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Human mitochondrial respiration is distinct from that of most
plants, microorganisms and even some metazoans in that it
reduces molecular oxygen only through the highly cyanide-
sensitive enzyme cytochrome c oxidase. Here we show that
expression of the cyanide-insensitive alternative oxidase (AOX),
recently identified in the ascidian Ciona intestinalis, is well
tolerated by cultured human cells and confers spectacular
cyanide resistance to mitochondrial substrate oxidation. The
expressed AOX seems to be confined to mitochondria. AOX
involvement in electron flow is triggered by a highly reduced
redox status of the respiratory chain (RC) and enhanced by
pyruvate; otherwise, the enzyme remains essentially inactive.
AOX expression promises to be a valuable tool to limit the
deleterious consequences of RC deficiency in human cells and
whole animals.
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Ciona intestinalis
EMBO reports (2006) 7, 341–345. doi:10.1038/sj.embor.7400601

INTRODUCTION
Since the pioneering work of Otto Warburg in 1919 (Warburg,
1919), it has been known that cyanide-resistant respiration
differentiates most plants and microorganisms from mammals
and other higher animals. Cyanogenic compounds are thus among
the most frequently encountered poisons in nature to resist animal
predators (Tattersall et al, 2001). Plants and microorganisms are

endowed with various components conferring cyanide resistance,
including an unusual, cyanide-resistant mode of respiration. This
alternative respiration generally relies on the presence of a unique
protein, the so-called alternative oxidase (AOX), that conveys
electrons directly from the quinone pool of the mitochondrial
respiratory chain (RC) to oxygen, hence by-passing entirely the
cytochrome segment of the chain (Fig 1A; Affourtit et al, 2002).
By doing so, it strongly diminishes proton extrusion linked to
substrate oxidation, concomitantly decreasing ATP production.
In at least some plants, this seems to prevent the repression
of mitochondrial substrate oxidation by high ATP levels result-
ing from the phosphorylating activity of chloroplasts (Rustin
& Queiroz-Claret, 1985). In addition, AOX is considered to act
as an antioxidant protein by preventing over-reduction of the
mitochondrial quinone pool, which is known to favour superoxide
production (Maxwell et al, 1999; Lam et al, 2001). In plants,
any significant involvement of the AOX protein in electron
flow is triggered only by very specific conditions. First, it requires
a pronounced reduction of the quinone pool, owing to the low
affinity of the AOX for its quinol substrate (Bahr & Bonner, 1973).
Second, the enzyme is regulated by the presence of a subset
of organic acids, chiefly pyruvate, probably by increasing its
substrate affinity (Millar et al, 1993; Umbach et al, 2002).
A reduced redox status of the RC and a high pyruvate level are
the exact conditions, resulting from inherited human metabolic
disorders affecting the cytochrome segment of the mitochondrial
RC (Munnich et al, 2001). On the basis of this observation, it has
been a long-standing goal to express AOX in human cells, with the
aim of achieving a potential rescue of electron flow and mitigating
the deleterious consequences of pathological RC deficiency.

RESULTS AND DISCUSSION
Recently, a genome database search by Vanlerberghe and
colleagues (McDonald & Vanlerberghe, 2004) has unexpectedly
shown the occurrence of AOX in several animal phyla. This
offered a potential route to expression of AOX in human cells,
as the enzyme is much more likely to be well adapted to the
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metabolic conditions pertaining inside mammalian mitochondria
than the plant enzyme (previous attempts to express plant AOX
genes in human cells led to apparently uncontrolled lethality;
P. Rustin, unpublished data). AOX complementary DNA (cDNA)
from the ascidian Ciona intestinalis was therefore ligated directly
into the doxycyclin-inducible mammalian vector pCDNA5/FRT/
TO, either with or without an epitope tag. Human embryonic
kidney (HEK)293T-derived T-REx cells were then transfected with
the expression constructs or with the empty vector. Cells surviving
treatment with antibiotics (150mg/ml hygromycin and 15mg/ml
blasticidin), containing a single copy of the AOX transgene
(or empty vector) inserted in a precise chromosomal location
(see www.invitrogen.com for full explanation of the Flp-InTM

T-REx expression system), were induced to express AOX by
adding 1 mg/ml doxycyclin to the medium.

After 24 h of induction, AOX expression was confirmed
by SDS–polyacrylamide gel electrophoresis (SDS–PAGE) and
immunoblotting (Fig 1B). Both of the epitope-tagged versions of
C. intestinalis AOX were detected, migrating at the size predicted

by the cDNA sequence (42 kDa) after mitochondrial import. As
a prerequisite for function, the AOX protein has to be targeted
to mitochondria. This was verified by immunocytochemistry, in
which the signal generated by flag-tagged AOX overlapped
that of Mitotrackers Red, a mitochondrial marker (Fig 1C–E).
We observed a similar overlap with the Myc-tagged version of
the protein (not shown).

We next compared the respiratory properties at 37 1C of cells
harbouring either the tagged or untagged version of AOX or the
empty vector, after 48 h of induction. Similar to the nontransfected
parental cell line, respiration of cells harbouring the empty vector
was fully sensitive to 100 mM potassium cyanide (Fig 2A, trace a).
In contrast, the respiration of cells induced to express AOX,
whether tagged or untagged, consistently showed from 60% to
80% resistance to cyanide (Fig 2A, trace b). A threefold increased
concentration of potassium cyanide did not result in any further
inhibition. The cyanide-resistant respiration was fully inhibited by
the subsequent addition of 100 mM propyl gallate, a specific
inhibitor of the AOX in plant mitochondria (Siedow & Bickett,
1981). We next studied the oxidation of a mitochondrial
substrate, succinate, in digitonin-permeabilized cells. The oxida-
tion of succinate by control cells (in the presence of rotenone
to avoid production of any inhibitory oxaloacetate) was fully
sensitive to cyanide (Fig 2A, trace c). In contrast, succinate
oxidation by cells induced to express AOX was significantly
resistant to cyanide, up to 60% (Fig 2A, trace d). It is important to
note that propyl gallate addition in the absence of cyanide
caused at most a 5–10% inhibition of oxygen uptake (Fig 2A,
trace f), suggesting that AOX was only slightly active under
such conditions. The residual succinate oxidation was fully
inhibited by 100 mM cyanide. A detailed analysis of RC complex
activities, carried out on control and AOX-expressing cells in the
absence of cyanide, detected no significant effects on the activity
of any of the complexes as a result of AOX expression (Table 1).

On the basis of the differential effect of cyanide on cell
respiration in vitro, we tested culture media for pH change,
a widely recognized marker for lactic acid accumulation (Fig 3), in
the presence or absence of cyanide during cell growth. The
medium was acidified by approximately 1 pH unit by control cells
grown in the presence of 1 mM cyanide for 24 h, yielding
a bright lemon-yellow colour, whereas under similar conditions,
the medium of the AOX-expressing cells decreased by only
0.25–0.3 pH units. This indicated that one important hallmark
feature of an RC deficiency can actually be ameliorated by the
presence of the AOX. Surprisingly, although the AOX supposedly
works at much lower temperature in C. intestinalis, a cold
seawater organism, the protein expressed in human cells is readily
active and stable at 37 1C.

A constitutively active, nonphosphorylating AOX could be
detrimental to cell survival, as it could significantly decrease the
ATP produced by mitochondria. We therefore tested the effect
of expressing AOX on cell growth (Fig 2B) and acidification of the
medium. We did not observe any difference between the growth
of cells expressing AOX and control cells (up to four cell passages,
18 days). Decreasing glucose to 0.5 mM or totally depleting
it in the culture medium severely but similarly affected the growth
of both control and AOX-expressing cells, HEK cells being known
to be highly dependent on glucose (Siegwart et al, 1999). This
suggested that under these conditions, glycolytic ATP is crucial
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Fig 1 | Alternative oxidase is expressible in human cells and targeted

to mitochondria. (A) Simplified biochemical scheme of mitochondrial
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(RC) are denoted by Roman numerals. (B) Immunoblot of 20 mg total
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(C–E) Fluorescence micrographs of cells transfected with the AOX–Flag

construct. (C) Immunocytochemistry using anti-Flag M2 primary

antibody. (D) Staining with Mitotrackers Red (Molecular Probes).

(E) Superposition of the images from (C,D). Immunocytochemistry

was carried out as described by Garrido et al (2003).
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to cell growth. In addition, there was no change in medium acidi-
fication provoked by lactate excretion in the absence of cyanide
(Fig 3; other data, not shown), indicating that there was no
detectable shift in the relative use of glycolysis versus mitochon-
drial respiration in AOX-expressing cells. This is consistent
with the interpretation that, under normal conditions, electron
flow uses the phosphorylating cytochrome segment and AOX
is essentially inactive, and hence the rate of the succinate-
cytochrome c reductase activity measured in vitro (Table 1) is
unchanged. This activity would be expected to show a significant
decrease if electrons were readily conveyed directly to oxygen
by an active AOX.

In addition, AOX has been shown in other organisms to act as
an antioxidant enzyme by preventing the superoxide production
resulting from a highly reduced quinone pool (Maxwell et al,
1999). Persistently active AOX should thus result in decreased
superoxide production and lead to a decreased level of the
inducible superoxide dismutase (SOD) activity (Geromel et al,
2001). We therefore compared SOD activity in the induced
and noninduced AOX cells and found no significant difference
(Fig 2C). Taken together, these data, replicated on both the
epitope-tagged (Myc or Flag) and untagged AOX versions, support
the view that the enzyme remains inactive as long as the
mitochondrial quinone pool is not highly reduced, that is, as
long as the cytochrome segment of the RC remains functional.

We next investigated the effect of AOX expression on antimycin-
induced superoxide overproduction by the RC, as detected by
the induction of SOD (Geromel et al, 2001). As predicted, a 16 h
treatment with 60mM antimycin induced a roughly threefold
increase in SOD activity in control cells (Fig 2C). In contrast, no
significant increase could be observed in AOX-expressing cells,
indicating that superoxide overproduction resulting from antimycin
inhibition of complex III is alleviated by AOX expression. Although
no significant changes in SOD induction were observed in cells
grown in the presence of oligomycin, AOX expression conferred
significant protection against oligomycin-induced cell death: after
a 6 h treatment with 30mM oligomycin, only 20% of control
cells (2378%; n¼ 3) were still adherent, as compared with 60%
of AOX-expressing cells (61716%; n¼ 3).
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As pyruvate is known to act as an allosteric regulator of plant
mitochondrial AOX, we finally attempted to determine whether
this organic acid, of great importance in mitochondrial diseases
(Stacpoole et al, 1978), also affected C. intestinalis AOX expressed
in human cells. We therefore compared the cyanide sensitivity
of succinate oxidation under state 4 conditions in permeabilized
AOX-expressing cells in the absence or presence of pyruvate,
plus rotenone. This latter inhibitor, specific to complex I, was
added to block the nicotinamide adenine dinucleotide (reduced
form) (NADH) re-oxidation required for sustained oxidation of
the added pyruvate. In the presence of pyruvate, we observed
a consistent increase in cyanide-resistant succinate oxidation,
from approximately 60% to 80% (Fig 2A, compare traces g and d).

This strongly suggests that the expressed C. intestinalis AOX was
subjected to a similar allosteric regulation by organic acid as the
plant enzyme, despite the absence of the supposedly critical
cysteine residue in the predicted amino-acid sequence (McDonald
& Vanlerberghe, 2004). In agreement with this inference, we
observed that n-propyl gallate, added in the absence of cyanide
but in the presence of pyruvate, brings about a more pronounced
(approximately 20%) inhibition of succinate oxidation (Fig 2A,
compare traces h and f). This suggested that both the level
of quinone reduction and activation by pyruvate control the
involvement of the AOX in mitochondrial substrate oxidation.

The successful expression of C. intestinalis AOX in human cells
constitutes a promising tool to study further the consequences
of RC dysfunction, because it offers a unique possibility to
disconnect electron flow through most of the RC from the
phosphorylation process. In the longer term, allotopic expression
of AOX may provide an effective therapy for, at present,
intractable RC diseases. The first step in this endeavour should
be the expression of AOX in whole organism models, for example,
mouse or Drosophila, exhibiting RC deficiency.

METHODS
Construction of AOX-expressing vector. For the construction of
epitope-tagged expression vectors, annealed oligonucleotide pairs
GJ247: 50-GGCCGCGGAACAAAAACTCATCTCAGAAGAGGATC
TGTGATGA-30 plus GJ248: 50-TCGATCATCACAGATCCTCTTCT
GAGATGAGTTTTTGTTCCGC-30 (Myc), and GJ249: 50-GGCCGC
GGATTACAAGGATGACGACGATAAGTGA-30 plus GJ250: 50-TC
GATCACTTATCGTCGTCATCCTTGTAATCCGC-30 (Flag) were
ligated into pCDNA5/FRT/TO (Invitrogen, Carlsbad, CA, USA)
digested with NotI and XhoI. pBluescriptII clones carrying over-
lapping stretches of the C. intestinalis AOX cDNA (cieg032g14
and cic1022c03, http://ghost.zool.kyoto-u.ac.jp/indexr1.html)
were used to assemble a full-length cDNA by PCR, using primer
pairs GJ241: 50-GGGAAGCTTCCACCATGTTGTCTACCGGAAGT
AAAAC-30 plus GJ242: 50-GGGGTACCGAGAGTATAACCAGAA
AAAAC-30 on cieg032g14, and GJ243: 50-GGTACCTACACTGGA
CGGCTAGATGAG-30 plus GJ244: 50-GGGGCGGCCGCTTGTCC
AGGTGGATAAGGATTC-30 or GJ 245: 50-GGGGCGGCCGCTAT
TGTCCAGGTGGATAAGGATTC-30 on cic1022c03. After sequence
verification, the subcloned amino- and carboxy-terminal frag-
ments were ligated into pCDNA5/FRT/TO, or the modified,

Table 1 | RC complex activities in control and untagged AOX-expressing cells

Activity (nmol/min per mg protein)

Control cells Untagged AOX cells

NADH:ubiquinone oxidoreductase (cI) 1071.2 971.0

Succinate:cytochrome c oxidoreductase (cII+cIII) 5778 5178

Glycerol 3 phosphate:cytochrome c oxidoreductase (G3PDH+cIII) 1473 1773.5

Ubiquinol:cytochrome c oxidoreductase (cIII) 338746 297755

Cytochrome c oxidase (cIV) 181722 183724

Oligomycin-sensitive ATPase (cV) 88712 90712

AOX¼ alternative oxidase; NADH¼ nicotinamide adenine dinucleotide (reduced form).
Activities were measured under standard conditions as described previously (Rustin et al, 1994). Values are means71 s.d. (n¼ 3).
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epitope tag-containing vectors, as HindIII–KpnI and KpnI–NotI
fragments, respectively.
Cell culture and transfection. Flp-InTM T-RExTM-293 cells (Invi-
trogen) were cultured in standard DMEM medium supplemented
with 200 mM uridine, 1 mM pyruvate and 5% TET-free fetal bovine
serum (Ozyme, St Quentin en Yvelines, France) plus appropriate
antibiotics for transgene selection, and were transfected using
LipofectamineTM (Invitrogen) according to the manufacturer’s
instructions. AOX expression was induced by treating cells with
1 mg/ml doxycyclin.
Fluorescence microscopy. Immunocytochemistry was carried
out as described (Garrido et al, 2003). AOX-expressing cells
were analysed using anti-Flag M2 primary antibody (Stratagene,
La Jolla, CA, USA) combined with Mitotrackers Red (Molecular
Probes, Eugene, OR, USA) staining.
Biochemical methods. Cell lysates were prepared and analysed
for AOX expression by immunoblotting after SDS–PAGE. Primary
antibodies used were mouse anti-Myc monoclonal 9E10 (Roche
Molecular Biochemicals, Nutley, NJ, USA) and anti-Flag M2
antibody (Stratagene). Peroxidase-conjugated goat anti-mouse IgG
(Vector Laboratories Inc.) was used as a secondary antibody
(Spelbrink et al, 2000). Cell respiration and succinate oxidation
in digitonin-permeabilized cells were measured after 48 h
doxycyclin induction, using a Clark oxygen electrode (Hansatech,
UK) fitted to a magnetically stirred 250 ml chamber maintained at
37 1C in 250 ml of a medium consisting of 0.3 M mannitol, 5 mM
KCl, 5 mM MgCl2, 10 mM phosphate buffer (pH 7.2) and 1 mg/ml
bovine serum albumin, plus substrates or inhibitors as shown in
the legend to Fig 2. Total SOD activity (EC 1.15.1.1; Mn- and
CuZn-dependent enzymes) was determined by the pyrogallol
autoxidation assay, 50% decrease of the autoxidation rate by SOD
being defined as 1 U (Roth & Gilbert, 1984). Results were
expressed as U/mg protein.
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