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Abstract
Vasopressin neurons in the bed nucleus of the stria terminalis and amygdala and vasotocin neurons
in homologous areas in non-mammalian vertebrates show some of the most consistently found neural
sex differences, with males having more cells and denser projections than females. These projections
have been implicated in social and reproductive behaviors but also in autonomic functions. The sex
differences in these projections may cause as well as prevent sex differences in these functions. This
paper discusses the anatomy, steroid dependency, and sexual differentiation of these neurons.
Although the final steps in sexual differentiation of vasopressin/vasotocin expression may be similar
across vertebrate species, what triggers differentiation may vary dramatically. For example, during
development, estrogen masculinizes vasopressin expression in rats but feminizes its counterpart in
Japanese quail. Apparently, nature consistently finds a way of maintaining sex differences in
vasopressin and vasotocin pathways, suggesting that the function of these differences is important
enough that it was conserved during evolution.
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Sex differences in vasopressin (AVP) projections of the bed nucleus of the stria terminalis
(BST) and medial amygdaloid nucleus (MeA) were first described in rats and were discovered
by chance while we were studying what we thought were developing AVP projections of the
suprachiasmatic nucleus (SCN) (De Vries et al., 1981). AVP cell bodies in the BST and MeA
had yet to be discovered (Van Leeuwen and Caffé, 1983). A study of the development of
vasopressin-immunoreactive (AVP-ir) fibers in the lateral septum and habenular nucleus
revealed a disturbingly large variability, prompting us to run a second series, separating animals
by sex. This revealed a large sex difference with males having a much denser AVP-ir fiber
network in the lateral septum and lateral habenular nucleus than females (Fig. 1A). Later we
showed that AVP expression in these areas critically depended on circulating gonadal steroids
(De Vries et al., 1984), and that AVP-ir cells in the BST and MA showed corresponding sex
differences and steroid responsiveness (DeVries et al., 1985; Van Leeuwen et al., 1985). Since
these first findings, homologous sex differences have been found in many different species, in
mammals as well as other vertebrates (Table 1).
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Sources of sexually dimorphic AVP and vasotocin innervation
In rats, the BST and MeA provide a major part of AVP innervation in the forebrain. These two
areas belong to the extended amygdala, a cohort of nuclei in the BST and centromedial
amygdala with striking similarities in cytoarchitecture and neurochemistry (de Olmos and
Heimer, 1999). The sexual dimorphism and steroid responsiveness of AVP neurons in BST as
well as MeA underscore these similarities. In vertebrates with less extensive encephalization
than mammals, the areas homologous to the BST and amygdala are not physically separated
by the internal capsule (Johnston, 1923). In such animals, the sexually dimorphic vasotocin-
immunoreactive (AVT-ir) cells typically form a single, undivided cluster (e.g. Boyd et al.,
1992; Marler et al., 1999).

Given the wide acceptance of our proposal that the BST and MeA are the sources of sexually
dimorphic AVP-ir and, by extension, AVT-ir innervation of the brain, it is important to point
out that this idea is based on a rather limited set of experiments (De Vries and Buijs, 1983).
To locate the source of the sexually dimorphic AVP-ir inner-vation of the lateral septum, we
used knife cuts ventral to the septum, which showed that AVP-ir fibers enter the septum
ventrorostrally. We retrogradely traced connections to the lateral septum (regardless of
neuropeptide expression), which favored the BST as a source over other likely candidates, i.e.
the SCN and paraventricular nucleus (PVN). Finally, because lesions of the SCN had already
disqualified the SCN as a likely source of septal AVP-ir innervation (Hoorneman and Buijs,
1982), we lesioned the PVN bilaterally, which spared septal AVP-ir innervation, and the BST
unilaterally, which decimated septal AVP-ir innervation ipsilaterally (bilateral lesions caused
high mortality). The conclusion that the BST is an important source of septal AVP-ir fibers
therefore rests on solid evidence (De Vries and Buijs, 1983). Evidence for other projections
from the BST and MeA is less firm. When we found that castration deleted AVP-ir cell bodies
in the BST and MeA but not in other areas, and AVP-ir fibers in all areas where unilateral
lesions of the BST had eliminated AVP-ir fibers, we proposed that the BST and MeA projects
to all areas where castration eliminated AVP immunoreactivity and not to areas where AVP
immunoreactivity remained (Fig. 1B; DeVries et al., 1985). Later Caffé et al. (1987) combined
retrograde tracing with AVP immunocytochemistry to confirm that the BST projects to the
lateral septum and show that the MeA projects to the ventral hippocampus as well as lateral
septum. Differences in the effects of BST and MeA lesions on septal AVP innervation,
however, suggest that the BST provides the lion's share of the septal AVP-ir innervation (Al
Shamma and De Vries, unpublished observations). None of the other BST and MeA projections
have been independently confirmed. Even less certainty exists about homologous projections
in other vertebrates. The only other tracing study was done in Japanese quail, which
demonstrated that AVT-ir neurons in the BST project to the medial preoptic nucleus (POM;
Absil et al., 2002). However, given the often striking similarity in distribution, sexual
dimorphism, and steroid sensitivity of AVP and AVT systems across vertebrates, it is unlikely
that the anatomy of these systems differs fundamentally among species.

There are some intriguing species differences, however. For example, Moore et al. (2000) find
similar sex differences in roughskin newts as are found in rats. However, they also find more
AVT-expressing cell groups than have been found in any other species. Some of these cell
groups exhibit differences favoring males, others females. Any number of these cell groups
could contribute to sexually dimorphic AVT-ir innervation. One could even imagine that some
of these cell groups cancel out differences in fiber density if cell groups with opposite
differences project to overlapping areas. Like roughskin newts, Japanese quail show similar
differences in the BST as do rats, but male quail also have more AVT-ir cell bodies in the POM
than do females (Panzica et al., 2001). As the POM projects to the lateral septum (Balthazart
et al., 1994), these cell bodies may contribute to differences in septal AVT-ir innervation as
well. Sex differences have also been found in AVP/AVT neurons in the PVN in mammals,
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including humans (Ishunina and Swaab, 1999), and the preoptic area in non-mammalian
vertebrates, especially in fish (e.g. Grober and Sunobe, 1996; Semsar and Godwin, 2003).
Many of these neurons appear neurosecretory, however, and may therefore not contribute to
central AVP/AVT-ir innervation.

AVP-ir fibers in the lateral septum are sometimes used as a yardstick for the AVP projections
from the BST and MeA. For example, macaques, marmosets, and humans show virtually no
AVP-ir fibers in the lateral septum and therefore no clear sex difference in this area either.
These primates, however, have AVP-ir cells in the BST, and male marmosets have more of
these cells than do females (Caffé et al., 1989; Fliers et al., 1986; Wang et al., 1997). In fact,
primate and rodent AVP innervation may be quite similar, because many areas that receive
steroid-sensitive AVP innervation in rats, such as the ventral pallidum, dorsal raphe nucleus,
and midbrain central gray, also contain dense AVP-ir inner-vation in macaques (Caffé et al.,
1989). As human brains have not been studied as comprehensively, sex differences in AVP
projections in the human brain cannot be discounted.

There are major outliers, however. For example, Syrian hamsters lack homologous steroid-
sensitive AVP cells in the BST and MeA and AVP innervation in areas such as the lateral
septum that would have received innervation from those cells (Albers et al., 1991; Ferris et al.,
1995; Miller et al., 1999). Within mammals, Syrian hamsters are exceptional, however. Given
that homologous AVT cells have never been reported for fish either (Goodson and Bass,
2001), fish may be the only vertebrate class that does not have the steroid-sensitive systems
reviewed in this paper. However, these systems may have escaped detection; AVP cells were
discovered in BST and MeA only after colchicine treatment (Van Leeuwen and Caffé, 1983),
and visualizing them without colchicine required increasing the sensitivity of
immunocytochemistry and in situ hybridization (De Vries et al., 1985; Miller et al., 1988).

Hormonal and genetic factors in sexual differentiation of AVP/AVT pathways
The development of sex differences in the steroid-sensitive AVP/AVT projections have been
studied in a limited number of species only (Table 1). Here, we will review rats, the animals
most extensively studied, contrasting them with other species in case fundamental differences
have been found.

In mammals, the main factors in sexual differentiation of the brain are gonadal hormone levels
during development and in adulthood (Becker et al., 2005). Gonadal hormones influence sexual
differentiation in at least two ways. Early in life, they permanently direct the development of
neural circuitry that will generate male- or female-typical functions and behaviors in adulthood.
These developmental effects are called organizational. For example, testosterone exposure
during development increases the likelihood that animals will show male sexual behavior as
adults. However, to show male sexual behavior, animals have to be exposed to testosterone in
adulthood as well. This adult effect is transient and therefore called activational. Sex
differences in AVP/AVT innervation of the brain depend on organizational and activational
effects of gonadal hormones and possibly also directly on sex chromosomal complement.

In adulthood, AVP projections from the BST and MeA are exquisitely sensitive to circulating
gonadal hormones. Gonadectomy eliminates AVP expression and replacement of hormones
reinstates it (e.g. De Vries et al., 1984; Miller et al., 1992). Sex differences in circulating
gonadal hormones, however, cannot explain all differences in AVP expression because males
and females exposed to similar steroid levels still differ (De Vries and al Shamma, 1990; De
Vries et al., 1994). Circulating hormones may, however, be the main factor in species such as
prairie voles, where differences in AVP-ir fiber density (Bamshad et al., 1993) or AVP mRNA
expression (Wang et al., 1994) are extreme. These differences are still impressive, but smaller
if adult male and female voles are treated with similar levels of testosterone (Lonstein et al.,
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2005). Like prairie voles, Japanese quail and chickens show extreme sex differences with
females showing virtually no AVT-immunoreactivity in the BST and its projections, and barely
any AVT mRNA signal (Viglietti-Panzica et al., 1994; Jurkevich et al., 1997; Aste et al.,
1998). These differences remain extreme in quail treated similarly with testosterone (Fig. 1C;
Panzica et al., 1998). In rats as well as quail, such residual differences are due to organizational
effects of hormones (Wang et al., 1993; Panzica et al., 1998; Han and De Vries, 2003).

In mice, sex chromosomal complement (XX versus XY in mammals and ZW versus ZZ in
birds) may bias form and function of neural systems independently of its effects on gonadal
differentiation (Arnold, 2004). We showed that this is true for AVP innervation by using a
cross in which sex chromosomal complement was varied independently of gonadal sex. This
cross generated XX and XY mice lacking the Sry gene on the Y chromosome, which normally
directs testis growth; these mice developed a female phenotype. This cross also generated XX
and XY animals with an Sry transgene on an autosomal chromosome; these mice developed a
male phenotype. Whether male or female, XY mice had a slightly denser AVP innervation
than did XX mice even though gonadal hormone levels were kept constant (De Vries et al.,
2002).

Mechanisms that trigger sexual differentiation of AVP/AVT systems may differ markedly
among vertebrates. For example, in voles, testes are essential for masculinization of AVP
innervation. However, administering testosterone to females or to neonatally castrated males
does not masculinize this system, raising doubt that the testis uses testosterone to masculinize
AVP expression (Lonstein et al., 2005). Even more striking differences are found between rats
and Japanese quail. In both species, testosterone activates AVP/AVT expression mainly by
acting via estrogenic metabolites (De Vries et al., 1986, 1994; Viglietti-Panzica et al., 2001).
Notwithstanding this and other striking similarities in steroid responsiveness in adulthood
(Panzica et al., 2001), hormones act in opposite directions during sexual differentiation. In rats,
estrogen masculinizes AVP innervation (Han and De Vries, 2003); in quail, estrogen
feminizes its AVT counterpart (Fig. 1C; Panzica et al., 1998). Even though the triggers of sexual
differentiation may differ, the consistency of sex differences in AVP and AVT systems suggests
that cellular processes that shape these differences may be similar among vertebrates.

Cellular processes behind sexual differentiation of AVP /AVT pathways
Differences in number of AVP and AVT cells may account for differences in fiber density. In
theory, two fundamentally different sets of processes could determine AVP/AVT cell number:
processes that determine absolute cell number, such as cell birth, cell death, or cell migration,
or processes that influence the phenotype of existing cells. Differential cell birth and migration
are unlikely players because AVP cells are born on embryonic days 12 and 13 (al Shamma and
De Vries, 1996), at least a week before hormones trigger their sexual differentiation (Wang et
al., 1993). Differential cell death is also unlikely. Recently, we compared wild-type mice and
mice with a null mutation in the gene coding for the cell death factor, Bax. This mutation
thwarts most neuronal cell death and eliminates sex differences in cell number of several brain
areas (Forger et al., 2004) but not sex differences in AVP cell number (De Vries, Reza, and
Forger, unpublished observations). It did increase AVP cell number in both sexes, though,
suggesting that developmentally programmed cell death determines the final number of
potential AVP cells in males and females but not the differences between them.

All evidence points at testosterone stimulating already existing cells to express AVP. After
discovering that practically all AVP cells in the BST co-express galanin, but not all galanin
cells AVP, and that males have more AVP cells than do females but similar numbers of galanin
cells, Planas et al. (1995) proposed that differences in AVP expression depend on the
percentage of galanin cells that co-express AVP. During development, testosterone may simply
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stimulate more galanin neurons to co-express AVP in males. In support, AVP and galanin
neurons in the BST and MeA show an equally unusual birth profile: both are born days earlier
than most surrounding cells (Han and De Vries, 1999). A similar situation may apply in
Japanese quail, where AVT-ir and galanin-ir cells overlap in the BST (Aste et al., 1996;
Azumaya and Tsutsui, 1996), and in songbirds, where AVT-ir and galanin-ir fibers overlap in
the lateral septum (Goodson et al., 2004).

It is unknown whether gonadal steroids target AVP and AVT cells directly or act via other
cells. In adult rats, steroid actions may be direct because AVP-ir cells in the BST and MeA
express estrogen receptor alpha, androgen, and progesterone receptors (Axelson et al., 1992;
Zhou et al., 1994; Auger and De Vries, 2002). It is unknown whether these cells also express
gonadal steroid receptors during sexual differentiation. Finally, no study has addressed co-
localization of AVP and AVT steroid receptors and these cells in other vertebrates.

A unique opportunity
There are at least two reasons to be enthusiastic about the sex difference in AVP and AVT
systems, or for that matter about any sex difference in the brain. First, the possibility of
hormonal manipulation provides a unique perspective for studying how specific neural systems
develop. Second, sex differences allow one to study how differences in brain structure translate
into differences in function. Solving these questions may also explain why so many behavioral
and neurological disorders show marked sex differences (Swaab et al., 2003). This applies to
AVP as well because it has been implicated in mood, anxiety, and other behavioral disorders
that show marked sex differences (Ring, 2005). However, nature has been reluctant to give up
its secrets. Although we know which hormones control sexual differentiation and when they
do that, we do not know how. Only a smattering of molecular and cellular processes that
mediate hormonal effects on sexual differentiation has been identified (e.g. Amateau and
McCarthy, 2004; Auger et al., 2000; Forger et al., 2004), and none of these explain sexual
differentiation of AVP and AVT expression. In addition, except for a handful of sexually
dimorphic cell groups that control specific sexually dimorphic muscle systems (e.g. the spinal
nucleus of the bulbocavernosus, which innervates muscles at the base of the penis; Morris et
al., 2004), the functional significance of most sex differences in the CNS is unknown (De Vries
and Boyle, 1998). Several features of the AVP/AVT innervation of the brain make it an ideal
system to tackle some of these issues.

With AVP being one of the first two peptides to be named a neuropeptide (de Wied, 2000),
hundreds of studies have addressed the functions of central AVP and AVT pathways. These
functions include, for example, learning and memory (de Wied et al., 1993), reproductive and
other social behaviors (Goodson and Bass, 2001; Panzica et al., 2002; Rose and Moore,
2002; Young and Wang, 2004). More recently, studies have exploited the sexually dimorphic
and steroid-sensitive character of this system (e.g. Dantzer, 1998; Pittman et al., 1998).
Interestingly, this system may cause as well as prevent sex differences in centrally regulated
functions and behavior (De Vries and Boyle, 1998), the latter presumably to compensate for
sex differences in physiology that, if left unchecked, could cause undesirable differences (De
Vries, 2004). Also, with AVP-secreting neurons being relatively easily accessible for
electrophysiological, biochemical, and molecular analysis, much is known about cellular and
molecular aspects of AVP/AVT expression, release, and neurotransmission (Watters et al.,
1998; Young and Gainer, 2003). Given that sexual differentiation of this system depends on
phenotypic differentiation, this knowledge should help in identifying where phenotypic
decisions may be made. Finally, with many laboratories studying comparative aspects of this
system (Goodson and Bass, 2001; Moore and Lowry, 1998; Panzica et al., 2001; Rose and
Moore, 2002), the general applicability of knowledge on development and function of its
dimorphism may become clearer than it is for most other sex differences in the brain.
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Comparative studies may also reveal more differences as extreme as those found in Japanese
quail and chicken, which should make identifying factors underlying differentiation of these
systems easier. This confluence of behavioral, physiological, cellular and molecular, and
comparative studies, therefore, creates a unique opportunity to deepen our understanding of
the development and functional significance of sex differences in the brain.
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Fig. 1.
Sexually dimorphic AVP and vasotocin (AVT) projections in rat and quail brains. (A) Dark-
field microphotographs of AVP-ir fiber networks (arrows) in the lateral septum (LS) of a female
(left) and male rat (right); * lateral ventricle. (B) Diagram of most prominent AVP-ir
projections in rats, modified from De Vries et al. (1985). Steroid-sensitive projections (black
lines) run from BST (circles) and MeA (MA, circles) to LS, ventral pallidum (VP), olfactory
tubercle (Tu), lateral habenular nucleus (LH), midbrain central gray (CG), dorsal raphe nucleus
(DR), locus coeruleus (LC), and ventral hippocampus (Hip). Question marks indicate
projections to Hip, mediodorsal nucleus of the thalamus (MD), ventral tegmental area (VT),
substantia nigra (SN), which disappeared after castration but not after lesioning the BST.
Steroid-insensitive projections (gray lines) originate in SCN (triangles), PVN (squares), and
supraoptic nucleus (SON, squares). (C) Bright-field photomicrographs of AVT-ir fiber
networks in the lateral septum of male (M) and female Japanese quail (F), treated during
development with oil (top panels), estradiol benzoate (EB; middle panels), or the aromatase
inhibitor R76 (R76; bottom panels), gonadectomized three weeks post-hatching, and treated
with testosterone for another two weeks. Note that AVT fibers are absent in the oil-treated
female and EB-treated male and female quail.
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Table 1
Studies on sex differences and steroid effects in AVP and AVT expression in BST / MeA and homologous systems

Projections Cell bodies Dimorphism Seasonal Activational A vs. E Organizational Tracing

Mammals
 Rat, R. rattus 1, 8 3, 8, 6, 21 2, 10, 25 2, 5, 43 7, 8, 26, 37 12, 42,

48, 56
27, 45, 48 4, 14

 Mouse, M.
musculus

19 19 20 — 20 20, 80, 86 — —

 Siberian
hamster, P.
sungorus

49 58, 49 49* 58 49 — 58 —

 Prairie vole,
M. ochrogaster

41, 51 41, 51 41, 51 — 44 72 88 —

 Mongolian
gerbil, M.
unguiculatus

34 34 34 — 34 — 34 —

 Gerboa, J.
orientalis

55 55 55 55 — — — —

 Meadow vole,
M.
pennsylvanicus

41, 51 41, 51 41, 51 — — — — —

 Dormouse, E.
quercinus

28 — 28 28 — — — —

 European
hamster, C.
cricetus

11 — 11 11 — — — —

 Guinca pig, C.
porcellus

24 24 24* — — — — —

 Human, H.
sapitens

13 13 13* — — — — —

 Macaque, M.
fascicularis

23 23 23* — — — — —

 Marmoset, C.
jacchus

65* 65 65 — — — — —

 Montane vole,
M. montanus

61 61 61 — — — — —

 Pine vole, M.
pinetorum

61 61 61 — — — — —

 Brazilian
opossum, M.
domestica

54 — 54 — — — — —

 Cat, F. catus — 15 — — — — — —
 California
mice, P.
californicus

69 69 — — — — — —

 Mustached
bat, P. parnellii

85 85 — — — — — —

 Syrian
hamster, M.
auratus

30* 30* — — — — — —

 White-footed
mice, P.
leucopus

69 69 — — — — — —

Birds
 Japanese quail,
C. Japonica

39, 50, 77 66, 66, 77 39, 66, 66, 77 — 50, 74, 60 78 68, 90 79

 Canary, S.
canaria

17 17 22 31 — 22* —

 Zebra finch, T.
guttata

40 40 71, 40* 40* 40* — — —

 Chicken, G.
domesticus

64 57/64 64 70 — — — —

 Junco, J.
hyemalis

75 75 — — 84 — — —

 White-
throated
sparrow, Z.
albicollis

89 89 89 — — — — —

 Budgerigar, M.
undulates

82* 82* — — — — — —

 Angolan blue
waxbill, U.
angolensis

83 — — — — — — —

 Song sparrow,
M. melodia

83 — — — — — — —
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Projections Cell bodies Dimorphism Seasonal Activational A vs. E Organizational Tracing

 Spice finch, L.
punctulata

83 — — — — — — —

 Violet-eared
waxbill, U.
granatina

83 — — — — — — —

Reptiles
 Ball python, P.
regius

29 29 29 — — — — —

 Gecko, G.
gecko

9, 18 9, 18 9, 18 — — — — —

 Green anole,
A. carolinensis

38 38 38 — — — — —

 Red-eared
slider, P. scripta

29 29 29 — — — — —

 Jararaca
pitviper, B.
jararaca

81 81 — — — — — —

 Chameleon, C.
chamaeleon

52* 52* — — — — — —

Amphibia
 Bullfrog, R.
catesbaiana

33 33 32, 33 46 47 47 47 —

 Roughskin
newt, T.
granulosa

63 63, 87 32, 76 76* — — — —

 Cricket frog,
A. crepitans

73 73 — — — — —

 South African
clawed frog, X.
laevis

35 35 — 53 — — — —

 Wood frog, R.
sylvatica

59 59 — 59 — — — —

 Marsh frog, R.
ridibunda

36 36 — — — — — —

 Rubber eel, T.
compressicauda

62 62 — — — — — —

 Rubber eel, T.
natans

67 67 — — — — — —

 Spanish ribbed
newt, P. waltlii

36 36 — — — — — —

 Japanese toad,
B. japonicus

16 — — — — — — —

 Red-legged
salamander, P.
shermani

— 87 — — — — — —

Studies on AVP/AVT expression in BST, MeA, and homologous systems. Numbers match chronology. Species are grouped according to amount of data
generated and then alphabetically. ‘Projections’ and ‘Cell bodies’: AVP/AVT peptide or mRNA (numbers in italics) in projections or cell bodies,
respectively; ‘Dimorphism’: sex differences in expression; ‘Seasonal’: variability likely caused by seasonal or developmental variability in steroids;
‘Activational’: effects of circulating steroids: ‘A vs. E’: estrogenic vs. androgenic effects; ‘Organizational’: developmental effects of steroids or persistence
of differences after equal steroid treatment; ‘Tracing’: origin of AVP/AVT projections; ‘-’: feature not studied;
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