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Correct gene prediction is impaired by the presence of processed pseudogenes: nonfunctional, intronless copies of
real genes found elsewhere in the genome. Gene prediction programs frequently mistake processed pseudogenes for
real genes or exons, leading to biologically irrelevant gene predictions. While methods exist to identify processed
pseudogenes in genomes, no attempt has been made to integrate pseudogene removal with gene prediction, or even
to provide a freestanding tool that identifies such erroneous gene predictions. We have created PPFINDER (for
Processed Pseudogene finder), a program that integrates several methods of processed pseudogene finding in
mammalian gene annotations. We used PPFINDER to remove pseudogenes from N-SCAN gene predictions, and show
that gene prediction improves substantially when gene prediction and pseudogene masking are interleaved. In
addition, we used PPFINDER with gene predictions as a parent database, eliminating the need for libraries of known
genes. This allows us to run the gene prediction/PPFINDER procedure on newly sequenced genomes for which few
genes are known.

[Supplemental material is available online at www.genome.org. N-SCAN and PPFINDER are open source software and
may be obtained from http://genes.cse.wustl.edu/.]

With the sequencing of more and more genomes, the need for
accurate gene prediction is greater than ever. One of the key
hurdles in mammalian genome annotation is the presence of
large numbers of pseudogenes—copies of real genes that have
lost their ability to encode a functional protein product (Zhang
and Gerstein 2004). Pseudogenes are frequently predicted to be
functional by de novo gene prediction programs such as N-SCAN
(Gross and Brent 2006), TWINSCAN (Korf et al. 2001; Flicek et al.
2003), SGP2 (Parra et al. 2003), and SLAM (Alexandersson et al.
2003), as well as annotation programs that make use of transcript
evidence such as Ensembl (Hubbard et al. 2005) and Acembly
(Kim et al. 2004). Both kinds of gene predictors are attracted to
pseudogenes because the sequences of pseudogenes are similar to
those of their transcribed parents.

There are two classes of pseudogenes: nonprocessed and
processed. Nonprocessed pseudogenes arise through segmental
duplication, and hence, they typically retain at least part of the
exon–intron structure of the parent gene. Processed pseudogenes
arise through retrotransposition of a spliced mRNA and therefore
do not contain introns (Vanin 1985). However, secondary inte-
gration events may occur within such pseudogenes, leading to
intron-like interruptions. Typically, both kinds of pseudogenes
accumulate mutations over time until they are indistinguishable
from other sequences without any known function. In rare cases,
however, they may be incorporated into other genes and thereby
acquire new functions (Buzdin 2004).

Estimates of the total number of processed pseudogenes in
the human genome vary. Zhang et al. (2003) put the number of
processed pseudogenes in the human genome at ∼7800, while
Torrents et al. (2003) predict ∼13,800. Ohshima et al. (2003) re-
ported 3664 processed pseudogenes in the human genome and
predict that the total number of human processed pseudogenes is
∼7000, based on an estimation of ∼35,000 human genes. The

three groups use different thresholds for pseudogene complete-
ness in their methods, and this is the most likely explanation for
the difference in estimates (Zhang and Gerstein 2004).

Currently, none of these pseudogene detection methods is
available as a standalone tool that can be used to screen genomes
or gene sets. Furthermore, they have been optimized for finding
as many pseudogenes as possible, rather than the younger pseu-
dogenes that typically get incorporated into models of functional
genes. We have created PPFINDER, a standalone tool that can be
used to identify processed pseudogenes that have been incorpo-
rated into gene models in any mammalian genome annotation.
PPFINDER is optimized for this purpose rather than for finding
all processed pseudogenes in a genome. In this article, we show
that it can be used to improve gene models by iteratively masking
pseudogenes incorporated in models and rerunning a gene pre-
dictor until no more pseudogenes are found.

PPFINDER identifies processed (but not nonprocessed) pseu-
dogenes by combining two homology-based approaches that are
similar to previously described methods (Ohshima et al. 2003;
Torrents et al. 2003). Similar to previous methods, it requires a
database of potential parent genes from which the pseudogenes
are derived. For the human genome, several large databases of
known genes are available, but this is not the case for many other
species. To render the PPFINDER procedure independent of ex-
ternal sequence databases, we used de novo gene predictions
from N-SCAN (Gross and Brent 2006) as putative parent genes
and found that we could reliably identify pseudogenes without a
database of known genes. In fact, using N-SCAN predictions
worked almost as well as did using databases of known genes.
Thus, we have developed a bootstrapping method for removal of
processed pseudogenes from gene predictions.

Results

Description of PPFINDER

PPFINDER uses two different methods of finding pseudogenes:
the intron location method and the conserved synteny method.
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Both methods start with a gene model and try to find a parent
gene from which it was derived by retroposition. If a parent gene
is found, the homologous segment in the gene model is marked
as a potential pseudogene fragment and put into a filtering pro-
cedure. This procedure aligns the parent to the potential pseu-
dogene and discards those cases where the alignment contains an
intron.

We developed and tested PPFINDER by using the human
genome, NCBI build 35. Unless otherwise indicated, all mentions
of genome and annotation sets refer to this build. Parameters
were optimized by using the pseudogenes annotated on chromo-
some 7 (Hillier et al. 2003).

Intron location method

The intron location method identifies potential parent genes by
using each gene model as a BLASTn query against a database of
transcripts. It picks the highest scoring transcripts (all those with
a score >75% of the best score) overlapping each nucleotide of
the gene model (Fig. 1A). These transcripts are then aligned to
the genomic locus of the gene model that was used as the query.
If intron gaps in the alignment are found in different locations
than the introns in the gene model, the model is marked as

containing a potentially pseudogene-derived segment and put
into the filtering procedure.

Segments of the predicted gene that are not pseudogene-
derived will have hits only with themselves and their family
members. For pseudogene-derived gene segments, the best hit
will be with their parent. To distinguish between family members
and parent genes, the predicted gene is aligned to the genomic
region of its best hits. Such alignments will introduce large gaps
in the predicted gene, corresponding to introns. If the locations
of these gaps do not correspond to the intron locations in the
gene model, the part of the gene model that aligns to the parent
is considered a potential pseudogene (Fig. 1B). When intron lo-
cations are not conserved among functional family members,
this procedure yields false-positive pseudogenes, most of which
are filtered out in the filtering step (see below).

A limitation of this method is that if the pseudogenic seg-
ment of a gene model aligns to a single exon of its parent gene,
it will not be identified. In addition, this method will not identify
pseudogenes with a single-exon parent gene, such as the olfac-
tory receptors. (For a detailed discussion of how PPFINDER deals
with the olfactory receptors, see the Supplemental data.)

Conserved synteny method

The conserved synteny method makes use of comparison be-
tween the genome being annotated (the target) and a second
genome (the informant). It identifies potential parent genes by
using translated exons as a BLASTp query against a database of
proteins whose locus in the target genome is known (Fig. 2).
Exons that match a protein from a different genomic location
with 65% amino acid identity over at least nine amino acids are
considered potential pseudogene fragments. This results in a
large number of candidate pseudogenes that are further screened
by determining whether they are of recent origin.

In general, processed pseudogenes are evolving neutrally
(Ophir et al. 1999) and will disappear from genomes over time
(Kimura 1968). This means that when the target genome is com-

Figure 1. The intron location method of pseudogene finding. (A) Flow
diagram of the method. See text for details. (B) All predicted gene models
are used for BLASTn against a database of known genes. When a pseu-
dogene is incorporated in the gene model, it will hit its parent gene in the
BLAST search (left side of diagram). Alignment with the genomic location
of the parent gene will usually show intron gaps. Gene model segments
that are not derived from pseudogenes may hit a family member else-
where in the genome (right side of diagram). In this case, alignment of
the prediction to the genomic region of the parent will typically include
gaps where introns are predicted in the gene model.

Figure 2. Flow diagram for the conserved synteny method. See text for
details.
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pared with an informant genome at an appropriate evolutionary
distance, such as human to mouse, most ancestral pseudogenes
are deteriorated or deleted. In a recent study, Zheng et al. (2005)
found that ∼5% of processed pseudogenes on human chromo-
some 22 are preserved on the orthologous region in mouse, al-
though they note that this may not be typical for the complete
genome. Most functional genes, on the other hand, are ancestral.
Therefore a mouse/human conserved synteny map can be used
to identify pseudogenes in human gene models: If a putative
pseudogene in the human genome interrupts a region of con-
served synteny, it is likely to have arisen after the mouse–human
split and hence to be a real pseudogene (Fig. 3). On the other
hand, if it is found in the mouse at a position that corresponds to
its position in the human genome, it is likely to be a functional
gene.

To determine regions of conserved synteny in human, we
made use of the Mouse Net Synteny map from UCSC (Karolchik
et al. 2003). This map consists of the best mouse alignment for
every part of the human genome and was generated by using
BLASTZ (Schwartz et al. 2003). We set an empirical lower limit of
10 kb on regions of conserved synteny—shorter blocks are con-
sidered interruptions of conserved synteny. We do not attempt
to determine whether blocks <10 kb were in fact derived by ret-
roposition. The 10-kb cutoff was effective in removing even re-
peat-interrupted pseudogenes, without compromising the larger
blocks of synteny.

PPFINDER will only look for conservation of a gene if it has
a BLASTp hit in the procedure described at the beginning of this
section. Although it would be possible to look for conservation of
all gene models, doing so would remove all species-specific genes
and exons from the annotation set as well as genes for which the
conserved syntenic region in the informant is missing from the
assembly.

A limitation of this method is that it does not identify an-
cestral pseudogenes, so its sensitivity depends on finding a suf-
ficiently diverged informant genome (see Discussion).

Filtering

To verify potential pseudogenes, PPFINDER aligns the parent
gene to the genomic region around the pseudogene and identi-
fies all genomic bases to which the parent aligns. This part of the
procedure allows PPFINDER to remove spurious pseudogenes.

Each of the methods described above finds false positives. In
the intron location method, this occurs if gene family members
differ in one or more intron locations. In the conserved synteny
method, this happens if a predicted gene (1) is a member of a
gene family, and (2) has one or more ex-
ons that do not fall in regions of con-
served synteny, defined as blocks of at
least 10 kb that map to a contiguous re-
gion in the informant genome. In most
cases, alignment of the potential parent
gene (which is in fact a family member)
to the genomic region of the gene model
will contain gaps, corresponding to in-
trons. (The exceptions are single-exon
gene models that are mislabeled as pseu-
dogenes by the conserved synteny
method.) Alignments of parent genes to
pseudogene regions derived from them
do not contain intron gaps. We used this
to identify false positives.

To make this filtering step effective, it is necessary to distin-
guish true intron gaps from all other gaps. To allow for smaller
gaps in the alignment, potential pseudogenes were considered
real if the average length of interruptions (potential introns) was
less than twice the average length of aligned segments (potential
exons). We found that this cutoff works well for mammalian
genomes. However, sometimes large gaps occur in parent-to-
pseudogene alignments because repeats were inserted in pseudo-
genes after their formation. PPFINDER checks whether interrup-
tions in the alignment contain mostly repeat sequence. If >75%
of the interruption sequence is interspersed repeat, the pseudo-
gene is considered verified.

The filtering step is very effective at removing false pseudo-
gene candidates. However, it does allow a few false positives
whose introns consist primarily of identifiable interspersed re-
peats. It also allows a few false positives whose putative parent
has no introns. The intron location method cannot produce such
false positives, but the conserved synteny method can. Finally,
by using this filter we forgo the possibility of identifying non-
processed pseudogenes. Because they often have a genelike struc-
ture with apparently normal introns, nonprocessed pseudogenes
are difficult to distinguish reliably from functional genes.

During the filtering step, PPFINDER keeps track of which
genomic nucleotides are covered by a parent-to-pseudogene
alignment and outputs their coordinates. This output can be
used to remove pseudogene-containing gene models or exons
from the input annotation set. It can also be used to mask the
pseudogene-derived nucleotides. Although this list can be used
to annotate some of the pseudogene-derived nucleotides in a
genome, PPFINDER is optimized for finding only those that af-
fect the gene models in the input annotation.

Testing PPFINDER

To test PPFINDER, we ran it on the Human Conserved Coding
Sequence (CCDS) gene set, a core set of human protein coding
regions that are consistently annotated and of high quality
(http://www.ncbi.nlm.nih.gov/CCDS/), and on the processed
pseudogenes identified in the Vega project (see Methods; Ashurst
et al. 2005). If PPFINDER works perfectly, no genes would be
marked in the CCDS set and all pseudogenes would be marked in
the Vega set.

For the intron location method, we used the human RefSeq
mRNAs as a parent database (Pruitt et al. 2005). RefSeq’s anno-
tated pseudogenes were omitted, and the rest were cleaned to
remove likely errors (see Methods). We used the remaining

Figure 3. Use of conserved synteny in pseudogene finding. (A) A pseudogene (pink) on human
chromosome 7 was inserted between two genes (blue and orange) (B). This part of human chromo-
some 7 is orthologous to a region on mouse chromosome 5. If the processed pseudogene in human
was generated after the mouse–human split, it will not be present in the orthologous region in the
mouse. Instead, the best match in the mouse genome is the location that is orthologous to the parent
of the pseudogene.
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17,820 sequences as the nucleotide database. Our efforts were
complicated by the presence of unannotated pseudogenes in Ref-
Seq (see below). For the first stage of the conserved synteny
method, we searched for potential parent genes among all hu-
man protein entries in the SWISS-PROT/TrEMBL/TrEMBLNew
database for which a genome location was present in the UCSC
Known Genes track (42,155 sequences).

Of 13,133 CCDS gene annotations, 37 were marked by
PPFINDER as processed pseudogenes (0.3%). We manually in-
spected those hits and found that 23 were single-exon genes that
are most likely to be functional retrogenes, because expressed
sequence tags (ESTs) are found for each of them. The rest are
genes from small gene families that have differences in their
exon–intron boundaries in addition to large ratios of exon length
to intron length. These genes are marked by the intron location
method as putative pseudogenes and are not removed by the
alignment filter because of their relatively small introns.

There are 2006 processed pseudogenes annotated in the
Vega pseudogene track at UCSC. These pseudogenes were iden-
tified by the HAVANA group (http://www.sanger.ac.uk/HGP/
havana/) because they are similar to known genes but contain
frameshifts and/or stop codons and lack the exon–intron struc-
tures of their parent genes (Dunham et al. 1999). Tracks are cur-
rently available only for chromosomes 6, 9, 10, 13, 20, and X,
and we used all of these. A total of 1567 genes were found by
PPFINDER (78.1%). Manual inspection of the 42 annotated Vega
pseudogenes missed on chromosome 13 showed that this is usu-
ally due to a low conservation between parent and pseudogene
and/or fragmentation of the pseudogene, whereby only a small
segment of the parent gene is found.

The intron location method identified 1283 pseudogenes in
the Vega set, while the conserved synteny method found 1400
pseudogenes; 1116 pseudogenes were identified by both meth-
ods. This shows that the sensitivity of these two methods is simi-
lar at this evolutionary distance, but each finds pseudogenes that
are missed by the other.

Effects of iterative pseudogene masking on gene prediction

Removing gene models that contain pseudogene fragments im-
proves the accuracy of the annotation set by eliminating false
positives. When the gene models are produced by a gene predic-
tion program, however, masking out the pseudogenes and rerun-
ning the program may produce a different annotation with more
correct predictions than the original. The new gene models may
also incorporate new pseudogene fragments that have not been
masked. This can be addressed by alternating gene prediction
and pseudogene masking until no more pseudogenes are found
in the gene models.

To test the effects of pseudogene masking on gene predic-
tion, we used N-SCAN (Gross and Brent 2006), a de novo gene
predictor that takes two or more genome sequences as its inputs.
We ran N-SCAN with the human genome as the target and the
mouse genome as the only informant and iteratively masked all
predicted gene segments of pseudogenic origin (Fig. 4). After run-
ning four cycles of gene prediction and pseudogene masking, no
more pseudogenes were found in the predictions (see Supple-
mental methods). PPFINDER masked out exons of 3947 N-SCAN
genes with 1888 independent (i.e., nonoverlapping) parent
genes. The result was a substantial decrease in the number of
predicted genes, from 24,712 to 21,736 (Table 1, external data-
bases column). Note that the reduction in gene number is not

identical to the number of masked genes, because genes are
repredicted after masking.

We evaluated the gene predictions by using a gold standard
set of annotated genes as described (Flicek et al. 2003) to deter-
mine what fractions of predicted open reading frames (ORFs) and
coding exons were correct (gene and exon specificity, respec-
tively) (Table 1). We also calculated the fractions of gold standard
ORFs and coding exons that were predicted correctly (gene and
exon sensitivity, respectively). We used the CCDS set described
above as our gold standard. The results showed that this iterative
masking procedure increased the sensitivity and specificity for
both ORFs and coding exons, compared with N-SCAN alone. On
average, both the number of exons per gene and the number of
coding bases per gene increased, bringing them closer to the dis-
tributions for known genes (see Supplemental Fig. 1).

As expected, a sizeable number of single-exon gene predic-
tions were masked out: 702 of the original gene predictions. Of
these, 16 overlapped a single-exon gene in the CCDS set. This
suggests that most of the masked single-exon gene models are
incorrect. In addition, masking caused 85 nonmasked single-
exon gene models to be incorporated into multi-exon genes. N-
SCAN also predicted 122 new single-exon genes after iterative
masking, of which 10 overlapped a single-exon CCDS gene. In
total, the number of single-exon gene predictions decreased
by 687.

Figure 4. Flow diagram for the bootstrap method that combines pseu-
dogene finding with gene prediction. To iteratively mask pseudogenes
and rerun gene prediction, PPFINDER is run with a masking step after
each of the methods (conserved synteny and intron alignment). This
nested looping is done to remove redundancy, because many pseudo-
genes will be found by both methods. First, the cycle of pseudogene
finding and masking is run using the conserved synteny method, until no
more pseudogenes are found. Then the same is done using the intron
alignment method. PPFINDER will keep looping through both methods
until neither finds any more pseudogenes. One masking/gene prediction
loop is called one round.
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We also compared the predictions before and after iterative
pseudogene masking with the Vega pseudogene set. Before mask-
ing, the coding sequences of 749 N-SCAN predictions overlapped
783 annotated pseudogenes. Iterative masking and reprediction
reduced these numbers to 101 and 106, respectively. Thus, the
fraction of Vega pseudogenes incorporated into N-SCAN predic-
tions was reduced from 39.0% to 5.3%.

As expected (Zhang et al. 2002), a substantial number of
ribosomal pseudogenes were found: A total of 401 of the original
gene predictions were masked out with a ribosomal parent gene.

Bootstrapping pseudogene detection from N-SCAN
predictions

So far, we have used known genes as the database of potential
parents for PPFINDER, but the primary application of gene pre-
dictors is to annotate genomes with few known genes. We there-
fore decided to repeat the experiment described above using
N-SCAN’s initial predictions as the database of potential parents
(for details, see Supplemental data). This bootstrap procedure
masked out exons of 4280 genes in the original predicted set. Of
these, 3355 were identical to those masked out by using external
databases. As seen before, masking pseudogenes resulted in a sub-
stantial decrease in the number of gene models: from 24,712 to
21,511 (see bootstrap method in Table 1). Both the specificity
and the sensitivity of gene prediction increased relative to the
unmasked set. Surprisingly, the improvement in accuracy using
N-SCAN predictions is nearly as good as that seen when using the
external databases, even though the initial predictions contain
many pseudogenic exons. For a detailed discussion of the differ-
ences between the bootstrap and external databases’ procedure,
see Supplemental data.

To illustrate the application of this method to a genome
with relatively few known genes, we ran it on the dog genome
(Lindblad-Toh et al. 2005) with human as informant. This re-
duced the number of predicted genes and the number of single
exon gene predictions and increased the average number of ex-
ons per gene. Overall, the effect on the statistical characteristics
of the predicted dog gene set was similar to the effect seen in
human (see Supplemental data). This suggests that the method
can be used successfully on an unannotated mammalian ge-
nome. In order to test whether we could achieve the same results
using known genes from dog, we ran PPFINDER by using the few

available dog cDNA sequences as the parent database (Methods).
This did not produce similar results (see Supplemental data).

All N-SCAN predictions and pseudogene-masked regions
generated for this article are available in the Supplemental data at
http://genes.cse.wustl.edu/vanbaren-06-pseudogene-data/. The
UCSC Genome Browser is updated regularly with the most cur-
rent predictions.

Applying PPFINDER to other sets of gene models

We used the pseudogene finding method to identify putative
pseudogenes in other human genome annotation sets: GenScan
(Burge and Karlin 1997), Geneid (Blanco et al. 2003), SGP-2
(Parra et al. 2003), and Ensembl (Curwen et al. 2004). We used
the RefSeq and SWISS-PROT/TrEMBL/TrEMBLNew sequences as
parent databases, as described in Testing PPFINDER above. In the
NCBI build 35 GenScan set, we identified 4793 genes with pseu-
dogene exons (11.3% of the predicted gene number); in Geneid,
4615 (14.5%); and in SGP-2, 5853 (17.5%). In Ensembl,
PPFINDER identified 1378 transcripts of 1245 genes with puta-
tive pseudogene exons (5.3% of total gene number). Only 43 of
those genes were marked as pseudogenes by Ensembl. Of the
remaining genes, 357 mapped to the Vega annotated chromo-
somes and 173 of those overlapped a Vega pseudogene annota-
tion. This suggests that at least half of the pseudogenes identified
by PPFINDER are real.

These numbers comprise a substantial part of the gene an-
notations, and those methods may improve markedly if pseudo-
genes are removed. A list of these putative pseudogenes can be
found at http://genes.cse.wustl.edu/vanbaren-06-pseudogene-
data/.

We also ran PPFINDER on the RefSeq human mRNAs (Pruitt
et al. 2005) as aligned to the genome on the UCSC Browser.
PPFINDER found 305 putative pseudogenes that were not anno-
tated as such in their GenBank record. Pseudogenes were found in
all divisions of RefSeq including the reviewed set. Some of these
may be expressed retrogenes, but manual inspection of a handful of
sequences indicated that at least some of these are not functional
genes, e.g., because no human ESTs or mRNAs overlap these
RefSeqs (see http://genes.cse.wustl.edu/vanbaren-06-pseudogene-
data/). It seems that a number of these genes were added to
the set because they were published as a putative family mem-
ber of a known gene (e.g., NM_001005192). Such studies some-

Table 1. Effects of masking out pseudogenes

Unmasked predictions External databases Bootstrap method CCDS annotations

Gene number 24,712 21,736 21,511 13,133
Gene sensitivity 37.0% 37.9% 37.3%
Gene specificity 19.7% 22.9% 22.8%
Exon number 201,417 193,658 191,473 121,378
Exon sensitivity 84.8% 85.1% 84.3%
Exon specificity 51.1% 53.3% 53.5%
Single-exon gene number 2095 1408 1315 571
Average CDSa size 1449 1534 1521 1526
Average coding exons per gene 8.2 8.9 8.9 9.3
No. of (nonoverlapping) parent genesb 1888 1716

Gene and exon sensitivities and specificities are calculated by using the Conserved Coding Sequence gene set (CCDS) as reference annotation set. The
first column presents statistics on the unmasked N-SCAN predictions. The second and third columns are for pseudogene-masked predictions using
RefSeq and SWISS-PROT (external databases) or N-SCAN gene predictions (bootstrap method) as putative parents. The last column contains the
numbers for the CCDS set. Single-exon genes in CCDS were determined as those genes for which the RefSeq was not spliced (to exclude multiple exon
genes with a single coding exon).
aCDS is coding sequence.
bSee Supplemental methods.
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times rely on chromosomal mapping without verification of
gene expression, which allows pseudogenes to enter the RefSeq
gene set.

Discussion

PPFINDER is an accurate, standalone system for removing pro-
cessed pseudogenes from any set of gene models. When applied
to N-SCAN predictions, it reduces the number of pseudogenes
incorporated into gene models by a factor of ∼8%. Its false-
positive rate is only 0.3%, as estimated by comparison to the
highly accurate CCDS collection of protein-coding gene annota-
tions. This low false-positive rate may be due, in part, to the fact
that PPFINDER is optimized for finding only those processed
pseudogenes that overlap models of protein-coding genes. If we
had designed PPFINDER to find all the processed pseudogenes in
the input genome, we would have had to lower our threshold of
evidence, thereby admitting more false positives. Additional
pseudogenes can be found by alternately masking pseudogenes
in gene models and rerunning a gene prediction program.

Using PPFINDER to remove pseudogenes from human ge-
nome predictions by N-SCAN, a state-of-the-art de novo gene
prediction program, led to significant improvements in accuracy
as evaluated by comparison to the CCDS gene models. Further-
more, PPFINDER made the statistical characteristics of the pre-
diction set, including the fraction of genes that consist of a single
exon and the average number of exons per gene, more like those
of the CCDS gene models. Alternating gene prediction with pseu-
dogene masking led N-SCAN to correctly predict exons it did not
find before.

Masking pseudogenes and rerunning gene prediction im-
proves gene prediction in two ways. First, it may result in a cor-

rect gene model that is similar to the original except for the
absence of a pseudogene derived exon (Fig. 5A). Second, it may
have a long distance effect on other parts of the gene model, such
as causing it to be split into two correct models (Fig. 5B). Pseu-
dogenic exons in gene models may also change the reading
frame, causing real exons on either side of the pseudogenic exon
to be omitted (not shown in Fig. 5). Finally, removing single-
exon gene models that are based on pseudogenes in the introns
of real genes allows N-SCAN to incorporate exons on both sides
of the pseudogene into correct gene models (Fig. 5C). If a single-
exon gene is predicted in an intron of a real gene, the real gene
must be split in two because the current generation of de novo
gene predictors does not predict overlapping transcripts.

The number of pseudogenes PPFINDER found in other sets
of de novo human gene predictions was similar to what it found
in N-SCAN predictions. Interestingly, the gene set produced by
the Ensembl annotation pipeline, which uses known transcripts
to annotate the genome, also contained a substantial number of
putative pseudogenes. Finally, we identified 305 previously un-
annotated, putative pseudogenes in the RefSeq gene set and
found by manual curation that at least some of them are indeed
pseudogenes.

One of our key findings is that PPFINDER can be effective
even when there are no known genes to serve as potential par-
ents. In that case, it can be run using gene predictions as the
potential parents, including the same prediction set targeted for
pseudogene removal. We found that using N-SCAN’s human ge-
nome predictions as the parent database was almost as effective
for removing pseudogenes from those predictions as using
known human genes. This bootstrapping capability is essential
for removing pseudogenes from predictions in species with few
known genes. An example is the dog genome, for which only a

Figure 5. Improvement of gene prediction after pseudogene masking. (A) After masking out a pseudogene incorporated in the original gene model,
the gene is predicted correctly. (B) A single gene model is split into two correct models after a pseudogene exon is masked. (C) Two gene models are
merged into one correct model after masking the pseudogene in an intron of SLC16A1. UTRs are shown as thin blocks, coding exons as thicker blocks,
and introns as lines. A gene is considered correctly predicted when the coding sequence is correct. This figure was modified from a screen shot of the
UCSC Genome Browser at http://genome.ucsc.edu (Kent et al. 2002).
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small number of mRNAs is present in GenBank. We show that
the effects of pseudogene masking using the bootstrap method
are similar to those seen in the human genome: It results in fewer
predicted exons and gene models, and these gene models in-
crease in length. When the dog mRNAs from GenBank were used
instead, pseudogene finding appeared to be much less effective.

The effectiveness of the conserved synteny method depends
on the divergence between the target and informant genomes. If
the informant is too close, a large number of processed pseudo-
genes will be ancestral and hence undetectable by the conserved
synteny method. The intron alignment method will therefore
identify many more pseudogenes than the conserved synteny
method, indicating that a more distant informant genome would
yield greater sensitivity. On the other hand, if the informant is
too distant, some functional genes may not fall in regions of
identifiable conserved synteny. This will lead to a high number
of false positives, most of which will be caught by the filter. The
intron alignment method will not target most of these functional
genes, since intron location is conserved over much longer evo-
lutionary distances than is gene order. Therefore, if the intron
alignment method identifies far fewer pseudogenes than the con-
served synteny method, it may be better to use a more closely
related informant. If no closer informant is available, PPFINDER
can run the intron alignment method alone. Although the in-
ability to use the conserved synteny method will reduce sensi-
tivity, the data reported here suggest that the reduction will be
modest.

In the future, we plan to enhance the filtering step to make
PPFINDER even more broadly applicable. Currently, it relies on
most introns being substantially longer than most exons. For
species with relatively short introns and long exons, such as Cae-
norhabditis elegans, the filter cannot be used. In addition, some
genes are masked out with paralogs despite a large intron-to-exon
ratio because their introns consist largely of repeats. The next
version of PPFINDER will rely more on splice site models and less
on length for distinguishing true introns from interruptions
caused by elements inserted into the pseudogene.

Another important task for the future is the development of
an “NPPFINDER” for removing nonprocessed pseudogenes from
gene models. Currently, no pseudogene finding method can re-
liably separate gene family members from nonprocessed pseudo-
genes, in part because the latter often do not have in-frame stop
codons (Torrents et al. 2003). Removal of nonprocessed pseudo-
genes from gene predictions remains an interesting challenge
that must be addressed by different methods than the ones de-
scribed here.

Although there is always more work to be done, PPFINDER
can now be used to significantly improve the accuracy of mam-
malian genome annotations, from well-studied genomes such as
those of human and mouse to newly sequenced genomes such as
those of dog and cow.

Methods

Sequences
All sequences were downloaded from UCSC (ftp://hgdownload.
cse.ucsc.edu/goldenPath/). For details, see Supplemental data.

Synteny map and downloads
We downloaded the Mouse Alignment Net track from the UCSC
Browser (NCBI build 35) (Karolchik et al. 2003) and removed all

matches <10 kb. This size allows for repeat insertions in pseudo-
genes, which can extend a synteny block beyond the size of the
pseudogene itself. The resulting tables were used to identify or-
thologous regions in the conserved synteny procedure.

The Known Genes track and sequences were also down-
loaded from UCSC in July 2004. A position table was created
from the track, and the sequences were formatted for BLASTp.
The RefSeq tracks (23,045 clones) were downloaded on March 13,
2005, and used for extracting the RefSeq sequences from the
genome. Note that the annotated pseudogenes available in Ref-
Seq (NG_ id numbers) are not part of this set. RefSeqs with ob-
vious errors were removed (see Supplemental data).

Gene annotation sets were downloaded from ftp://
hgdownload.cse.ucsc.edu/goldenPath/hg17/database on June
15, 2005.

The dog mRNA track was also downloaded from ftp://
hgdownload.cse.ucsc.edu/goldenPath/canFam1/database/ in
August 2005 and converted to GTF. No sequences were re-
moved.

Validation sets
The CCDS and Vega Pseudogene tracks were downloaded from
UCSC (ftp://hgdownload.cse.ucsc.edu/goldenPath/hg17/
database) in March 2005 and converted to GTF. Overlapping
CCDS genes were merged to a single gene with multiple tran-
scripts. This ensured we would not count the same false positive
twice. The Vega Pseudogene track contains many nongenic an-
notations and therefore was filtered so that only the processed
pseudogenes remained (using the Table Browser at UCSC). Be-
cause many pseudogenes contain indels, a reading frame often
cannot be properly assigned. Therefore we ran the conserved syn-
teny method for translations of the pseudogenes in each of the
three frames. The intron alignment method was run on the Vega
set as is.

Selecting putative pseudogenes
For BLAST (http://blast.wustl.edu) (W. Gish, unpubl.) param-
eters, see Supplemental data. For both the intron location and
the conserved synteny methods, only BLAST hits on the same
strand as the prediction under review were considered. This
avoids targeting genes that overlap pseudogenes located on the
opposite strand. For the conserved synteny method, only HSPs
longer than nine amino acids that had >65% identity were used.
The putative pseudogenes found in this way were then used for
tBLASTn against the orthologous region in mouse, as specified in
the synteny map described above. If no BLAST hit was found, this
means that the exon is not conserved between the species and is
most likely a pseudogene. In both the intron location and the
conserved synteny method, hits with transcripts (intron loca-
tion) or proteins (conserved synteny) that mapped to the same
genomic region as the gene model were skipped because they
represent a correctly predicted gene.

The intron location method uses whole-gene models in-
stead of single-exon translations. This means that when a pseu-
dogene exon is incorporated in a gene model, this gene model
can have BLAST hits with both the pseudogene parent and the
actual gene. Therefore, for every hit, the range of overlap with
the gene model was determined. Hits were kept if their score was
at least 75% of the highest scoring hit, or if they overlapped a
different segment of the gene model than all higher scoring hits
and had a percentage identity of at least 75%. Every putative
parent gene found in this way was used in the filtering step of
PPFINDER.
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N-SCAN evaluation
For details on how N-SCAN was run, see Supplemental data. We
used the aligned human CCDS set downloaded from the UCSC
Browser site as the basis on which to compare our predictions.
The downloaded CCDS set contained 14,793 transcripts. After
merging overlapping transcripts into genes and removing iden-
tical transcripts, 14,714 transcripts in 13,133 genes remained.

Only coding exons on whole chromosomes were used for
evaluation of N-SCAN performance.

Segmental duplications
To find gene containing regions of high homology in the human
genome, we took the RefSeqs that mapped to more than one
location in the UCSC Genome Browser. These RefSeqs have a
base identity level within 0.1% of the best alignment and at least
96% base identity with the genomic sequence. We took all N-
SCAN predictions that overlapped any of these 535 loci, and for
the 33 of these that were masked, we checked if the parent gene
was derived from the paralog.

Acknowledgments
We thank LaDeana Hillier for providing the human chromosome
7 pseudogene set that started this work, and Mark Diekhans and
Robert Baertsch for helpful discussions. This work was supported
by grant HG02278 from the National Human Genome Research
Institute to M.R.B.

References

Alexandersson, M., Cawley, S., and Pachter, L. 2003. SLAM:
Cross-species gene finding and alignment with a generalized pair
hidden Markov model. Genome Res. 13: 496–502.

Ashurst, J.L., Chen, C.K., Gilbert, J.G., Jekosch, K., Keenan, S., Meidl, P.,
Searle, S.M., Stalker, J., Storey, R., Trevanion, S., et al. 2005. The
Vertebrate Genome Annotation (Vega) database. Nucleic Acids Res.
33: D459–D465.

Blanco, E., Parra, G., and Guigo, R. 2003. Using geneid to identify
genes. In Current protocols in bioinformatics (ed. D.B. Davison), pp.
Unit 4.3. John Wiley & Sons Inc., New York.

Burge, C. and Karlin, S. 1997. Prediction of complete gene structures in
human genomic DNA. J. Mol. Biol. 268: 78–94.

Buzdin, A.A. 2004. Retroelements and formation of chimeric retrogenes.
Cell. Mol. Life Sci. 61: 2046–2059.

Curwen, V., Eyras, E., Andrews, T.D., Clarke, L., Mongin, E., Searle,
S.M.J., and Clamp, M. 2004. The Ensembl automatic gene
annotation system. Genome Res. 14: 942–950.

Dunham, I., Shimizu, N., Roe, B.A., Chissoe, S., Hunt, A.R., Collins, J.E.,
Bruskiewich, R., Beare, D.M., Clamp, M., Smink, L.J., et al. 1999. The
DNA sequence of human chromosome 22. Nature 402: 489–495.

Flicek, P., Keibler, E., Hu, P., Korf, I., and Brent, M.R. 2003. Leveraging
the mouse genome for gene prediction in human: From
whole-genome shotgun reads to a global synteny map. Genome Res.
13: 46–54.

Gross, S.S. and Brent, M.R. 2006. Using multiple alignments to improve

gene prediction. J. Comput. Biol. 13: 379–393.
Hillier, L.W., Fulton, R.S., Fulton, L.A., Graves, T.A., Pepin, K.H.,

Wagner-McPherson, C., Layman, D., Maas, J., Jaeger, S., Walker, R.,
et al. 2003. The DNA sequence of human chromosome 7. Nature
424: 157–164.

Hubbard, T., Andrews, D., Caccamo, M., Cameron, G., Chen, Y., Clamp,
M., Clarke, L., Coates, G., Cox, T., Cunningham, F., et al. 2005.
Ensembl 2005. Nucleic Acids Res. 33: D447–D453.

Karolchik, D., Baertsch, R., Diekhans, M., Furey, T.S., Hinrichs, A., Lu,
Y.T., Roskin, K.M., Schwartz, M., Sugnet, C.W., Thomas, D.J., et al.
2003. The UCSC Genome Browser Database. Nucleic Acids Res.
31: 51–54.

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler,
A.M., and Haussler, D. 2002. The human genome browser at UCSC.
Genome Res. 12: 996–1006.

Kim, N., Shin, S., and Lee, S. 2004. ASmodeler: Gene modeling of
alternative splicing from genomic alignment of mRNA, EST and
protein sequences. Nucleic Acids Res. 32: W181–W186.

Kimura, M. 1968. Evolutionary rate at the molecular level. Nature
217: 624–626.

Korf, I., Flicek, P., Duan, D., and Brent, M.R. 2001. Integrating genomic
homology into gene structure prediction. Bioinformatics
17: S140–S148.

Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., Karlsson, E.K., Jaffe,
D.B., Kamal, M., Clamp, M., Chang, J.L., Kulbokas III, E.J., Zody,
M.C., et al. 2005. Genome sequence, comparative analysis and
haplotype structure of the domestic dog. Nature 438: 803–819.

Ohshima, K., Hattori, M., Yada, T., Gojobori, T., Sakaki, Y., and Okada,
N. 2003. Whole-genome screening indicates a possible burst of
formation of processed pseudogenes and Alu repeats by particular L1
subfamilies in ancestral primates. Genome Biol. 4: R74.

Ophir, R., Itoh, T., Graur, D., and Gojobori, T. 1999. A simple method
for estimating the intensity of purifying selection in protein-coding
genes. Mol. Biol. Evol. 16: 49–53.

Parra, G., Agarwal, P., Abril, J.F., Wiehe, T., Fickett, J.W., and Guigo, R.
2003. Comparative gene prediction in human and mouse. Genome
Res. 13: 108–117.

Pruitt, K.D., Tatusova, T., and Maglott, D.R. 2005. NCBI Reference
Sequence (RefSeq): A curated non-redundant sequence database of
genomes, transcripts and proteins. Nucleic Acids Res. 33: D501–D504.

Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C.,
Haussler, D., and Miller, W. 2003. Human–mouse alignments with
BLASTZ. Genome Res. 13: 103–107.

Torrents, D., Suyama, M., Zdobnov, E., and Bork, P. 2003. A
genome-wide survey of human pseudogenes. Genome Res.
13: 2559–2567.

Vanin, E.F. 1985. Processed pseudogenes: Characteristics and evolution.
Annu. Rev. Genet. 19: 253–272.

Zhang, Z. and Gerstein, M. 2004. Large-scale analysis of pseudogenes in
the human genome. Curr. Opin. Genet. Dev. 14: 328–335.

Zhang, Z., Harrison, P., and Gerstein, M. 2002. Identification and
analysis of over 2000 ribosomal protein pseudogenes in the human
genome. Genome Res. 12: 1466–1482.

Zhang, Z., Harrison, P.M., Liu, Y., and Gerstein, M. 2003. Millions of
years of evolution preserved: A comprehensive catalog of the
processed pseudogenes in the human genome. Genome Res.
13: 2541–2558.

Zheng, D., Zhang, Z., Harrison, P.M., Karro, J., Carriero, N., and
Gerstein, M. 2005. Integrated pseudogene annotation for human
chromosome 22: Evidence for transcription. J. Mol. Biol. 349: 27–45.

Received October 28, 2004; accepted in revised form March 13, 2006.

PPFINDER

Genome Research 685
www.genome.org


	678-685.p1.pdf
	678-685.p2.pdf
	678-685.p3.pdf
	678-685.p4.pdf
	678-685.p5.pdf
	678-685.p6.pdf
	678-685.p7.pdf
	678-685.p8.pdf

