
BioMed CentralBMC Genetics

ss
Open AcceResearch article
Models and partition of variance for quantitative trait loci with 
epistasis and linkage disequilibrium
Tao Wang1,3 and Zhao-Bang Zeng*1,2

Address: 1Bioinformatics Research Center & Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA, 2Department of 
Genetics, North Carolina State University, Raleigh, NC 27695, USA and 3Division of Biostatistics & Human Molecular Genetics Center, Medical 
College of Wisconsin, Milwaukee, Wl 53226, USA

Email: Tao Wang - taowang@mcw.edu; Zhao-Bang Zeng* - zeng@stat.ncsu.edu

* Corresponding author    

Abstract
Background: A genetic model about quantitative trait loci (QTL) provides a basis to interpret the
genetic basis of quantitative traits in a study population, such as additive, dominance and epistatic
effects of QTL and the partition of genetic variance. The standard quantitative genetics model is
based on the least squares partition of genetic effects and also genetic variance in an equilibrium
population. However, over years many specialized QTL models have also been proposed for
applications in some specific populations. How are these models related? How to analyze and
partition a QTL model and genetic variance when both epistasis and linkage disequilibrium are
considered?

Results: Starting from the classical description of Cockerham genetic model, we first represent
the model in a multiple regression setting by using indicator variables to describe the segregation
of QTL alleles. In this setting, the definition of additive, dominance and epistatic effects of QTL and
the basis for the partition of genetic variance are elaborated. We then build the connection
between this general genetic model and a few specialized models (a haploid model, a diploid F2
model and a general two-allele model), and derive the genetic effects and partition of genetic
variance for multiple QTL with epistasis and linkage disequilibrium for these specialized models.

Conclusion: In this paper, we study extensively the composition and property of the genetic
model parameters, such as genetic effects and partition of genetic variance, when both epistasis and
linkage disequilibrium are considered. This is the first time that both epistasis and linkage
disequilibrium are considered in modeling multiple QTL. This analysis would help us to understand
the structure of genetic parameters and relationship of various genetic quantities, such as allelic
frequencies and linkage disequilibrium, on the definition of genetic effects, and will also help us to
understand and properly interpret estimates of the genetic effects and variance components in a
QTL mapping experiment.

Background
Modeling quantitative trait loci (QTL) started with Yule
[1,2] and Pearson [3] (see [4,5] for the early history of
quantitative genetics). However, it was Fisher [6] who laid
the firm foundation for quantitative genetics. Fisher
defined gene effects (additive, dominance and epistatic
effects) based on the partition of genetic variance. He par-

titioned the genetic variance into a portion due to additive
effects (averaged allelic substitution effects), a portion due
to dominance effects (allelic interactions), and a portion
due to epistatic effects (non-allelic interactions) of genes.
He then studied the correlation between relatives using
the model. Cockerham [7] used the orthogonal contrasts
to redefine the additive and dominance effects of QTL
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and, by extending the contrasts to include epistatic effects,
he partitioned the epistatic variance of two loci into those
due to additive × additive, additive × dominance, domi-
nance × additive and dominance × dominance effects of
QTL. Cockerham then generalized the model to multiple
loci. This was further generalized by Kempthorne [8,9] to
multiple alleles. This model has been used as the basis for
studying quantitative genetics ever since.

However, over years, many specialized models have also
been proposed. Some are just special cases of the general
genetic model and some are simplified variants tailored
for particular applications or interpretations. With the
propagation of numerous quantitative genetic models,
there have also been some confusions in literature on the
definition and interpretation of additive, dominance and
epistatic effects of QTL and their relationship to the parti-
tion of genetic variance. Also, there has never been a study
that considers both epistasis and linkage disequilibrium
in the partition of genetic variance for multiple QTL. In
this paper, we try to build the connection between the
general genetic model and a few other commonly used
genetic models to clarify the basis for the interpretation of
different genetic models.

We start with an introduction of the genetic model as
expressed in [7] in the context of variance components.
Then by introducing an indicator variable for each QTL
allele, we represent the model in a multiple regression set-
ting and examine the definition and meaning of the
genetic effects (additive, dominance and epistatic effects)
of QTL and partition of the genetic variance in an equilib-
rium population and also in a disequilibrium population.
Most of previous studies on modeling QTL discuss epista-
sis only in reference to an equilibrium population. An
examination of properties of a model with both epistasis
and linkage disequilibrium is important for QTL analysis
in both experimental and natural populations. This is
another goal of the paper and is studied in great detail
here. We discuss a few reduced models used for QTL anal-
ysis, such as backcross model (essentially a haploid
model) and F2 model. We also give details for a general
two-allele model which may be useful for studying the
genetic architecture in a natural population using single
nucleotide polymorphisms (SNPs).

Previously, in [10], we compared F2 model and the gen-
eral two-allele model with another commonly used
genetic model, called F∞ model. By specifying the basis of
definition for each model, we compared the properties of
these models in the estimation and interpretation of QTL
effects including epistasis and discussed a few potential
problems of using F∞ model in a segregating population
for QTL analysis. Similarly, we also compared these mod-
els with another model proposed by Cheverud [11,12].

An important result of [10] is that the genetic effects
defined in reference to an equilibrium population also
apply to a disequilibrium population. The partial regres-
sion coefficients, that define the genetic effects in a dise-
quilibrium population, equal to the simple regression
coefficients in a corresponding equilibrium population –
the usual basis to define and interpret a genetic effect
including an epistatic effect. Hardy-Weinberg and linkage
disequilibria only introduce covariances between differ-
ent genetic effects. With this result, in this paper our dis-
cussion on epistasis and linkage disequilibrium is focused
on the partition and composition of genetic variances and
covariances between different genetic effects in different
populations.

Results
The genetic model
A general genetic model for the partition of genetic vari-
ance (particularly epistatic variance) in a random mating
population was first given by Cockerham [7,13] and
extended to multiple alleles by Kempthorne [8,9], follow-
ing the basic genetic model formulated by Fisher [6]. The
model for two loci A and B with multiple alleles was
expressed as follows

where the genotypic value  is the expected phenotype

of an individual carrying alleles Ai, Aj, Bk, and Bl with

phased genotype AiBk/AjBl formed by the union of a pater-

nal gamete AiBk and a maternal gamete AjBl. The model

partitions the total genotypic value into a number of
genetic effects which include additive effects of each allele

(α's and β's), dominance effects between two alleles at

each locus (δ's and γ's), additive × additive interactions

between two alleles at two loci ((αβ)'s), additive × domi-

nance interactions involving three alleles ((αγ)'s and

(δβ)'s), and dominance × dominance interaction involv-

ing all four alleles ((δγ)'s).

As an ANOVA model, it is known that not all the parame-
ters in model (1) are estimable. A number of constraint
conditions on these parameters are therefore needed. Let
pi, qk denote allelic frequencies for alleles on paternal gam-
etes, and pj, ql allelic frequencies for alleles on maternal
gametes. It is usually assumed that a weighted summation
of genetic effects is zero over any index for each genetic
component as a deviation from the mean. Some examples
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Under the assumption of random mating and linkage equi-
librium and allowing for different allelic frequencies in
paternal and maternal gametes, the mean and genetic
effects can be expressed as follows based on the least
squares principle:

where , ,

and so on. The total genetic variance is

, and has an orthogonal

partition under random mating and linkage equilibrium

with

Using indicator variables, we can represent model (1) in
another form. Assume that the two loci A and B have alle-
les Ai, i = 1, 2, ..., n1; and Bk, i = 1, 2, ..., n2, respectively. We
define the following indicator variables to represent the
segregation of alleles in a population.

for i, j = 1, 2, ..., n1 at locus A, and

for k, l = 1, 2, ..., n2 at locus B. In terms of these indicator
variables, we have the following.

• Hardy-Weinberg equilibrium (HWE) implies that { ,

i = 1, 2, ..., n1} are independent of { , j = 1, 2, ..., n1},
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and { , k = 1, 2, ..., n2} are independent of { , l =

1, 2, ..., n2}.

• Linkage equilibrium (LE) implies that { , i = 1, 2, ...,

n1} are independent of { , k = 1, 2, ..., n2}, and { ,

j = 1, 2, ..., n1} are independent of { , l = 1, 2, ..., n2}.

• There is another type of disequilibrium; i.e., the so-
called genotypic disequilibrium [14] for two alleles on
different gametes and at different loci. So, the genotypic

equilibrium (GE) here means that { , i = 1, 2,..., n1}

are independent of { , l = 1, 2, ..., n2}, and { , j = 1,

2, ..., n1} are independent of { , k = 1, 2, ..., n2}.

It is known that under random mating we have both HWE
and GE, which together are called gametic phase equilib-
rium. Now, let G denote the genotypic value of a progeny
drawn randomly from the current population. Based on
Cockerham model, G can be expressed as

This is simply a different presentation of Cockerham
model with the same constraint conditions applied on the
coefficient parameters. For a given individual with geno-

type AiBk/AjBl, G will take the same value of  as before.

However, this expression is helpful for us to understand
some details about each component of genetic effects. We

can see this more clearly in the examination of some
reduced models later.

In general, the genetic effects can be defined separately for
alleles that are paternally and maternally transmitted to
account for possible biological differences. As a fully

parameterized model for , model (3) may give

 depending on how genetic effects

are defined. If locus A has n1 alleles, and locus B has n2

alleles, there are N =  possible phased genotypes in

total with the partition of the degrees of freedom given in
Table 1.

If we assume that the union of paternal gamete AiBk with

maternal gamete AjBl have the same mean effect as that of

paternal gamete AjBl with maternal gamete AiBk(i.e.,

), the coupling and repulsion heterozygotes

have the same genotypic value (i.e., ), and pater-

nal and maternal gametes have the same gametic fre-
quency distribution, we do not need to distinguish
paternal and maternal effects. In this case, the two loci can

be regarded as 2 factors and each factor has  (i = 1, 2)

levels produced by the allelic combinations of ni alleles

(cf. [7]). The total number of genotypes is N = n1(n1 +

1)n2(n2 + 1)/4 and the partition of degrees of freedom is

shown in Table 2. Since in this case, αi = αi, βk = βk, ..., and

so on, the model can also be expressed as follows

For the case of an arbitrary number of loci, the situation
will become more complicated. In addition to the addi-
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tive and dominance effects at each locus and two locus
interactions (additive × additive, additive × dominance,
dominance × additive, dominance × dominance, with a
total number of 22 terms), there are 3 locus interactions
(additive × additive × additive, additive × additive × dom-
inance, ..., with a total number of 23 terms), 4 locus inter-
actions (additive × additive × additive × additive, ..., with
a total number of 24 terms), and so on. Though the exten-
sion is straightforward, the total number of terms will
increase dramatically. We will show some models with
multiple loci in later examples by ignoring trigenic and
higher order epistasis.

Effects and variance components

Let pi, pj (i, j = 1, 2, ..., n1) be allelic frequencies of paternal

and maternal gametes at locus A, respectively. Let also qk,
ql (k, l = 1, 2, ..., n2) denote allelic frequencies of paternal

and maternal gametes at locus B, respectively. In the anal-
ysis of variance for the model, it is convenient to use devi-

ations of the indicator variables , ,  and 

from their expected values. That is

Similarly, define

Taking the constraint conditions on the genetic effects
into account, we can show that,

and so on. For example,

as  by the constrain condition (2). There-
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effects) are Cockerham's least squares effects (3) (Appen-
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Table 1: Partition of degrees of freedom for two loci with 
number of alleles n1 and n2 (a general case)

Source Degrees of Freedom

additive (α) 2(n1 - 1)
dominance (δ) (n1 - 1)2

additive (β) 2(n2 - 1)
dominance (γ) (n2 - 1)2

additive × additive (αβ) 4(n1 - 1)(n2 - 1)
additive × dominance (αγ) 2(n1 - 1)(n2 - 1)2

dominance × additive (δβ) 2(n1 - 1)2(n2 - 1)
dominance × dominance (δγ) (n1 - 1)2(n2 - 1)2

total
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dix A), and the genotypic variance VG has the orthogonal
partition (4) (Appendix B).

Now we discuss the properties of model in a disequilib-
rium situation. As stated in [14], there are three types of
disequilibria

• Typel: between alleles on the same gametes but at differ-
ent loci

• Type2: between alleles at the same locus but on different
gametes

• Type3: between alleles on different gametes and at dif-
ferent loci.

If we denote  as the genotypic frequency of AiBk/AjBl,

 as the genotypic frequency of Ai/Aj, and so on, follow-

ing [14], the digenic disequilibria can be written as

And the trigenic disequilibria

Similarly for the quadrigenic disequilibrium, we may
define

If we express  as a function of lower-order linkage dis-

equilibria, we have

This definition is the same as that given by [15,16]. Note

that . Then, we have

In general,  is summed to zero over any allele

involved, so are  and other disequilibrium measure-

ments.

With Hardy-Weinberg and genotypic equilibria but link-
age disequilibrium, model (7) leads to the following
expression for the overall mean
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Table 2: Partition of degrees of freedom for two loci with 
number of alleles n1 and n2 (a simplified case without 
distinguishing the paternal and maternal origins)

Source Degrees of Freedom

additive (α) n1 - 1
dominance (δ) n1(n1 - 1)/2
additive (β) n2 - 1
dominance (γ) n2(n2 - 1)/2
additive × additive (αβ) (n1 - 1)(n2 - 1)
additive × dominance (αγ) (n1 - 1)n2(n2 - 1)/2
dominance × additive (δβ) n1(n1 - 1)(n2 - 1)/2
dominance × dominance (δγ) n1(n1 - 1)n2(n2 - l)/4
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where µ is the mean genotypic value under linkage equi-
librium, and

 represents the departure from µ due to linkage disequilib-
rium and epistasis. If there is no epistasis, linkage disequi-
librium does not affect the mean genotypic value. Similar
results were given by [17]. Note that for marginal means
of the genotypic values, we have

and so on.

Then the question is what the genetic effects are in a dise-
quilibrium population. Do Hardy-Weinberg and linkage
disequilibria change the definition and values of genetic
effects? The short answer to this question is "no" in a fully
characterized model, but "yes" in a model that ignores
some QTL or genetic effects. This is proved and discussed
in [10]. With Hardy-Weinberg and linkage disequilibria,
the genetic effects no longer correspond to the deviations
from marginal means of genotypic values in a disequilib-
rium population. In a multiple regression model (7), the
genetic effects are partial regression coefficients. These
partial regression coefficients correspond to the simple
regression coefficients, or deviations from marginal
means of genotypic values, only in an equilibrium popu-
lation. In a disequilibrium population, a direct analysis
on the partial regression coefficients can be very complex
(see the appendix of [10] for a relatively simple example).
However, in a full model which includes all relevant loci
and genetic effects, the model parameters depend only on
how the regressors, i.e. x variables in (7), are defined and
are independent of correlations between x variables, i.e.
Hardy-Weinberg and linkage disequilibria. So, the genetic
effects are still the same as those defined in the equilib-
rium population, although the population mean and

marginal means of genotypic values are changed in a dis-
equilibrium population.

Hardy-Weinberg and linkage disequilibria introduce cor-
relation between x variables, thus covariances between
different genetic effect components. Define

Then we can write

G = µ + A1 + A2 + D1 + D2 + A1A2 + A1D2 + A2D1 + D1D2

In a disequilibrium population, the partition of the geno-
typic variance becomes

where

V = (Vij)8 × 8

It is a symmetric matrix. In Appendix C, we give the
detailed result for each component of the matrix with
linkage disequilibrium, but assuming Hardy-Weinberg
equilibrium.
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For the rest of paper, when we discuss disequilibrium, we
mainly discuss linkage disequilibrium and assume Hardy-
Weinberg and genotypic equilibria which can be achieved
by random mating in one generation. Hardy-Weinberg
disequilibrium can be taken into account which will make
results more complex and is thus omitted.

Reduced models
In many genetic applications, experimental population
has some regular genetic structure by design. In these
cases, the genetic model can be further simplified to
reflect the experimental design structure. Also sometimes
we may want to simplify the genetic model by imposing
certain constrains or assumptions, such as the number of
alleles, to increase the feasibility of analysis. In this sec-
tion, we give a few reduced genetic models that are rele-
vant to many genetic applications.

1. Backcross population or recombinant inbred population (haploid 
model)
Backcross population or recombinant inbred population
is a common experimental design for QTL mapping study.
By crossing two inbred lines, we can create a F1 popula-
tion. If we randomly backcross F1 to one of the inbred
lines, we have a backcross population. Let us assume that
the cross is AA (paternal) × Aa (maternal). In a random-
mating backcross population, there are only two possible
genotypes at each segregating locus ArAr or Arar, for r = 1,
2, ..., m, where m is the number of QTL. Since for the pater-
nal gametes,

and

thus  and  for r = 1, 2, ...,

m. For maternal gametes however,

Thus the model becomes

where  is the substitution effect between

homozygote genotype ArAr and heterozygote genotype

is the interaction effect between loci r and

, ..., and so on. Taking constraint conditions into account,

we have α1 = -α2, β1 = -β2, and so on. Then, ar = , brs

= 4( ), and crst = 8( ), and so on. With

linkage equilibrium, the genetic effects as the partial
regression coefficients of the model correspond to the
simple regression coefficients. For example, for the substi-
tution effect of locus r, ar, it is the covariance between gen-

otypic value G and substitution effect design variable 

divided by the variance of . So in general, we have

The orthogonal partition of the genotypic variance in an
equilibrium population is
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As noted above, linkage disequilibrium does not change
the values of genetic effects in a full model. The model
parameters are still the same as those defined in the equi-
librium population. However, in this case there is a sim-
ple relationship between the substitution effects at
multiple loci and marginal means of genotypic values in a
disequilibrium population [18]. This is noted here. Let

, and the digenic linkage disequi-

librium be defined as

Ignoring trigenic and higher order linkage disequilibria,
we have

Therefore, the digenic interaction effects can be expressed
as

Then the substitution effects can be expressed as a func-
tion of marginal means in the disequilibrium population
as

where I is a m × m identity matrix, D = (Dij)m × m with all
diagonal elements being zeros;

q = (q1, q2, ..., qm,)T, with qi = E(G|  = 1) - E(G), for i =

1, 2, ..., m.

The partition of genetic variance with linkage disequilib-
rium is complex. Here we give details of the partition of
genotypic variance for the following model

Let xr =  and xs =  to simplify the notation here.

The genotypic variance is

where

Drst = E(xrxsxt) and Drstu = E(xrxsxtxu)

are three locus and four locus linkage disequilibria. This is
a general partition of genetic variance for a haploid
model.

For the backcross population, it can be shown that Drst = 0
(see Appendix D for both backcross and F2 populations)
and Drstu = DrsDtu for loci r, s, t and u in this order under
the assumption of no crossing-over interference. Also with
this assumption, Drt = 4DrsDst and Drs = (1 - 2λrs)/4, where
λrs is the recombination frequency between loci r and s.
Since, pr = ps = 1/2, the variance becomes
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In this partition of variance, the first summation term is
the genetic variance due to the substitution effect of each
QTL, the second summation term is the covariance
between substitution effects of QTL pairs due to linkage
disequilibrium, the third summation term is the genetic
variance due to epistatic effects of QTL, and the fourth and
fifth summation terms are the covariance between differ-
ent epistatic effects of QTL due to linkage disequilibrium.
There is no covariance between the main substitution
effects and epistatic effects (see also [19]).

For a backcross population, the genetic interpretation of the
substitution effect ar depends on which parental line is back-
crossed. In one backcross AA × Aa, the substitution effect is
traditionally defined as the difference between the additive
effect and dominance effects, and in the other backcross Aa
× aa, it is the sum of the additive and dominance effects.
Only with both backcrosses, can one estimate both additive
and dominance effects separately (for example [20]).

The same model also applies to a recombinant inbred pop-
ulation which is another very popular experimental design
for QTL mapping study. For a recombinant inbred popula-
tion, the substitution effects of QTL are the additive effects
and the epistatic effects are the additive × additive interac-
tion effects. Statistical methods to map QTL and to esti-
mate various components of the genetic variance due to
QTL including epistasis has been developed through the
maximum likelihood approach [19,21]. In a few cases
where the method was applied, we estimated, for the first
time, how the quantitative genetic variance was parti-
tioned into various components in designed experimental
populations. For example, Weber et al. [22] reported the
result of QTL mapping for wing shape on the third chro-
mosome of Drosophila melanogaster from a cross of diver-
gent selection lines. From 519 recombinant inbred lines,
11 QTL were mapped on the third chromosome. Nine QTL
pairs showed significant epistatic effects. The total genetic
variance amounts to 95.5% of the phenotypic variance in
the recombinant inbred lines with phenotypes measured
and averaged over 50 male flies for each recombinant

inbred line. The partition of the genetic variance is as fol-
lows (see Table 6 and 7 of [22]): 27.4% due to the vari-
ances of additive effects (equivalent to the first summation
term of (12)); 67.3% due to the covariances between addi-
tive effects (the second summation term); 7.2% due to the
variances of epistatic effects (the third summation term);
and -6.0% due to the covariances between epistatic effects
(the fourth and fifth summation terms). The covariances
between additive and epistatic effects, expected to be 0,
account for -0.4% due to sampling. Similar kind of parti-
tion of the genetic variance is also observed in a group of
701 second chromosome recombinant inbred lines from a
cross of the same divergent selection lines (see Table 4 and
5 of [23]). See also [20] for another example.

2. F2 population
F2 is created from a cross between pairs of F1 individuals.
It is also a very popular experimental design for QTL map-
ping study. The advantage of this design is that both addi-
tive and dominance effects of a QTL can be estimated as
well as various epistatic effects. The design also has more
statistical power for QTL detection as compared to a back-
cross population. In a random-mating F2 population,
there are only two alleles at each segregating locus and
allelic frequencies are expected to be one half if there is no
segregation distortion.

Let us consider only two loci first. Let A and a denote the
two alleles at locus 1, and B and b at locus 2. In this case,
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Note that the v variable in this section for F2 differ, by a
factor -2, from the v variable in the next section for a gen-
eral two-allele model to conform to the usual definition
for the F2 model. Similarly, for locus 2

A2 = 2β1w2 and D2 = (-2)( )v2

with

and

The model can then be written as

where the parameters are related as a1 = 2α1, a2 = 2β2, d1 =

- , d2 = - , (aa)12 = 4(α1β1), (ad)12 = 8( ),

(da)12 = 8( ), (dd)12 = 16( ). With random mat-

ing and linkage equilibrium, we have

The orthogonal partition of the genotypic variance is

Recently, Kao and Zeng [18] have examined many genetic
and statistical issues of the above F2 model and the effects
of linkage disequilibrium. As we have shown here, the F2
model is a special case of Cockerham model with two alle-
les at each locus and all allelic frequencies being 1/2.

Now we give the partition of genetic variance for m loci
with epistasis and linkage disequilibrium in the F2 popu-
lation. Generalizing model (16) to m loci and ignoring
the trigenic and higher order epistasis, we have the follow-
ing model

The partition of genetic variance for this model under the
assumption of Hardy-Weinberg equilibrium is

The detail of each component is presented in Appendix D.

The F2 model is a special case of the general two-allele
model with pr = 1/2. Note the difference on the v variable
used for the F2 model and for the general two-allele model
below. This partition of genetic variance can provide a
basis for the interpretation of genetic variance estimation
by multiple interval mapping in a F2 population [19,21].

3. A general two-allele model

Here, we provide details of a general two-allele model for
multiple loci. This model is probably useful for studying
genetic architecture of a quantitative trait in natural pop-
ulations. Let the two alleles at locus r be Ar and ar for r = 1,

2, ..., m with m the number of QTL. Assume that the fre-
quencies and genetic effects of alleles are the same for
both paternal and maternal gametes. Let pr denote the fre-

quency of allele Ar at locus r. Note that in this case

, r = 1, 2, ..., m. 
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Also .

Similarly,  Ignoring higher order epistasis

involving at least three loci, we can define a two-allele
model as

where

for r = 1, 2, ..., m. The coefficients are associated with the
original parameters in Cockerham model as follows.

The constraint conditions further lead to

With Hardy-Weinberg, linkage and genotypic equilibria,
the partial regression coefficients in the above model cor-
respond to the simple regression coefficients
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Note that in this case the genetic effects in the original
model are

They are the same as the least squares definition.

Yet another form of this result is shown in Table 1 of [10].
Zeng et al. [10] also show that linkage disequilibrium
does not change the values of genetic effects in a full
model. This means that the partial regression coefficients
in a disequilibrium population equal to the simple regres-
sion coefficients in a corresponding equilibrium popula-
tion with the same allelic frequency configuration.

The partition of genotypic variance in an equilibrium
population is

or

The partition of the genetic variance with epistasis and
linkage disequilibrium is complex. We give the result with
trigenic and quadrigenic linkage disequilibria included as
well. The partition of variance has a similar form as (19).
The detail of each component is presented in Appendix E.

Discussion
In this paper we explore various properties of the standard
quantitative genetic model with multiple interacting loci
in linkage equilibrium and disequilibrium. Starting from
the traditional least squares model, we represent it in the
setting of multiple regression with standardized allelic
indicator variables and their products as the independent
variables and the trait value as the dependent variable.
Then the partial regression coefficients associated with
these indicator variables define the additive, dominance
and epistatic effects for QTL. This is the original definition
of QTL effects introduced by Fisher [6] and extended to
epistasis by Cockerham [7]. We examine the properties
and meaning of these QTL effects in an equilibrium pop-
ulation and also in a disequilibrium population. We show
details of the partition of genetic variance for both equi-
librium and disequilibrium populations in terms of QTL
effects, allelic frequencies and disequilibrium measures.
Moreover, we relate this general model to several reduced
models used for QTL mapping analysis in cross popula-
tions from inbred lines, such as F2, backcross and recom-
binant inbred lines. The detailed partition of genetic
variance in these populations can provide a basis for the
interpretation of genetic variance component estimates
from multiple interval mapping [21].
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The purpose of modeling QTL is to provide a meaningful
and convenient framework and basis to infer and interpret
relative significance of each QTL and intricate inter-rela-
tionship among QTL on a set of quantitative traits in an
experimental or natural population for genetic study. The
linear model provides a framework to study the effects of
QTL on the mean and variance of the distribution of a trait
or multiple traits in a population. With the assumption of
a normal distribution for both genotypic and phenotypic
values of a quantitative trait or multiple traits, this analy-
sis on the first and second order statistics is sufficient to
characterize the relationship between QTL and trait (s).
Otherwise, it is an approximation on the relationship. In
this model, the model parameters are partitioned into two
parts: one is the effects of QTL (additive, dominance and
epistatic effects), and the other is frequencies and correla-
tions (Hardy-Weinberg and linkage disequilibria) of QTL
alleles. Together they characterize the genetic architecture
of quantitative traits in a population.

This linear model also provides a framework for statistical
inference of genetic model parameters. If QTL genotypes
are known and directly observed, a regression analysis of
trait phenotype on QTL genotypes would provide a direct
estimation of the genetic model parameters. However, if
QTL genotypes are unknown and are only indirectly
observed through molecular markers, the statistical infer-
ence of QTL and model parameters becomes more com-
plicated. Statistically, we can regard QTL genotypes as
missing data with trait phenotypes and marker genotypes
as observed data and use a mixture model through the
maximum likelihood analysis to infer the conditional dis-
tribution of missing data and through that to infer QTL
parameters which also include the number and genomic
position of QTL [19,24,25]. The likely positions of QTL
are searched in the whole genome if data permit and the
number of significant QTL positions can be estimated
through some model selection procedure.

On modeling QTL, the consistence of model parameters
in a multiple-locus setting is an important consideration.
It is important for a model to be multiple-locus consist-
ent, and the relationship within and between loci can be
clearly and readily analyzed, estimated and interpreted.
Here the consistence means that the effect of a QTL is con-
sistently defined in a reference equilibrium population for
one, two or multiple loci. In statistics, this is the property
of orthogonality. This property is particularly important
for the study of epistasis. With that the additive, domi-
nance and epistatic effects can be independently and con-
sistently estimated for one, two, three or multiple loci in
the reference population where the model is defined and
interpreted. Thus, if the number of QTL is incorrectly
identified which seems to be always the case in practice,
the parameter values for those identified QTL can still be

consistently estimated. However, the situation would cer-
tainly be different and complicated if the population is
not at equilibrium, for example for QTL in linkage dise-
quilibrium. Linkage disequilibrium would complicate the
partition of genetic variance, and could certainly bias the
estimation of parameter values for those identified QTL if
the QTL model (number and genomic position of QTL) is
miss-identified.

In this paper, we study extensively the composition and
property of the genetic model parameters, such as genetic
effects and partition of genetic variance, when both epista-
sis and linkage disequilibrium are considered. This would
help us to understand the relationship of various genetic
quantities, such as allelic frequencies and linkage disequi-
librium, on the definition of genetic effects. It would also
help us to understand and properly interpret estimates of
the genetic effects and variance components in a QTL
mapping experiment. It is important to emphasize that
modeling QTL is inherently population based as it defines
the variation of QTL in reference to a population, either a
study population, cross population or natural population.
The very basic concept of additive effect of a QTL is a pop-
ulation concept and is population dependent. It depends
on the genotypes at other loci and depends on the genetic
structure of the population (allelic frequencies, Hardy-
Weinberg and linkage disequilibria).

We also clarify the connection between the general genetic
model and some reduced models. By restricting the
number of alleles at each locus to two and setting allelic
frequencies to half, the general genetic model is reduced
to the F2 model. This simplification reduces the partition
of genetic variance enormously.

Another property for this F2 population is that, if there is
no crossing-over interference, the three-locus linkage dis-
equilibrium is expected to be zero regardlessly whether
the loci are linked. Also the four-locus disequilibrium is
reduced to the product of the two-locus disequilibria for
the two non-adjacent locus pairs. If there is crossing-over
interference, the three-locus linkage disequilibrium
would be a good measure of the interference. As many
QTL mapping experiments are performed in a F2 popula-
tion, this reduced model is very relevant to QTL mapping
analysis for the interpretation of genetic architecture in a
F2 population. Another reduced model is the backcross
model which is essentially a haploid model.

We give many details for a general two-allele model with
epistasis and linkage disequilibrium. Research on QTL
mapping analysis has been shifted in recent years from
inbred line crosses to natural populations. With the avail-
ability of very dense SNP markers, it is now possible to use
SNP for fine mapping of QTL in a natural population.
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Currently most QTL fine mapping studies are concen-
trated on candidate genes. It will be increasingly possible
to have genome-wide SNP data for a sample of individu-
als from a natural population. The general two-allele
model can be used as a framework to interpret and esti-
mate the genome-wide genetic architecture for a quantita-
tive trait in a natural population. The model can be
extended to multiple alleles to take haplotypes into
account if needed.
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Appendix
A. Cockerham least squares estimates

In this appendix, we show that the regression coefficients
(genetic effects) in model (7) are Cockerham least squares
estimates under Hardy-Weinberg, linkage and genotypic
equilibria. First, note that at each locus only one allele is
present on a gamete. That is if an individual inherits an

allele Ai from a parental gamete,  = 1 and the other

 = 0 for j ≠ i Therefore, when i ≠ j, we have E( )

= 0 or .

Using these relationships, we can show the following for
model (7).

• Additive effects: For i = 1, 2, ..., n1, we can show

On the other hand,

Therefore,  for i = 1, 2, ..., n1. Similarly, we

can show that  for j = 1, 2, ..., n1, and

,  for k, l = 1, 2, ..., n2.

• Dominance effects: For locus 1, we have

On the other hand,

Therefore,  for i, j = 1, 2, ..., n1.

Similar results can be derived for other dominance terms
at locus 2.

• Additive × additive effects: Note that

and

We have  for i = 1, 2, ..., n1

and k = 1, 2, ..., n2. Similar results can be derived for other

additive by additive terms.

• Additive × dominance effects: Note that
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and

For i = 1, 2, ..., n1 and k, l = 1, 2, ..., n2, we have

Similar results can be derived for dominance by additive
terms.

• Dominance × dominance effects: Note that

On the other hand

For i, j = 1, 2, ..., n1 and k, l = 1, 2, ..., n2, we have

B. Partition of genotypic variance in linkage equilibrium

Here we show that the genotypic variance VG of model (7)

has the orthogonal partition (4) under Hardy-Weinberg,
linkage and genotypic equilibria. First, note that the index

variables , , ,  have expectation zero. Sec-

ond, the assumption of Hardy-Weinberg, linkage and gen-
otypic equilibria mean that all alleles in different gametes
and loci are independent so that, for example,

Thus the additive and dominance effects within a locus
are orthogonal to each other because

for any 1 ≤ i, j, k ≤ n1 and locus r = 1 or 2. Similarly, the
epistatic effects between loci are orthogonal to additive
and dominance effects and also to other epistatic effects.

Therefore, the total genotypic variance VG can be parti-
tioned as

with each component analyzed below.

• The additive variance: For locus 1,

as  by the constrain condition (2). Similarly,

for locus 2, we have .

• The dominance variance: For locus 1,

Similarly, for locus 2, we have .

• The additive × additive variance:

• The additive × dominance variance:
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Similarly, the dominance × additive variance is

.

• The dominance × dominance variance:

C. Partition of genotypic variance in linkage disequilibrium
We present the partition of the genotypic variance based
on model (7) under the assumption of Hardy-Weinberg
equilibrium but linkage disequilibrium.

• The additive variance:

• The dominance variance:

• The additive × additive variance:

• The additive × dominance variance:

• The dominance × additive variance:

• The dominance × dominance variance:

• The covariances related to additive and dominance
effects:

• The covariances related to additive × additive effects:

• The covariances related to additive × dominance and
dominance × additive effects:

• The covariances related to dominance × dominance
effects:
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D. Partition of genotypic variance in F2 population with 
linkage disequilibrium
Detail of each component of equation (19) for F2 popula-
tion is presented here.

• The additive variance:

• The dominance variance:

• The additive × additive variance:

• The additive × dominance variance:

• The dominance × dominance variance:

• The covariances: Cov(A, D) = Cov(A, AA) = Cov(A, DD)
= Cov(D, AD) = Cov(D, DD) = Cov(AA, AD) = Cov(AD,
DD) = 0, and

where (aa)sr = (aa)rs and (dd)sr = (dd)rs for r <s.

In this presentation, we utilized the assumption of no
crossing-over interference which results in the third order
linkage disequilibrium of three loci being zero, i.e. Drss' =
0. It may be instructive to show this result.

Let r1 be the recombination frequency between loci r and

s, r2 be that between s and t, and r12 be that between r and

t. Under the assumption of no crossing-over interference,

for loci r, s, t in this order, we have E(zrzszt) = (1 - r1)(1

- r2), E(zrzs) = (1 - r1), E(zszt) = (1 - r2), and E(zrzt) =

(1 - r12). Since the assumption of no crossing-over

interferene implies r12 = r1 + r2 - 2r1r2, thus Drst = 0.

E. Partition of genotypic variance for the general two-
allele model with linkage disequilibrium
Detail of each component of equation (19) for the general
two-allele model is presented here.

• The additive variance:

• The dominance variance:

• The additive × additive variance:

• The additive × dominance variance:
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• The dominance × dominance variance:

• The covariances:

where (aa)sr = (aa)rs and (dd)sr = (dd)rs for r <s.

The result in Appendix D for the F2 model with pr = 1/2 for
r = 1, ..., m and also assuming Drss' = 0 is a special case of
the results presented here. There is a difference, by a factor
-2, on the specification of v variable for dominance effect
for the F2 model and the general two-allele model, which
carries over to the comparison of results in Appendix D
and E.
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