depend on some

other vacuolar defect.

Isolation of PH4 Using Transposon-Tagged Alleles

Because most mutant alleles that arose in W138 were attribut-

able to insertions of a 284-bp dTPH1 transposon (Souer et al.,

1996; de Vetten et al., 1997; van Houwelingen et al., 1998;

Quattrocchio et al., 1999; Spelt et al., 2000; Tobeña-Santamaria

et al., 2002; Vandenbussche et al., 2003), we anticipated that the

unstable alleles ph4-V2166, ph4-X2052, and ph4-B3021 might

also harbor insertions of dTPH1.

To identify the dTPH1 copy in ph4-B3021, we analyzed dTPH1

flanking sequences in mutant and wild-type plants by transpo-

son display (van den Broek et al., 1998) and found a 98-bp

fragment that was amplified from the three ph4-B3021 plants

analyzed but not from the two wild-type plants homozygous for

the parental PH4 allele (Figure 3A). Subsequent isolation, clon-

ing, and sequencing of this fragment showed that it contained 66

bp of dTPH1 sequence and 32 bp of flanking sequence that was

identical to a cDNA clone (MYBa) that had been isolated inde-

pendently by yeast two-hybrid screen using an AN1 bait (see

below).

PCR experiments with gene-specific primers showed that in

ph4-B3021 and ph4-V2166 plants, MYBa was disrupted by a

284-bp dTPH1 insertion in the 59 and 39 ends of the protein-

coding region, respectively (Figure 3B). Analysis of PH4 progeny

plants that originated from germinal reversions of ph4-B3021

Figure 1. Genetic Control of the Anthocyanin Pathway in Petunia Petals.

The main anthocyanins and flavonols (gray boxes) are synthesized via a

branched pathway. Genes that control distinct steps are indicated in

boldface italics. Malonyl-CoA and p-coumaroyl-CoA are converted by

the enzymes CHALCONE SYNTHASE (expressed from two distinct

genes, CHSa and CHSj), CHALCONE ISOMERASE (encoded by CHIa),

and FLAVONOID 3 HYDROXYLASE (encoded by AN3) into dihydro-

kaempferol (dHK). Hydroxylation of dHK on the 39 or the 39 plus 59

position is controlled by HT (for HYDROXYLATION AT THREE) and the

homologs HF1 and HF2 (for HYDROXYLATION AT FIVE) to yield

dihydroquercitin (dHQ) and dihydromyricitin (dHM), respectively. The

simplest anthocyanins in petunia flowers are 3-glucosides (3G). Through

the action of RT (for RHAMNOSYLATION AT FIVE) and AAT (for

ANTHOCYANIN-RUTINOSIDE ACYLTRANSFERASE) and others, antho-

cyanins with a 3-rutinoside p-coumaroyl-5-glucoside (3RGac5G) substi-

tution pattern are generated. The colors displayed by the various

anthocyanins (in a fl PH background) are shown in parentheses.
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Figure 2. Phenotypic Analysis of Flower Pigmentation Mutants.

(A) Flower of the wild-type line R27 (AN1, AN11, PH4).

(B) Flower of the line W137 (an11-W137, PH4) showing AN11-R revertant sectors, resulting from excisions of dTPH1, on a white (an11-W137)

background.

(C) Flower homozygous for the unstable alleles an11-W137 and ph4-B3021. Reversion of an11-W137 results in spots with a purplish color rather than

red, as a result of the ph4-B3021 mutation. Somatic reversions of ph4-B3021 can be seen occasionally as red (PH4-R) spots within the purplish ph4-

B3021 sectors (inset).

(D) Flower of line R154 harboring the unstable ph4-V2166 allele in an AN1-R AN11-R background. Note the red PH4 revertant sectors on the purplish

ph4 background.

(E) Flower of line R149 harboring the stable recessive ph4-V2153 allele in an AN1-R AN11-R genetic background.
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(Figure 3C) and ph4-V2166 (Figure 3D) showed that reversion of

the ph4 phenotype correlated with excision of dTPH1 from

MYBa.

DNA analyses of plants containing ph4-X2052 or ph4-C3540,

either in homozygous or heterozygous condition, showed that

these mutants also contained dTPH1 insertions in MYBa,

whereas the stable recessive ph4-V2153 mutants contained an

;4-kb TPH6 insertion that is nearly identical to the TPH6

element found in the alleles an1-W17 and an1-W219 (Spelt

et al., 2002) (Figure 3B). Plants harboring the weakly unstable

ph4-X2377 allele contained a 177-bp insertion 29 bp down-

stream from the translation start site. The insertion is flanked by

an 8-bp target site duplication and has a 12-bp terminal inverted

repeat with similarity to the terminal inverted repeats of hAT

family transposons, including dTPH1 and Activator from maize.

Because the internal sequences of the insertion show no simi-

larity to other transposons and are too short to encode a

transposase, it apparently represents a new (sub)family of non-

autonomous petunia transposons that we named dTPH7. The

ph4 lines V64 andM60both contain adTPH1 insertion inMYBa in

exactly the same position (Figure 3B).

In summary, these data show that mutations in the isolated

gene (MYBa) fully correlate with the phenotype conferred by the

ph4 mutant, implying that PH4 is identical to MYBa. Below, we

refer to this gene as PH4.

PH4 Encodes a MYB Domain Protein

Sequence analysis of a full-size PH4 cDNA and the correspond-

ing genomic region showed that the PH4 mRNA is encoded by

two exons separated by a 715-bp intron (Figure 3B). The cDNA

contains a single large open reading frame encoding a 291–

amino acid protein. Database searches showed that a 103–

amino acid domain, located near the N terminus, is conserved in

a large number of plant and animal proteins all belonging to

the MYB family of transcription factors (Figures 4A and 4B). The

MYB domain consists of one, two, or three helix-helix-turn-helix

motifs that potentially bind DNA. PH4, like the majority of plant

MYBs (Stracke et al., 2001), contains only the repeats R2 and R3

(Figure 4B).

R2R3 MYB genes constitute a large family of ;125 genes in

Arabidopsis and >85 genes in rice (Oryza sativa) and have been

categorized into 42 subgroups based on similarities in the

encoded proteins and intron–exon structures (Stracke et al.,

2001; Jiang et al., 2004). Generally, sequence similarity between

MYB proteins is restricted to the N-terminal MYB domain, but 19

subgroups of R2R3 MYBs share some conserved motifs in their

C-terminal domains that may indicate similarities in function

(Stracke et al., 2001; Jiang et al., 2004).

PH4 is most similar to the R2R3 MYB proteins BNLGHi233

from upland cotton (Gossypium hirsutum), MYBCS1 and MYB5

from grape (Vitis vinifera), MYB5 from Arabidopsis, and

MYB4 from rice (Figure 4A). The clustering of R2R3 MYBs in

Figure 4 is in good agreement with previous analyses based on a

much larger set of MYBs (Stracke et al., 2001; Jiang et al., 2004)

and extends the data at some points. For example, grape

MYBA1 and tomato (Solanum lycopersicum) ANT1, recently

identified regulators of the anthocyanin pathway in grape

(Kobayashi et al., 2004) and tomato (Mathews et al., 2003),

respectively, cluster with knownmembers (AN2 of petunia, PAP1

and PAP2 of Arabidopsis) of subgroups 6 and N9 as defined by

Stracke et al. (2001) and Jiang et al. (2004), respectively. Curi-

ously, C1 andPl, regulators of the anthocyanin pathway inmaize,

cluster in a distinct group (5/N8) together with TT2, a regulator of

proanthocyanidin and anthocyanin synthesis in Arabidopsis

(Shirley et al., 1995), again consistent with previous results.

ODO1, an activator of the synthesis of phenylpropanoid vol-

atiles in petunia flowers, clusters with Arabidopsis MYB42 and

MYB85, similar to previous results (Verdonk et al., 2005), but it

does not contain the conserved motif found in the C termini of

MYB42 and MYB85 (Jiang et al., 2004).

Figure 4B shows that PH4,ArabidopsisMYB5, grapeMYBCS1

and MYB5, cotton BNLGHi233, and rice MYB4 share two con-

servedmotifs in their C-terminal domains. Suchmotifs have been

used as signatures for the classification of subgroups (Stracke

et al., 2001; Jiang et al., 2004). Given that these C-terminal motifs

in PH4 and related R2R3 MYBs are much better conserved than

those in proteins of subgroup N9, we propose that these MYBs

form a new subgroup that we tentatively named G20, in accor-

dance with the numbering of Jiang et al. (2004). This classification

Figure 2. (continued).

(F) pH values (means6 SD; n¼ 7) of petal homogenates of different genotypes in the R27 genetic background. Note that the absolute pH values that are

measured show some variation in time, possibly in response to variable environmental conditions in the greenhouse, although the differences between

mutants and the wild type are virtually constant.

(G) Petal homogenate pH (means6 SD; n¼ 5) during flower development in wild-type, an1, ph3, and ph4 petals. Developmental stages were defined as

follows: stage 2, 30- to 35-mm buds; stage 3, 35- to 45-mm buds; stage 4, buds of maximum size (45 to 50mm); stage 5, unfolding flowers; stage 6, fully

open flowers around anthesis.

(H) HPLC analysis of methanol-extractable anthocyanins in petals of stage 4 flower buds from lines R27 (PH4) and R149 (ph4-V2153). The arrows

denote the retention time of cyanidin 3-glucoside.

(I) Phenotype of ph4-V2166/ph4-V64 flowers in a background that allows the synthesis of 3RGac5G-substituted anthocyanins, resulting from the cross

R149 3 V64, showing subsequent stages (from left to right) of flower color fading. Note that the blue-violet ph4 cells fade, whereas the red-violet PH4

revertant sectors (white arrows) do not.

(J) Phenotype of an1-G621/an1-W138 flowers in a background that synthesizes 3RGac5G-substituted anthocyanins, showing subsequent stages (from

left to right) of flower color fading. Note that mutant (an1-G621) tissues fade, whereas full AN1 revertant sectors (mostly originating from excisions of

dTPH1 from an1-W138) do not fade.

(K) Phenotype of a mature ph2-A2414 flower (comparable to the rightmost flowers in [I] and [J]) in a background (R160 3 V26) that synthesizes

3RGac5G-substituted anthocyanins. Note that neither the PH2 tissue (red-violet sectors) nor the ph2 tissue (blue-violet background) displays fading.
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is supported by the finding that both ArabidopsisMYB5 and PH4

contain only one intron (Li et al., 1996) (Figure 3), whereas the

majority of R2R3 MYBs contain two (Jiang et al., 2004).

Yeast two-hybrid assays showed that Arabidopsis MYB5

(Zimmermann et al., 2004) and PH4 (see below) can interact

physically with functionally similar BHLH proteins, consistent

with the idea that they have similar functions. However, the

expression pattern of MYB5 (Li et al., 1996) seems quite different

from that of PH4 (see below). Rice MYB4 induces freezing and

chilling tolerance when constitutively expressed in Arabidopsis

(Vannini et al., 2004), and grape MYB5 induces the synthesis of

anthocyanins and proanthocyanidins when overexpressed in

tobacco (Nicotiana tabacum) (Deluc et al., 2006). Definite proof

for functional equivalence and/or orthology will require the

swapping of genes between species and/or the identification

of (direct) target genes (see Discussion).

Expression of PH4 and Mutant Alleles

To determine the expression pattern of PH4, we measured the

amount of PH4 mRNAs in different tissues of the wild-type line

V30 by RT-PCR.We used line V30 because it contains functional

alleles of all regulatory pigmentation genes (Koes et al., 1986),

whereas R27 is mutant for an4, a regulator of anthocyanin

synthesis and AN1 expression in anthers (Quattrocchio et al.,

1993; Spelt et al., 2000). Figure 5A shows that PH4 is relatively

strongly expressed in the limb of the petal, whereas in the tube

only weak PH4 expression is detected. Possibly, the low amount

of transcripts in the tube sample originated from cells near the

border of the limb and the tube. The expression in the limb

reaches a maximum at developmental stages 5 to 6 (Figure 5A),

when the bud is opening, which correlates with the moment that

pH differences were first seen between wild-type and ph4 petal

limb extracts (Figure 2E).

Ovaries are the only other tissue besides petals in which we

detected clear PH4 expression. This organ also expresses AN1

(Figure 5A) (Spelt et al., 2000), which directs the activation of the

anthocyanin biosynthetic gene DFR, but for unknown reasons

this does not result in the accumulation of anthocyanin pigments

(Huits et al., 1994).

Anthers of V30 are pigmented by anthocyanins and express

AN1 mRNA during early stages of development (stages 1 to 3).

However, no PH4 transcripts were detected in this tissue. The

same holds for the stigma and style. AN1 is weakly expressed in

sepals, leaves, and stems of V30, which correlates with the

synthesis of low amounts of anthocyanin; PH4, however, is not

expressed in these tissues. Roots are normally not pigmented

and do not express PH4 or AN1.

To examine to what extent the transposon insertions affected

the expression of PH4, we analyzed ph4mRNAs in petal limbs of

different mutants by RNA gel blot analysis, RT-PCR (data not

shown), and rapid amplification of 39 cDNA ends (39RACE).

Figure 5B shows that the amount ofPH4 transcripts in petal limbs

homozygous for the ph4 alleles X2052, B3021, C3540, and

V2166 is strongly reduced compared with that of the isogenic

wild-type line R27. The same holds for PH4 transcripts ex-

pressed from the X2377 allele compared with an isogenic rever-

tant (ph4-X2377R). Presumably, the dTPH1 insertions in these

alleles result in highly unstablemRNAs that are rapidly degraded.

The small amount of wild-type-size PH4 transcripts in these

corollas presumably originates from cells in which dTPH1 was

excised from PH4.

The insertions in ph4-V64 and ph4-V2153 cause the accumu-

lation of short ph4 transcripts. Cloning and sequencing of these

products revealed that they resulted from polyadenylation within

the dTPH1 and TPH6 sequences, respectively, and encode

Figure 3. Molecular Analysis of PH4.

(A) Transposon display analysis of plants homozygous for the parental

wild type (þ/þ) or the mutable ph4-B3021 allele (m/m). The rightmost

lane contains a radiolabeled 123-bp size marker. The arrow indicates a

fragment derived from PH4.

(B)Map of the PH4 gene and mutant alleles. Boxes represent exons, and

the thin line represents an intron. Protein-coding regions are indicated by

double height, and the region encoding the R2 and R3 repeats of the

MYB domain is filled in black. The open and closed circles represent the

start and stop codons, respectively. The triangles indicate transposon

insertions in the indicated alleles: the large open triangle represents

TPH6, the mid-size closed triangles represent dTPH1, and the small

open triangle represents dTPH7.

(C) PCR analysis of plants harboring ph4-B3021 and derived stable ph4

alleles. þ indicates the parental wild-type allele, m indicates the mutable

ph4-B3021 allele, R1 indicates a derived revertant allele, and – indicates a

stable recessive ph4 allele. The primers used were 583 and 1060 (Table 1).

(D) PCR analysis of plants harboring ph4-V2166 and derived germinal

revertant alleles. m represents the mutable ph4-V2166 allele, and R1, R2,

and R3 represent three independently isolated revertant alleles. The

primers used were 690 and 582.
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truncated PH4 proteins that contain only part of the DNA binding

and protein–protein interaction domains. Although truncations of

transcription factors can have dominant-negative effects (Singh

et al., 1998; Ferrario et al., 2004), this is apparently not the case

here, as ph4-V64 and ph4-V2153 are recessive mutations.

PH4 Interacts with AN1 and JAF13

To analyze themechanism bywhich AN1 regulates anthocyanin

synthesis and intracellular pH, we used the yeast two-hybrid

system to search for proteins that interact with AN1. Therefore,

we constructed a plasmid that expresses a bait protein con-

sisting of the conserved 238 N-terminal amino acids of AN1

fused to the DNA binding domain of GAL4 (AN11-238GAL4BD)

and screened a yeast two-hybrid cDNA library made from R27

petal RNA.

In 23 of 5 3 105 yeast transformants, the introduction of the

cDNA plasmid resulted in reproducible activation of the GAL4-

responsive HIS3 and ADE2 reporter genes, resulting in His and

adenine auxotrophy. Sequence analysis showed that these 23

transformants contained cDNAs derived from four different

genes, all encoding MYB proteins. Seventeen clones contained

partial cDNAs from PH4, and three clones contained partial

cDNAs of AN2. The three remaining clones encode two MYB

Figure 4. Similarity of PH4 to Other MYB Proteins.

(A) Phylogenetic tree displaying the similarity of PH4 to other R2R3 MYB proteins. The tree was based on an alignment of the 104 amino acids spanning

the MYB domain (see Supplemental Figure 2 online). Names of the various proteins are given in boldface uppercase letters, and their origin is indicated

by a two-letter prefix: Am is Antirrhinum, Ph is petunia, At isArabidopsis, Zm is maize, Sl is tomato, Vv is grape, and Gh is cotton. The function of some of

the proteins is given in parentheses and, if substantiated by a loss-of-function phenotype, an exclamation point. The gray boxes indicate

representatives of subgroups of related R2R3 MYB proteins defined previously (Stracke et al., 2001; Jiang et al., 2004); proteins in subgroups with G

numbers share conserved sequences in their C termini, whereas proteins in subgroups with N numbers do not (Jiang et al., 2004). Because R2R3MYBs

from the PH4 subgroup share sequence similarity in their C termini, they are classified as a new G subgroup that we tentatively labeled ‘‘G20.’’ Numbers

at branch points indicate bootstrap support (1000 replicates).

(B) Alignment of PH4 to R2R3 MYB proteins of subgroups N9 and G20. Identical amino acids are indicated in black, similar amino acids in gray. Dashes

represent gaps introduced to improve the alignment. The R2 and R3 repeats that make up the MYB domain are indicated above the alignment. Regions

in the C-terminal domains that are conserved between members of the N9 and G20 subgroups are boxed. Amino acids homologous with residues in

maize C1 that are required for physical interaction with R and for R-dependent transcriptional activation (Grotewold et al., 2000) are indicated above the

sequence with white and black circles, respectively. Amino acids in Arabidopsis TT2 that are involved in the interaction with a BHLH partner and/or the

activation of the DFR promoter (Zimmermann et al., 2004) are indicated with squares: residues with strong effect on TT2 activity when mutated are

indicated by black squares, and those with mild or small effect are indicated by gray and white squares.
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domain proteins (named MYBb1 and MYBx) that had not been

identified previously (Kroon, 2004). A detailed functional analysis

of the latter will be published elsewhere.

To analyze the two-hybrid interaction between PH4 and AN1 in

more detail, we made new constructs to express the full PH4

(PH41-291) and AN2 (AN21-255) proteins as fusions to either the

activation domain of GAL4 (GAL4AD) or GAL4BD (Figure 6A). When

expressed (alone) in yeast, PH41-191GAL4BD and AN21-255GAL4BD

strongly activated the GAL4-activated HIS3, ADE, and LACz

reporter genes, whereas GAL4BD did not, suggesting that PH4

and AN2 both contain a strong transcription activation domain, as

was shown previously for C1 from maize (Goff et al., 1991).

Because of the autoactivation of PH4-GAL4BD and AN2-GAL4BD

fusions, we used instead fusions to GAL4AD to analyze two-hybrid

interactions with AN1 and JAF13.

Figure 6B shows that a fusion of full PH4 to GAL4AD

(PH41-291GAL4AD) interacts in a two-hybrid assay with GAL4BD

fusions containing full AN1 or its conserved N-terminal domain

(AN11-668GAL4BD and AN11-238GAL4BD), but not with GAL4BD

alone. Subsequent biochemical experiments showed that in vitro

translated AN1 and PH4 could be coimmunoprecipitated with an

anti-AN1 serum, confirming that the observed two-hybrid re-

sponse resulted from a direct physical interaction between both

proteins (see Supplemental Figure 3 online). The interaction

between PH4 and AN1 appeared equally strong as that between

AN2 and AN1, because both combinations activated the ADE2

and LACz genes to a similar extent. Furthermore, AN2 and PH4

interacted with similar efficiency with the N-terminal domain of

JAF13, as they did with the same domain of AN1.

When tested separately, we found that the C termini of AN2

and PH4 (PH4127-291 and AN2115-255) did not interact at all with

AN1 or JAF13, whereas the N-terminal parts containing the MYB

domain (PH1-134 and AN21-121) gave aweak two-hybrid response

that could be unambiguously scored with the ADE reporter but

Figure 5. Expression Analysis of PH4.

(A) RT-PCR analysis of PH4 and AN1 mRNAs from organs (petal limbs, petal tubes, anthers, ovaries, and sepals) of flowers of different developmental

stages (1 to 6) and from leaves, roots, stems, and stigma plus style.

(B) 39RACE analysis of mRNAs expressed from mutant ph4 alleles. RNA was isolated from petals of stages 4 and 6 flowers homozygous for different

ph4 alleles, as indicated above the lanes. RT products were amplified with a primer complementary to the 59 untranslated mRNA region immediately

upstream of the start codon (primer 1107) and the poly(A) tail.

(C) Structure of mutant ph4 mRNAs. The exons and protein-coding regions are drawn as in Figure 3B. The half-triangles with poly(A) at the 39 ends of

ph4-V64 and ph4-V2153 mRNAs denote dTPH6 and dTPH1 sequences, respectively.
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was barely detectable with the LACz reporter (Figure 6B). The

weak response of the separated AN2 and PH4 domains relative

to the full proteins may result from (1) a reduced transcription

activation potential of PH41-134 and AN21-121complexes relative

to the full proteins, attributable to the removal of the strong

transcription activation domain in their C termini, (2) aberrant

folding of the isolated MYB domains, and/or (3) the MYB regions

containing only part of the interaction domain.

A detailed characterization ofmaizeC1 (Grotewold et al., 2000)

and Arabidopsis PAP1 (Zimmermann et al., 2004) identified

several amino acids in the first helix of the R3 domain that are

critical for the interaction with their BHLH partner (R and EGL3,

respectively) and/or the transcription activation of downstream

genes. These residues are conserved in AN2 andPH4 (Figure 4B)

andmay play a critical role in the interaction with AN1 and JAF13

and the activation of downstream genes.

To assess whether PH4 and AN1 might be able to form

complexes in vivo, we performed in situ hybridization analysis

to examine whether PH4 and AN1 are coexpressed in the same

petal cells. Figure 6C shows that DFR is expressed in the upper

(adaxial) epidermis of the corolla and at a much lower level in the

lower (abaxial) epidermis, consistent with the anthocyanin pig-

mentation pattern. AN1 mRNA was expressed in a very similar

pattern: relatively high expression is seen in the upper epidermis,

and lower expression (just above the detection limit) is seen in the

lower epidermis.PH4mRNAcould bedetectedclearly in the upper

epidermis. However, because of the low expression levels of PH4

mRNA, it was difficult to differentiate the weak colorigenic signals

that were sometimes observed in the lower epidermis or the

mesophyll from the background signal that results from nonspe-

cific binding of the probe. Hence, we cannot exclude or confirm

that PH4 is also weakly expressed in these cells. Together, these

findings indicate that AN1 and PH4 may form complexes in the

upper epidermis of the flower corolla, which are the same cells in

which the color change is seen in an1 and ph4mutants.

PH4 and AN1 Regulate Overlapping Sets of Target Genes

Given that AN2 and PH4 are both MYB proteins that can interact

with AN1 and JAF13, we addressed the question of how (dis)-

similar they are functionally. AN2 coregulateswith AN1 andAN11

the expression of at least eight structural anthocyanin genes in

the petal limb (Quattrocchio et al., 1993) and may also play a role

in the transcription of AN1 (Spelt et al., 2000).

To test directly whether PH4 is involved in the expression of

structural anthocyanin genes, we measured the amount of several

Figure 6. Interactions between PH4 and Regulators of the Anthocyanin Pathway.

(A) Diagrams of the proteins showing the positions of conserved domains (black) used for the two-hybrid analysis. The numbers below each map

indicate the positions of amino acid residues.

(B) Yeast two-hybrid analysis. Different combinations of plasmids expressing fusion proteins (as indicated at left and at bottom of the grids) were

cotransformed in yeast, spotted on a plate, and assayed for simultaneous activation of the HIS and ADE reporter genes (seen as His- and adenine-

independent growth; left panel) or the LACz reporter gene (seen as bluing in an X-Gal overlay assay; right panel).

(C) In situ localization of AN1, PH4, and DFR mRNAs in the petal limb, detected by hybridization with antisense RNA probes. As a negative control,

sections were hybridized with a sense strand of DFR (control). Sections are depicted with the adaxial epidermis at the top. Bars ¼ 100 mm.
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of their mRNAs in wild-type (R27) and isogenic an1-W225 and ph4-

V2153 petals. Figure 7A shows that in an1 petal limbs the structural

genes CHS, CHI, and F3H are normally expressed, whereas the

expression of DFR, AS (encoding anthocyanin synthase [Weiss

et al., 1993]), AAT (encoding an anthocyanin-rutinoside acyltrans-

ferase; Brugliera and Koes, 2001; F. Brugliera and R. Koes, unpub-

lished data), and AN9 (encoding a glutathione transferase–like

protein; Alfenito et al., 1998) is strongly reduced. However, the

ph4 mutation has no clear effect on any of these mRNAs. This

finding indicates that PH4 plays no role in the regulation of antho-

cyanin genes, or that its role is redundant with that of another gene.

To discriminate between these possibilities, we analyzed the

activity of PH4 in a gain-of-function assay. We introduced a PH4

gene construct driven by the constitutive 35S promoter of

Cauliflower mosaic virus (35S:PH4) into leaf cells by particle

bombardment and measured its capacity to activate a LUCIF-

ERASE (LUC) reporter driven by the promoter ofDFR (DFR:LUC).

In these experiments, we cobombarded a b-GLUCURONIDASE

(GUS) reporter gene driven by the 35S promoter (35S:GUS) to

correct for variations in transformation efficiency. Figure 7B

shows that the DFR:LUC reporter showed little or no expression

in leaf cells when introduced alone. Consistent with earlier results

(Spelt et al., 2000, 2002), the expression of DFR:LUC was

strongly induced (>35-fold) when it was cointroduced with

35S:AN1 and 35S:AN2. However, when 35S:AN2 was replaced

by 35S:PH4, the DFR:LUC reporter was not induced, nor was it

when we cointroduced 35S:JAF13 in addition. These findings

show that for activation of the DFR promoter, AN2 cannot be

replaced by PH4, suggesting that PH4 plays no role in the

transcriptional activation of DFR.

To unravel the nature of the acidification pathway that is

activated by PH4, we analyzed transcripts expressed in wild-

type, an1, ph3, ph4, and ph5 petals by microarray and cDNA-

AFLP analysis and identified nine mRNA fragments whose

expression is reduced in an1 and ph4 petals (a full account of

these experiments will be published elsewhere). One of the

identified mRNAs, namedCAC16.5 (for cDNA-AFLP clone 16.5),

encodes a Cys proteinase–like protein (GenBank accession

number AY371317) (see Supplemental Figure 4 online). Figure

7A shows that CAC16.5 mRNA is strongly reduced in an1 and

ph4 petals compared with wild-type petals, indicating that

CAC16.5 expression requires both AN1 and PH4.

To examine the role of AN2 in CAC16.5 expression, we

analyzed CAC16.5 mRNAs in an2 petals and isogenic controls

in which the an2 mutation was complemented by a 35S:AN2

transgene. Figure 7C shows that the restoration of flower pig-

mentation by 35S:AN2was accompanied by strong (re)induction

of DFR mRNA expression, consistent with previous results

(Quattrocchio et al., 1998; Spelt et al., 2000). However, the

expression of CAC16.5 and PH4 mRNA was similar in an2 and

Figure 7. Effect of PH4 Function on Gene Expression.

(A) RT-PCR analysis of various mRNAs (indicated at left) expressed in petals of the wild type (R27) and stable an1-W225 and ph4-V2153 mutants.

(B) Activation of a DFR:GUS reporter gene in transiently transformed leaf cells. The columns and error bars denote means 6 SD (n ¼ 8) of DFR:LUC

expression after cobombardment with various combinations of 35S:AN1, 35S:AN2, 35S:JAF13, and/or 35S:PH4. DFR:LUC expression (in arbitrary

units) was measured as LUC activity and normalized to GUS activity expressed from a cobombarded reference gene (35S:GUS).

(C) RT-PCR analysis of mRNAs (indicated at left) expressed in petals of an2mutants and isogenic transgenic plants in which an2 is complemented by a

35S:AN2 transgene. Petals of closed buds (stage 3þ4) and open(ing) flowers (stage 5þ6) were analyzed.

(D)Gene expression in wild-type, an1, and ph4 petals and leaves of transgenic plants containing 35S:AN1 and/or 35S:PH4. The expression levels of the

mRNAs (indicated at left) were determined by RT-PCR. The genotype of each sample is indicated above the lane. Three distinct double transgenic

plants (containing 35S:AN1 and 35S:PH4) were analyzed that differ in the strength of 35S:AN1 expression (designated #2, #3, and #4).
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an2 35S:AN2 petals, indicating that AN2 has little or no effect on

CAC16.5 or PH4 expression.

To examine the regulation of CAC16.5 by PH4 and AN1 in

further detail, we analyzed transgenic plants containing 35S:PH4

and 35S:AN1. Figure 7D shows that CAC16.5 and DFR mRNAs

are not expressed in wild-type leaves. Although the 35S:PH4 line

expresses similar amounts of PH4 mRNA in leaves as the

endogenous PH4 gene does in petals, this results only in a very

weak activation of CAC16.5 in leaves, to a level that is barely

visible in Figure 7D. Although the 35S:AN1 line expressed AN1

mRNA in leaves to a level that is twofold to threefold higher than

that found in wild-type petals, no induction of CAC16.5 or DFR

mRNA was observed. Thus, both AN1 and PH4 are on their own

insufficient to induce DFR or CAC16.5 efficiently.

To obtain plants that ectopically express AN1 and PH4, we

crossed the 35S:AN1 and 35S:PH4 lines. The 35S:PH4 parent

used apparently containsmultiple active copies of the transgene,

because after crossing to other empty lines, all 84 progeny

contained and expressed a 35S:PH4 transgene. The 35S:AN1

parent (Spelt et al., 2000), however, contained a single active

transgene locus that segregated as a single Mendelian factor in

crosses. After crossing the 35S:PH4 and 35S:AN1 parents, all 39

progeny contained 35S:PH4, whereas only 4 of them contained

35S:AN1 (plants 1 to 4). Plant 1 grew very poorly and died before

it could be subjected to more detailed analyses. Plant 2 grew

slowly, remained severely stunted, and bore leaves with a weak

and patchy anthocyanin pigmentation pattern (seeSupplemental

Figure 5 online). Plants 3 and 4 developed normally. Moreover,

leaf extracts of plant 2 were significantly more acidic than those

of plants 3 and 4 or control plants that had not been transformed.

RT-PCR analysis showed that plant 2 expressed the 35S:PH4

and 35S:AN1 gene in leaves to a similar extent as the parental

lines did. In plants 2 and 3, however, the expression of 35S:AN1

was significantly reduced compared with the parental 35S:AN1

line, possibly as a result of (epigenetic) silencing of the transgene.

Together, it appears that strong, ectopic coexpression of AN1

and PH4 has a deleterious effect, possibly attributable to ectopic

activation of a vacuolar acidification pathway.

Despite the low expression of 35S:AN1 in plants 3 and 4,

CAC16.5 RNAwas induced in their leaves to levels that are close

toCAC16.5mRNA in petals, whereasDFRwas hardly induced at

all. In plant 2, however, the induction of CAC16.5 was even

stronger than in leaves of plants 3 and 4; moreover, DFR was

clearly activated, although the actual mRNA levels remained far

lower than in petals. Given the aberrant phenotype of plant 2, we

cannot distinguish whether the activation ofDFR is a direct effect

of AN1 and PH4 expression or an indirect (stress) effect caused,

for example, by the physiological changes that are induced by

AN1 and PH4 (see Discussion).

DISCUSSION

The BHLH and WD40 regulators AN1 and AN11 activate, in

addition to anthocyanin synthesis, several other aspects of

epidermal cell differentiation, such as growth and division of

cells in the seed coat epidermis and vacuolar acidification in

petals (Spelt et al., 2002). Here, we present evidence that AN1

activates these processes through interactions with two distinct

MYB proteins encoded by AN2 and PH4.

Control of Vacuolar Acidification and Flower Color Fading

Previous analyses of PH4 and ph4 mutants in heterogeneous

genetic backgrounds indicated that the ph4 mutation causes a

more bluish flower color and increases the pH of petal limb

homogenates (de Vlaming et al., 1983). Analyses of PH4 and ph4

flowers in an isogenic background confirm and extend these

findings.

In the R27 genetic background (rt/rt), the ph4 mutation does

not affect the expression of structural anthocyanin genes or the

accumulation of anthocyanin pigments, suggesting that the color

change is attributable largely to the effect on vacuolar pH (Figure

2). However, in a genetic background containing RT (to allow the

synthesis of 3RGac5G-substituted anthocyanins) and the dom-

inant FADING allele (de Vlaming et al., 1982), ph4 or an1-G621

triggers the almost complete disappearance of anthocyanins in

the petals and the fading of the flower color after opening of the

bud (Figure 2).

The dependence of fading on a dominant FA allele and a

3RGac5G substitution pattern of the anthocyanins suggests that

fading may involve an active (enzymatic) substrate-specific

degradation process. However, because FA is not isolated and

because the origin of the FA and fa alleles is unclear, it cannot be

ruled out that FA is actually a dominant-negative allele and that

the recessive fa allele encodes an active protein required for the

stability of anthocyanins. Furthermore, it cannot be excluded that

fading does not depend on the genes RT and GLYCOSYLATION

AT FIVE (GF) and the resulting 3RGac5G anthocyanin substitu-

tion pattern but on distinct genes that are genetically linked toRT

and GF. Consequently, the molecular role of PH4 in (preventing)

fading is difficult to infer at this stage. Because ph2 and ph5

mutations increase vacuolar pH without inducing fading, it is

possible that fading in ph4 and an1 is not attributable to a less

acidic vacuolar lumen alone but depends on an additional defect

in vacuolar physiology.

Given that PH4 is a MYB domain protein that can interact with

the transcription factors AN1 and JAF13, it presumably activates

vacuolar acidification indirectly, by regulating the transcription of

downstream genes that encode proteins involved in proton

metabolism. We consider it unlikely that PH4 activates the ex-

pression of one or more subunits of a v-ATPase proton pump,

because mutations that inactivate v-ATPase were shown to

cause severe developmental defects and often lethality in a

variety of species (Davies et al., 1996; Ferea and Bowman, 1996;

Inoue et al., 1999; Schumacher et al., 1999; Oka and Futai, 2000;

Strompen et al., 2005). Moreover, immunoblot analysis showed

that the v-ATPase A and B subunits as well as pyrophosphatase

proteins are expressed at equal levels in PH4 and ph4 petals (N.

Frange and E. Martinoia, unpublished data).

To determine the nature of the vacuolar pathway downstream

of AN1 and PH4, we started the analysis of transcripts that are

expressed at reduced levels in an1 and/or ph4 mutants. One of

these is CAC16.5, which encodes a protein homologous with

Cys proteinases that is expressed in petals but not in leaves. The

CAC16.5 expression domain is largely determined by AN1 and
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PH4, as the gene is inactivated in an1 and ph4 petals. Moreover,

forced expression of AN1 and PH4 is sufficient to activate

CAC16.5 in leaves (Figure 7).

Cys proteases have regulatory functions in a variety of pro-

cesses. In animals, Cys proteases play an important role in

programmed cell death. In plants, Cys proteases have also

been implicated in programmed cell death (Elbaz et al., 2002;

Kuroyanagi et al., 2005) and various aspects of defense responses

(Kruger et al., 2002; Hatsugai et al., 2004; Matarasso et al., 2005).

Recent data suggest that (some)Cys proteases haveDNAbinding

activity and can be involved directly in transcriptional activation

(Matarasso et al., 2005). Currently, we are investigating the

function of CAC16.5 and other AN1/PH4-controlled genes in

vacuolar acidification by reverse genetic strategies.

Interaction of AN1 and PH4

Our yeast two-hybrid data indicate that AN1 can interact with the

R2R3 MYB proteins AN2 and PH4 and two novel proteins that

were designated MYBb1 and MYBx. Several lines of evidence

indicate that these two-hybrid interactions reflect interactions

that occur in vivo.

First, screening of a petal cDNA library with the N terminus of

AN1 revealed interactions with only four proteins (AN2, PH4,

MYBb, and MYBx) (cf. Figure 6) but not with numerous other

MYBs that are expressed in petals at much higher levels (Avila

et al., 1993; Mur, 1995; van Houwelingen et al., 1998). This

indicates that the observed yeast two-hybrid interactions are

specific. Moreover, the four interacting MYBs all seem to have a

function in pigmentation. AN2 is known to regulate structural

anthocyanin genes together with AN1 (Quattrocchio et al., 1993,

1998; Spelt et al., 2000) (Figure 7B), whereas PH4 regulates,

together with AN1, several aspects of vacuolar physiology (acid-

ification and fading) (de Vlaming et al., 1982, 1983; Spelt et al.,

2002; this study). MYBb1 and the closely related homolog

MYBb2 encode proteins with high similarity to AN2 and are

required for the activation of anthocyanin synthesis in distinct

floral tissues, whereas MYBx appears to be an inhibitor of AN1 in

anthocyanin synthesis and vacuolar acidification (Kroon, 2004).

Second, in vitro synthesized PH4 and AN1 proteins form an

immunoprecipitable complex, indicating that the PH4–AN1 in-

teraction is direct.

Third, AN1 and PH4 mRNAs are both expressed in the epi-

dermis of petal cells; thus, AN1–PH4 complexes have the po-

tential to be formed there (Figure 5D). Ovaries also express AN1

and PH4 mRNA, but because it is unknown whether both genes

are coexpressed in the same cells, it is unclear whether AN1–

PH4 complexes can also form in this organ.

Fourth, in petals, anthocyanin accumulation is limited to ep-

idermal cells, and the underlying mesophyll cells are uncolored

(Koes et al., 1990; Huits et al., 1994). Hence, the flower color

phenotypes of an1, an2, and ph4mutants result from alterations

in the very same cells.

Fifth, mutations in an1 and ph4 affect the same target pro-

cesses: vacuolar acidification, flower color fading, and the ex-

pression of CAC16.5. Moreover, AN1 and PH4 can induce

ectopic expression of CAC16.5, but only when coexpressed.

Because ph2 and ph5 mutations do not cause fading, it seems

that fading is attributable to some other defect in vacuole

structure or physiology occurring in both an1 and ph4.

Roles of Distinct R2R3 MYB–BHLH Complexes

As shown above, our results provide evidence that AN1 activates

CAC16.5 expression and vacuolar acidification in a complexwith

PH4 and presumably several other unknown proteins. Ectopic

expression of PH4 alone had little or no effect on the phenotype

or expression of DFR and CAC16.5, but when coexpressed with

high amounts of AN1, it could ectopically activate CAC16.5 and

DFR and caused in addition reduced vigor and more acidic leaf

extracts (Figure 7; see Supplemental Figure 5 online). Because

AN1 and PH4 did not induce DFR within the 24 h of a transient

expression assay, it is possible that the induced anthocyanin

synthesis in the transgenic plant is caused by an indirect effect.

Alternatively, the PH4–AN1 complex might have a low affinity for

anthocyanin gene promoters that becomes evident only at

unphysiologically high expression levels.

Ectopic expression of the putative PH4 homologs from rice

(MYB4) in heterologous systems can activate the phenylpropa-

noid gene PAL (encoding phenylalanine ammonia lyase) and

other pathways that result in dwarfism and induced freezing/

chilling tolerance (Vannini et al., 2004). The induction of PAL,

however, is very moderate (less than twofold) (Vannini et al.,

2004), possibly because the BHLH partner of rice MYB4 was

missing or because the induction is indirect. Ectopic overex-

pression of the grape homolog MYB5 in tobacco enhanced the

pigmentation in petals and stamens but not in other tissues

(Deluc et al., 2006), possibly reflecting the dependence on the

expression of an endogenous BHLH partner. Curiously, both

early (CHS, CHI, and F3H) and late (DFR) anthocyanin genes

were induced by MYB5 (Deluc et al., 2006). Whether this over-

expression phenotype reflects the normal MYB5 function is

difficult to assess from the available data.

Given that anthocyanin genes are normally expressed in ph4

flowers, these appear to be activated through interactions with a

distinct R2R3 MYB protein. Most likely, the R2R3 MYB partner

required for the activation of anthocyanin genes is AN2, because

(1) AN2 is known to be required for the expression of structural

anthocyanin genes (Quattrocchio et al., 1993); (2), it is, in addition

to PH4, one of the few MYB proteins in petals that can bind to

AN1 (Figure 6; see Supplemental Figure 3 online); (3) it can

functionally replaceC1 ofmaize (Quattrocchio et al., 1998),which

is known to bind directly to the promoters of structural anthocy-

anin genes (Sainz et al., 1997); and (4) coexpression of AN2 with

AN1 or JAF13 activatesDFR fast enough to be detectedwithin 24

h in transient expression assays, consistent with AN2 activating

DFRdirectly, likeAN1 (Quattrocchio et al., 1998,1999;Spelt et al.,

2000) (Figure 6). Moreover, using GLUCOCORTICOID RECEP-

TOR fusions, it was shown that TT2 of Arabidopsis activatesDFR

directly (Baudry et al., 2004). Together, these findings suggest a

model in which AN1 activates vacuolar acidification or anthocy-

anin synthesis by binding to PH4 or AN2, respectively.

Work in Arabidopsis led to very similar models, which propose

that the partially redundant BHLH proteins GL3 (Payne et al.,

2000), EGL3 (Bernhardt et al., 2003; Zhang et al., 2003), and TT8

(Nesi et al., 2000) activate the synthesis of anthocyanin and

The PH4 Gene of Petunia 1285



proanthocyanidin pigments, the production of seed mucilage,

the development of trichomes on leaves and stems, and the

specification of nonhair fate (atrichoblast) in certain cells of the

root epidermis through interactions with distinct R2R3 MYB

proteins that are specific for each pathway (Zhang et al., 2003;

Baudry et al., 2004; Pesch and Hulskamp, 2004; Zimmermann

et al., 2004).

These simple models explain many of the observations, but

not all of them, and therefore are likely to be incomplete and

possibly even incorrect in some details.

First, these models predict that overexpression of PH4 might

compete with AN2, resulting in an an2-like phenotype (reduced

anthocyanin synthesis), whereas overexpression of AN2 might

result in a ph4-like phenotype (blue flowers). However, such

Table 1. Description of Primers Used for PCR

Name Gene Sequence Orientation

282 AN1 AAGAATTCATGCAGCTGCAAACCATG F

283 AN1 ATCTCGAGGGACAAAGTGAGAGATC R

284 AN1 TTCTCGAGCATCTCCGGCTACTCC R

123 AN1 GGGAATTCTATGGTGTCACCAAG R

126 AN1 TAGGATCCAGCCTTATCTGAGCACT F

325 JAF13 GGCAATTGATGGCTATGGGATGCAAAG F

292 JAF13 AACTCGAGGATCAGGCTTTGGGCAT R

295 JAF13 TCCTCGAGATTTCCAGACTACTCGC R

287 AN2 TAGAATTCATGAGTACTTCTAATGCATC; F

288 AN2 GAGAATTCTTAATTGCTCCTCATGATCA F

289 AN2 ATCTCGAGCTCTTCAATGGTCCCA R

290 AN2 CTCTCGAGTCTGATCATGAGGAGCAAT R

1051 PH4 CCTTGCTACAACATGGTGTT R

1107 PH4 CACTCTCACCCAACGTAACATGC F

972 PH4 GCCCCTGAACACCATGTTGTA F

1136 PH4 GGCAATTGATGAGAACCCCATCATCATC F

1137 PH4 GGCAATTGTTAATCAGTCACGGAATAGATC F

1138 PH4 GGGCTCGAGGATCTATTCCGTGACTGATTAA R

1139 PH4 GGGCTCGAGCTCTAACTGGGATTATATTGATC R

1233 PH4 AAGCTTTCTCTAACTGGGATTATATTGA R

1317 PH4 TTCTCTAGAGATGAGAACCCCATCATCAT F

690 PH4 CGGGATCCTCTCTAACTGGGATTATATTG R

1061 PH4 CGCCTCCATCGTCTCCTTGG F

582 PH4 CTTCTCCTCCTTCATCTTC F

1871 CAC16.5 GCCTCCTTATCCATCTCCAGCCC F

1769 CAC16.5 GTAATGACATTCAAACAGCATCC R

275 CHSa CAGTGAGCACAAGACTGATC F

604 CHsa CTTGGATCCTTAAGTTTCTCGGGC R

311 CHIa ACGCTTTCGCACCGACCG F

312 CHIa GTAGATTTCTCGGTCTCCG R

112 F3H ATGACCGTGGTCACCAAGATTG F

113 F3H CTTCACATTTGTCTTCCGAG R

97 DFR ACAATGTTCACGCTACTGTTC F

98 DFR GTAGGAACATAGTACTCTGG R

433 AS ATGGTGAATGCAGTAGTTACAAC F

434 AS GGCATAGAACTAAACTCCACA R

435 AAT CATTACCAACTCCTAATCACC F

436 AAT GGCATAGAACTAAACTCCACA R

229 AN9 CGGGATCCTTTGTCCCGTACTCC R

230 AN9 GGGAATTCCATGGTTGTGAAAGTGCATG F

19 GAPDH GGTCGTTTGGTTGCAAGAGT F

20 GAPDH CTGGTTATTCCATTACAACTAC R

Out1 dTPH1 GGGAATTCGCTCCGCCCCTG F, R

Out12 dTPH1 C/TCAGCATTGACACCCCTTC F

Out13 dTPH1 G/ACAGTGTAAATTTTGCGCAAA F

Out10 dTPH1 CCCCTTTGCACCAAGTAGCTC F

Out11 dTPH1 CGAAGGGGTGTCAATGCTG R

Sequences are written in the 59 to 39 direction. Restriction sites that were added for cloning purposes are underlined. All primers were

deoxyribonucleotides. The relative orientation of primers is indicated as forward (F) if the 39 end of the primer points toward the 39 end of the gene or, in

case of dTPH1 primers, if the sequence is identical to the dTPH1 sequence in GenBank. Otherwise, the orientation is designated reverse (R).
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cross-inhibition phenotypes were not observed in any of the

35S:PH4 or 35S:AN2 lines (Quattrocchio et al., 1998; Spelt et al.,

2000; this study). Also, for Arabidopsis lines overexpressing TT2,

PAP1, GL1, WER, or Arabidopsis MYB23, no cross-inhibitory

effects of anthocyanin regulators on hair development, or vice

versa, were reported (Szymanski and Marks, 1998; Lee and

Schiefelbein, 1999, 2002; Borevitz et al., 2000; Kirik et al., 2001;

Nesi et al., 2001).

Second, these simple models do not explain the small but

clear effect of AN2 on vacuolar acidification (Spelt et al., 2002).

Gain-of-function experiments indicated that AN2 and TT2 might

play an additional role as a higher order regulator in transcription

activation of their BHLH partners, AN1 and TT8, respectively

(Spelt et al., 2000; Nesi et al., 2001). This indirect effect of AN2

and TT2 on DFR expression is evident only in transgenic plants

that constitutively express AN2 or TT2 (Spelt et al., 2000; Nesi

et al., 2001), but it is apparently too slow to contribute to the

induction of DFR within the <24 h of a transient expression assay

(Quattrocchio et al., 1998; Spelt et al., 2000; Zimmermann et al.,

2004). Thus, it is possible that AN2 affects vacuolar acidification

indirectly through the activation of another regulatory gene that is

distinct fromAN1 or PH4, because these are normally expressed

in an2 petal limbs (Figure 6) (Spelt et al., 2000).

Alternatively, it is possible that in vivo, larger complexes are

formed that contain multiple R2R3 MYB and BHLH proteins,

because yeast two-hybrid experiments indicated that TT2 can

homodimerize (Baudry et al., 2004) and that EGL3 and GL3 as

well as AN1 and JAF13 can form both homodimers and hetero-

dimers (Zhang et al., 2003; Kroon, 2004). Thus, the in vivo

interactions of AN2 and PH4 with AN1 need not be mutually

exclusive. Clearly, the current genetic approaches need to be

combined with biochemical analyses of protein complexes to

solve this issue.

METHODS

Plant Material

ThePetunia hybrida line R27 (AN1, an4, AN11, PH2, PH4, HT1, hf1, hf2, rt,

fl, FA) was the parent for most transposon insertion/excision mutants.

Line W138 arose by a transposon insertion in AN1 (allele an1-W138)

(Doodeman et al., 1984a; Spelt et al., 2000). Line W137 (AN1-R, an11-

W137) arose among W138 progeny by a dTPH1 insertion in AN11 (an11-

W137) and excision of the dTPH1 copy from an1-W138, resulting in a full

AN1 reversion (AN1-R) (Doodeman et al., 1984b; de Vetten et al., 1997).

The alleles ph2-A2414, ph3-V2068, ph4-X2052, and ph4-C3540 were

identified among W138 progeny, whereas ph4-V2153, ph4-V2166, and

ph4-B3021 originate from W137. The alleles ph4-V2153 and ph4-V2166,

which were used for most functional analyses, were maintained in a full

revertant AN11 background in lines R149 (AN1-R, AN11-R, ph4-V2153)

and R150 (AN1-R, AN11-R, ph4-V2166). For functional analyses of other

ph alleles, AN1-R and/or AN11-R plants were selected from progeny of

parents containing the ph allele in an an1-W138 or an11-W137 back-

ground. The allele ph4-X2377 was identified among offspring in a Red

Star–like family (background AN1, AN11, rt, fl) in the fields of a petunia

breeder (Syngenta) (van Houwelingen et al., 1998). The lines V64 (AN1,

AN11, HF1, FL, RT, ph4-V64), M60 (AN1, AN11, ph4-V64, hf1, hf2, RT, fl),

V30 (AN1, AN2, AN4, AN11, HF1, RT, PH2, PH4), and V26 (AN1, AN2, an4,

AN11, HF1, RT, ph2, PH4) were from the Amsterdam Petunia Collection

(de Vlaming et al., 1983; Koes et al., 1986).

To introduce an1-G621 in a background synthesizing 3RGac5G-

substituted anthocyanins, several progeny plants with an an1-W138,

RT phenotype were selected from the backcross (W138 3 V30) 3 W138

(de Vetten et al., 1999) and subsequently crossed to line R153 (an1-G621,

hf1, rt). Detailed information about the structure and resulting phenotypes

of an1-W138 and an1-G621 can be found elsewhere (Spelt et al., 2000,

2002).

HPLC Analysis

Petal limb tissue was extracted for 16 h at 48C in 70%methanol and 0.1%

trifluoroacetic acid (TFA; 500 mL/100 mg tissue) and passed through a

Spin-X centrifuge tube filter (0.22 mm; Corning). Samples (10 mL) were

analyzed on a 3.9 3 150-mm reversed-phase Nova Pak C18 column

(Waters) using a linear gradient from 15% acetonitrile, 0.1% TFA to 95%

acetonitrile, 0.1% TFA over 45 min. Products were detected using a

photodiode array detector (Waters) in the range 190 to 600 nm. The

retention time of cyanidin 3-glucoside was determined by HPLC of the

purified compound (Polyphenols Laboratories).

pH Assay

The pH of petal extracts was measured by grinding the petal limbs of two

corollas in 6 mL of distilled water. The pH was measured directly (within

1min) with a normal pH electrode to avoid the possibility that atmospheric

CO2 would alter the pH of the extract.

The actual pH values measured for specific plants showed some

variation in time, possibly as a result of variable environmental conditions

in the greenhouse, but the differences between distinct genotypes were

constant. Therefore, the absolute pH values can be reliably compared

between samples/genotypes that were measured within one experiment

(i.e., one figure panel) but much less between distinct experiments (i.e.,

distinct figure panels).

DNA and RNAMethodology

Transposon display analysis of homozygous ph4-B3021 and wild-type

(PH4) progenitor plants was performed essentially as described (van den

Broek et al., 1998), with some modifications (Tobeña-Santamaria et al.,

2002). One fragment of 98 bp (containing 66 bp of dTph1 sequence and

32 bp of flanking sequence) that matched the ph4 genotype of the plants

analyzed was cut from the gel, amplified with the same primers used to

generate the displayed fragment (out 10 and the MseIþC AFLP primer),

cloned into a pGEM-T Easy vector (Promega), and sequenced.

A full-size PH4 cDNA clone was isolated by screening a petal cDNA

library made from the PH4 line R27; the corresponding genomic region

was amplified from R27 with primers complementary to the cDNA ends.

cDNA-AFLP analysis of RNA isolated from wild-type, an1, ph3, ph4,

and ph5 petal limbs was performed essentially as described (Bachem

et al., 1996) using the restriction enzymes MseI and EcoRI and corre-

sponding adapters and primers. CAC16.5 was identified as a 161-bp

cDNA-AFLP fragment that was present in wild-type and ph5 petals but

absent in an1,ph3, andph4petals. A 1169-bpCAC.16.5 cDNA containing

part of the protein-coding sequence was isolated by screening a petal

cDNA library with the 161-bp fragment.

RNA isolation and RT-PCR analysis were performed as described (de

Vetten et al., 1997; Quattrocchio et al., 1998). cDNA products were

amplified using primers specific for CHSa (primers 275 and 604), CHIa

(311 and 312),AN3/F3H (112 and 113),DFR (97 and 98),AS (433 and 434),

AAT (435 and 436), AN9 (229 and 230), CAC16.5 (1871 and 1769), PH4

(1233 and 1317),AN1 (123 and 126), orGAPDH (19 and 20) and a reduced

number of PCR cycles (GAPDH and CAC16.5, 18 cycles; CHSa, CHIa,

F3H/AN3, DFR, AS, AAT, and AN9, 20 cycles; AN1 and PH4, 24 cycles).

Because the yield of PCR products was too low for detection by ethidium
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bromide, they were visualized by gel blot hybridization (using 32P-labeled

cDNA probes) and phosphor imaging, For each gene–primer combina-

tion, we determined whether the RT-PCR response was linear and

quantitative (at different numbers of PCR cycles) by assaying dilution

series of cDNA samples in which transcripts were highly abundant or that

had been spiked with cDNA fragments.

The 39RACE of PH4 was done as described previously (Frohman et al.,

1988) using a PH4-specific primer (1136) and a primer complementary to

the poly(A) tail.

RNA in situ hybridization was performed as described (Souer et al.,

1996) using RNA probes obtained by in vitro transcription with T7 or SP6

RNA polymerase. The templates were generated by PCR on cDNAs

cloned in plasmid vectors using a vector-specific primer that anneals just

upstream of the T7 or SP6 promoter and one gene-specific primer. The

PH4 probe spanned the region encoding the C-terminal domain (gener-

ated with primer 582 and a vector-specific primer) and lacked the

conserved MYB domain region. For AN1 and DFR, a cDNA fragment

spanning the coding sequence and the 39 untranslated region was used.

Because anthocyanins present in flowers made it difficult to detect the

weak colorigenic signals for AN1 and PH4 mRNA unambiguously, we

used petals from the an3 lines W62 and W37.

Sequence Analysis

DNA sequences were determined as described (Spelt et al., 2002) and

analyzed with the program Geneworks (Intelligenetics). Multiple se-

quence alignmentswere producedwith aWeb-based version of ClustalW

(http://crick.genes.nig.ac.jp/homology/clustalw-e.shtml) using default

settings (Matrix ¼ blossom; GAPOPEN ¼ 0, GAPEXT ¼ 0, GAPDIST ¼
8, MAXDIV ¼ 40). The phylogenetic tree was calculated using the

neighbor-joining method and bootstrap analysis (1000 replicates) using

PHYLIP via the samewebsite and visualizedwith Treeviewer version 1.6.6

(http://taxonomy.zoology.gla.ac.uk/rod/rod.html).

To construct the tree shown in Figure 4A, we aligned the 104–amino

acid region spanning the MYB domain (see Supplemental Figure 2

online), as defined by Stracke et al. (2001), taken from the following

GenBank accession numbers: Ph PH4, AY973324; Ph AN2, AAF66727;

Ph ODO1, AAV98200; Ph MYBPh1, CAA78386; Ph MYBPh2, CAA78387;

Ph MYBPh3, CAA78388; Gh BNLGHi233, AAK19611; Vv MYBCS1,

AAS68190, Vv MYB5, AAX51291; Sl ANT1, AAQ55181; Vv MYBA2,

BAD18978; Vv MYBA1, BAD18980; Vv MYBA3, BAD18179; Os

MYB4, BAA23340; Zm Pl, AAA19821; Zm C1, AAK09327. For sequences

of the Arabidopsis thaliana MYB proteins, we used the same accessions

as Stracke et al. (2001).

Yeast Two-Hybrid Analysis

To generate plasmids expressing the coding sequences of AN1, AN2,

JAF13, and PH4, these were amplified by PCR from corresponding cDNA

clones using a polymerase with proofreading activity (PfuI) and primers

that were at the 39 end complementary to the coding sequences and that

contained extra nucleotides at the 59 end with a XhoI, EcoRI, or MunI

restriction site to facilitate in-frame cloning in the two hybrid vectors pBD-

GAL4Cam and pAD-GAL4-2.1 (Stratagene) downstream of the GAL4BD

or GAL4AD coding sequence. The full AN1 coding sequence was ampli-

fied with primers 282 and 283 (Table 1), and the N-terminal domain was

amplified with primers 282 and 284. The corresponding regions of JAF13

were generated with the primer pairs 325/295 and 325/292, respectively.

The full coding sequence ofPH4was generatedwith the primer pair 1136/

1139, the MYB domain with 1136/1138, and the C-terminal domain with

1137/1139. The corresponding regions ofAN2were amplifiedwith primer

pairs 287/289, 287/288, and 290/289, respectively. The inserts of the

recombinant plasmids were sequenced to ensure that no mutations had

occurred during PCR amplification.

For all experiments, we used the yeast strain PJ69 (James et al., 1996),

which harbors HIS3, ADE2, and LACz reporter genes driven by distinct

GAL4-responsive promoters.

A petunia cDNA library was generated in pAD-GAL4-2.1 from poly(A)þ

RNA that had been isolated from petal limbs of line R27 using the

HybriZap system (Stratagene), according to the instructions of the

supplier. The original library (83 107 primary recombinants) was amplified

and used for mass excision of plasmid DNA according to the instructions.

This cDNA library was screened by introducing 10-mg portions of library

DNA into yeast PJ69 cells expressing the N-terminal 238 amino acids of

AN1 fused to the GAL4 DNA binding domain (AN11-238GAL4BD). Trans-

formed cells were plated on dropout medium lacking Leu, Trp, and His.

After ;1 week of growth at 308C, the colonies that appeared were

replicated on plates lacking Leu, Trp, His, and adenine and grown for

another 3 d at 308C. Plasmid DNA was isolated from positive (HIS, ADE)

colonies, transformed in Escherichia coli, and sequenced. Plasmids

isolated from E. coli were subsequently reintroduced in PJ69 yeast cells,

either alone or together with the bait plasmid expressing AN11-238GAL4BD.

Only plasmids that specified a HIS, ADE phenotype when cotransformed

with the bait vector, but not when cotransformed with the empty pAD-

GAL4-2.1 vector or when transformed alone, were considered positives

and analyzed further.

Transient Expression Assays and Generation of

Stable Transformants

To construct the 35S:PH4 gene, we amplified the PH4 coding region

using primers complementary to the beginning (primer 1136) and end

(primer 690) of the coding sequence that had been extended with XbaI

andBamHI restriction sites, respectively. Amplification products were cut

with XbaI and BamHI and ligated to the XbaI and BamHI sites of the

T-DNA vector pGreen 3K (Hellens et al., 2000) between the 35S promoter

and the 39 polyadenylation signal of Cauliflower mosaic virus. The gene

construct was sequenced to ensure that no errors had occurred. The

origins of 35S:AN1, 35S:AN2, 35S:JAF13, DFR:LUC, and 35S:GUS have

been described elsewhere (Quattrocchio et al., 1998; Spelt et al., 2000).

Transient expression assayswere performed by particle bombardment

of petunia W115 leaves (genotype AN1, an2, an4, AN11, PH4) as

described previously (de Vetten et al., 1997; Quattrocchio et al., 1998).

The an2 and an4 mutations in W115 do not affect the expression of

anthocyanin genes in tissues other than petals and anthers (Quattrocchio

et al., 1993).

Transgenic plants expressing 35S:PH4 were obtained by Agrobacte-

rium tumefaciens–mediated leaf disc transformation of the F1 hybrid

V26 3 R162 (genotype ph2). Of four transformants, one expressed the

35S:PH4 transgene, resulting in partial rescue of the ph2 phenotype.

This transformant was crossed to 35S:AN1 plants in a W242 (an1, PH2)

background (Spelt et al., 2000) or, as a control, to nontransgenic W242

plants to obtain 35S:PH4 plants in awild-type (AN1, AN2, AN11, PH4) and

35S:AN1 background. Segregation of the transgenes in these crosses

was monitored by PCR, using primer combinations specific for each

transgene.

Because for an2 null mutants no isogenic wild-type (AN2) lines are

available, we transformed an an2 F1 hybrid (W1153W59; genotypeAN1,

an2, an4, RT,AN11, PH2, PH4) with 35S:AN2 or, as a control, the empty

T-DNA vector and used plants in which 35S:AN2 complemented the an2

mutation for comparison with an2 plants containing the empty vector

(Quattrocchio et al., 1998).

Protein Methods

To synthesize AN1 and PH4 proteins in vitro, the full-size cDNAs were

cloned in pBluescript KSþ plasmids behind the T3 polymerase promoter,

and the region spanning the T3 promoter and the cDNA insert was
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amplified by PCR using primers complementary to pBluescript. Amplifi-

cation products were purified on a minipreparation spin column (Qiagen),

extracted with phenol, and precipitated with ethanol. We used 0.5 mg of

PCR fragment to program an in vitro transcription and translation system

(TNT-coupled wheat germ extract) as recommended by the supplier

(Promega). For the synthesis of radiolabeled proteins, wheat germ extract

lacking Met was supplemented with 20 mCi of [35S]Met (Amersham). For

the synthesis of unlabeled AN1 protein, a 1:1 mixture of wheat germ

extracts lacking either Met or Leu was used.

For (co)immunoprecipitation, translation products were mixed in a 1:1

ratio, and 1 mL of a mouse anti-AN1 serum (Spelt et al., 2002) was added

and incubated for 1 h at 48C. Subsequently, 10 mL of protein G–agarose

beads (Actigen) was added and incubation was continued for 16 h at 48C

in a rotation apparatus. The agarose beads were washed twice in 10 mM

Na-phosphate, pH 7.2, 150mMNaCl, and 0.05%Tween, resuspended in

SDS sample buffer, boiled for 2 min, and size-separated on a 12.5%

polyacrylamide-SDS protein gel. Gels were fixed and dried, and radio-

activity was detected using a phosphor imager.

Accession Numbers

Sequence data from this article have been deposited with the GenBank/

EMBL data libraries under accession numbers AY187282 (dTPH7),

AY973324 (PH4), and AY371317 (CAC16.5).
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