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ABSTRACT

We describe a new approach to multiple sequence
alignment using genetic algorithms and an associated

software package called SAGA. The method involves
evolving a population of alignments in a quasi evol-

utionary manner and gradually improving the fithess of

the population as measured by an objective function

which measures multiple alignment quality. SAGA
uses an automatic scheduling scheme to control the

usage of 22 different operators for combining align-

ments or mutating them between generations. When
used to optimise the well known sums of pairs
objective function, SAGA performs better than some of

the widely used alternative packages. This is seen with
respect to the ability to achieve an optimal solution and

with regard to the accuracy of alignment by compari-

son with reference alignments based on sequences of
known tertiary structure. The general attraction of the

approach is the ability to optimise any objective

function that one can invent.

INTRODUCTION

There are two main alternatives to progressive alignment. One
is to use hidden Markov models (HMMs); which attempt to
simultaneously find an alignment and a probability model of
substitutions, insertions and deletions which is most self consist-
ent. Currently, this approach is limited, in practice, to cases with
very many sequences (e.g. 100 or more) but does have the grea
advantage of a sound link with probability analysis. A second
approach is to use objective functions (OFs) which measure
multiple alignment quality and to find the best scoring alignment.

If the OF is well chosen or is an accurate measure of quality, then
this approach has the advantage that one can be confident that the
resulting alignment really is the best by some criterion. Unfortu-
nately, the number of possible alignments which must be scored
in order to choose the best one becomes astronomical for more
than four or five sequences of reasonable length.

Two solutions to this problem exist. The MSA prograii)(
attempts to narrow down the solution space to a relatively small
area where the best alignment is likely to be. It then guarantees
finding the best alignment in this reduced space. Even with this
reduction, it is limited to small examples of around seven or eight
sequences at most. Nonetheless, it is the only method we know of
that seems capable of finding the globally optimal alignment or
close to it, starting with completely unaligned sequences. A
second approach is to use stochastic optimisation methods such
as simulated annealing8)( Gibbs sampling 9 or genetic

The simultaneous alignment of many nucleic acid or amino acalgorithms (GAs;10). Simulated annealing has been used on
sequences is one of the most commonly used techniguesnimmerous occasions for multiple alignment (£1g13) but can
sequence analysis. Multiple alignments are used to help prediet very slow and usually only works well as an alignment
the secondary or tertiary structure of new sequences; to hétpprover i.e. when the method is given an alignment that is
demonstrate homology between new sequences and existalgeady close to optimal and is not trapped in a local minimum.
families; to help find diagnostic patterns for families; to sugge$sibbs sampling has been very successfully applied to the problem
primers for PCR and as an essential prelude to phylogenetitfinding the best local multiple alignment block with no gaps but
reconstruction. The great majority of automatic multiple alignits application to gapped multiple alignment is not trivial. Finally,
ments are now carried out using the ‘progressive’ of Feng amek know of one attempt at using GAs in this contéf). (Here
Doolittle (1) or variations on it4<—4). This approach has the greatthey used a hybrid iterative dynamic programming/GA scheme.
advantage of speed and simplicity combined with reasonablen this paper, we describe a GA strategy and software package
sensitivity as judged by the ability to align sets of sequences cdilled SAGA (sequence alignment by genetic algorithm) which
known tertiary structure. The main disadvantage of this approaahpears capable of finding globally optimal multiple alignments
is the ‘local minimum’ problem which stems from the greedyor close to it) in reasonable time, starting from completely
nature of the algorithm. This means that if any mistakes are magigaligned sequences. It can find solutions that are as good as or
in any intermediate alignments, these cannot be corrected latebatter than either MSA or CLUSTAL V@) as measured by the
more sequences are added to the alignment. Further, there iSO score or by reference to alignments of sequences of known
objective function (a measure of overall alignment quality) whictertiary structure. The approach has a further advantage in that it
can be used to say that one alignment is preferable to anothecamn be used to optimise any OF one can invent. Biologically, the
to say that the best possible alignment, given a set of parametkes; to successful application of optimisation methods to this

has been found.

problem, depends critically on the OF. If the OF is not a good
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descriptor of multiple alignment quality, then the alignments wilSequence alignment by genetic algorithm (SAGA)

not necessarily be bestin any real sense. The search for useful OFs ) . _

for sequence alignment, perhaps for different purposes, is surafy @lign protein sequences, we designed a multiple sequence
a key area of research. Without SAGA, however, it is difficult tgllgnment method called SAGA. SAGA is derived from the

consider most new OFs as one cannot optimise them. simple genetic algorithm d_escribe_d by Goldbedg. (It involves
using a population of solutions which evolve by means of natural

selection. The overall structure of SAGA is shown in Fidure
METHODS The population we consider is made of alignments. Initially, a

The overall approach is to use a measure of multiple alignmedgneration zero (§ is randomly created. The size of the
gpulatlon is kept constant. To go from one generation to the next,

quality (an OF) and to optimise it using a genetic algorithm. A 58 gdren are derived from parents that are chosen by some kind

of well known test cases is used as a reference to evaluate ; -
efficiency of the optimisation of natural selection, based on their fitness as measured by the OF

(i.e. the better the parent, the more children it will have). To create
o . achild, an operator is selected that can be a crossover (mixing the
Objective function contents of the two parents) or a mutation (modifying a single

Evaluation of the alignments is made using an OF which is simp!)}éarent)' Each operator has a probability of being chosen that is

a measure of multiple alignment quality. We use two OFs relate
to the weighted sums of pairs with affine gap penaltigs The
principle is to give a cost to each pair of aligned residues in e
column of the alignment (substitution cost), and another cost
the gaps (gap cost). These are added to give the global cost o
alignment. Furthermore, each pair of sequences is given awei}g ating the children it needs
related to their similarity to the other pairs. Variations involve: (i Following this simple proce.ss the fitness of the population is
using d'fferef‘t sets of sequence We!ghts; (i) different sets of Co?ﬁ%reased until no more imprO\;ement can be made . All these
for the substitutions [e.g. PAM matricé$) or BLOSUM tables steps, shown in Figure can be summarised by the fc;llowing
(17)]; (iii) different schemes for the scoring of gap8)( The cost f

of a multiple alignment (A) is then: psj(?ut_jo-(?ode:
Initialisation 1. create &

namically optimised during the run.
hese steps are repeated iteratively, generation after gener-
abion. During these cycles, new pieces of alignment appear
cause of the mutations and are combined by the crossovers. The
lection makes sure that the good pieces survive and the dynamic
ing of the operators helps the population to improve by

N H Evaluation 2. evaluate the population of generationh (G
Z W;; COST(A, A) 3. if the population is stabilised then END
i=2 j=1 4. select the individuals to replace

where COST is the alignment score between two aligned . 5. evaluate the expected offspring (EO)
sequences (Aand A) and W; is their weight. The cOST bBreeding 6. select the parent(s) from G

function includes gap opening and extension penalties for 7. select the operator

opening and extending gaps. Altschi)(made an extensive 8. generate the new child

review describing the different ways of scoring gaps in a multiple 9. keep or discard the new child iR.@

alignment. Two different methods were used in SAGA: (i) natural 10. goto 6 until all the children have been success-
affine gap penalties and (i) quasi-natural affine gap penalties. fully put into Gy+1

These methods differ in how they treat nested gaps, i.e. a gap in 1l.n=n+l

one sequence that is completely contained in the second. In bath 12. goto EVALUATION

cases, positions where both sequences have a null are remobetf 13. end

With the natural gap penalties, gap opening and extensigiyialisation. The first step of the algorithm (Fida) is the
penalties are charged for each remaining gap. With the quaslgation of a random population. This generation zero consists of
natural gap penalties, an additional gap opening penalty dSset of alignments containing only terminal gaps. A population
charged for any gap in one sequence that starts after and egg8 of 100 was used in all of the résults presented here. To create
before a gap in the second sequence (before the columns of il of these alignments, a random offset is chosen for all the
are removed). Terminal gaps are penalised for extension but B@hences (the typical range being from 0 to 50 for sequences 200
for opening. . _ residues long) and each sequence is moved to the right, according
_ Sequence weights are an attempt to minimise redundagfis offset. The sequences are then padded with null signs in order
information, based on the relatedness of the sequences. In M@\, ave the same length, L. The alignments of generation zero will

a weight for every pair of sequences is derived from B the parents of the children used to populate generation one.
phylogenetic tree connecting the sequences. In CLUSTAL W

(20), a weight is calculated for each sequence and the pair weightaluation.To give birth to a new generation, the first step is the
(W;;) for two sequences is simply their product. These weightsvaluation of the fitness of each individual. This fitness is
differ in detail although both are designed for a similar purposassessed by scoring each alignment according to the OF. The
In this study we give results for the optimisation of two OFsbetter the alignment, the better its score, and thus the higher its
(i) OF1 weighted sums of pairs using the pam250 weight matrfitness. If the purpose is to minimise the OF, as is the case for OF1
with quasi-natural gap penalties and MSA, rationale 2, weightsxd OF2, then the scores are inverted to give the fitness. The
(19). This is the function optimised by MSA. (ii) OF2 weightedexpected offspring (EO) of an alignment is derived from the
sums of pairs using the pam250 weight matrix with natural gdfiness. It is typically a small integer. The method we used to
penalties and CLUSTAL W weight&Q). derive it is known as remainder stochastic sampling without

ALIGNMENT COST(A) =
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Figure 1. The layout of the SAGA algorithma)(Initial population (@). (b) One generation cycle (5 The method continues until the terminal conditions are met.
Boxes R"to Ry indicate parents in generation n, boxg&®to G,"*Lindicate the children of these Parents. Parents and children are alignments. Bold boxes indicate
alignments selected to survive unchanged from one generation to the next. OP is a randomly chosen operator.

replacementZ?). In the case of OF1 and OF2 the typical valuesre created by selecting parents and modifying them. During the
of the EO are between 0 and 2, which can be considered ashageding, the EO is used as a probability for each individual to be
acceptable rang?). chosen as a parent. A wheel is spun where each potential parent
Only a portion (e.g. 50%) of the population is to be replacelas a number of slots equal to its EO. When an individual is
during each generation. This technique, known as overlappig@iosen to be a parent, its EO is accordingly decreased before the
generation 43), means that half of the alignments will survivenext turn of selection (selection without replacement). This
unchanged, the other half will be replaced by the children. Wgeighted wheel selection is carried on until all the parents have
chose in SAGA to keep only the best individuals, and to replaggen chosen.
the others. In practice, all the individuals are ranked according toy, modify the parent(s), an operator has to be chosen. An
their fitness, and the weakest are replaced by new children Whtyﬁerator is a small program that will modify an alignment (e.g.
creating the generation n+1 from the generation n. The othgy e the gaps or merge two alignments into a new one). We have
individuals (the fittest) will simply survive as they are during theyegigned several operators. Each of them has a specific probability
breeding. of being used. To create a child, one operator is chosen according
Breeding.First, the new generation is directly filled with theto this probability (by spinning another weighted wheel). The
fittest individuals from the previous generation (typically 50%)chosen operator is then applied to the chosen parent(s). Some
Next, the remaining 50% of the individuals in the new generatiooperators require two parents, others require only one.
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An important aspect of the SAGA population structure is th Bzt Aligrmeni | Pt Aligament §
constraint we put on the absence of duplicates. In the sa g .
generation, all the alignments have to be different. This techniq Bk i i BE;E\E@
helps maintain a high level of diversity in a population of sma - ~-AHAGEYGAEAL WOHVER-ERIEY
size @4). To do so, each newborn child is checked to ensure it b e ik e

not identical to any of the children already generated. If it is nc
it will be put into the new generation. Otherwise, it will sSimply be
discarded along with its parent(s) and the operator, in order
avoid deadlock problems. This process is carried on until enou
children (e.g. 50% of the population) have been successfug
inserted in the new generation. The Evaluation/Breeding proces
will be carried on until the decision is made to stop the searchtf?

--HYDEW3-GE ==MCEY |H===FOEVGEERL-
- -Ht:l:w-;-u + WO--E¥ [HEEE- - ~V2EERL~
dh-HAGETIAE HEEW= = |G« RHAGEYGREAL
| ] 3 WAE V== |GEHR- -GETGAEAL
End.There is no valid proof that a GA must reach the optimun

even in an infinite amount of time, as there is for Simulate i ligmmea 1 R —
arbitrary choice using more or less sophisticated heuristic criter

We use stabilisation as a criterion: SAGA is stopped when tt

generations (typically 100). This condition is the most widel o HAGE- YOAE

used when working on a population with no duplicatés (

Annealing £5). Thus the decision to stop the search has to be
M- -wvnEva- o
search has been unable to improve for some specified numbe i ,;_:f,:g;

The operators

. . . . Figure 2.A one point crossover between two parent alignments to produce two
According to the traditional nomenclature of genetic algorithmshildren. The arrows indicate the way the two parents are cut having randomly

(22), two types of operators are represented in SAGA: thehosen a position in the left hand alignment. Child 1 is produced by combining
crossovers and the mutatons. These programs perform modiicl® 5 S o bt e e e f pre” o S omueed
tions (mutation) or merging Of. p‘."“er.‘t alignments (crossover). | ese tWC? childrgen alignme‘:wts is kept (whichever scorgs better). Th); boxed
SAGA we do not make any distinction between these two typegctions show some patterns from the parent alignments that are combined in
with regard to how we apply them. They are designed aswe child.

independent programs that input one or two alignments (the

parents) and output one alignment (the child). Each operator

requires one or more parameters which specify where tloperator: the uniform crossover, designed to promote multiple
operation is to be carried out. For example, an operator whiglxchanges between two parents in a more subtle manner. This
inserts a new gap must be told where (at which position in tluperator is based on an analogy with biological crossover:
alignment) and in which sequences the gap is to be inserted. exchanges are promoted between zones of homology.

The parameters of an operator may be chosen completelyThe first step consists of mapping the alignment positions that
randomly in some range in which case the operator is said to & consistent between the two parents. In an alignment, a position
used in a stochastic manner. Alternatively, all except one of tigea column of residues or nulls stacked on top of each other. Two
parameters may be chosen randomly and the value of tpesitions are said to be consistent between two alignments, if in
remaining parameter will be fixed by exhaustive examination afach line they contain the same residue (by reference to the
all possible values. The value which yields the optimal fitness willriginal sequence) or a null coming from the same gap (i.e.
be used. When an operator is applied in this way, it is said to between the same residues). For instance, if in one line of a given
used insemi-hill climbing mode. Most of the SAGA operatorsposition we have ALA125 and at the same line of a position in the
may be used in either way. other alignment we have ALA101 then the two position are not
consistent. This process is outlined in FigRirBlocks between
onsistent positions can be directly swapped. One can do so in a
emi-hill climbing way, if only the best combination of blocks is
osen, or in a stochastic way, if the block to place between two

sistent positions is randomly chosen between the two
nments. Both uniform crossovers, the semi-hill climbing one
the stochastic one, are implemented in SAGA.

The crossoversCrossovers are responsible for combining tw
different alignments into a new one. We implemented twQ
different types of crossover: one-point and uniform. The on
point crossover combines two parent alignments through a sin
exchange. Figuizoutlines this mechanism. The first parent is cuty;
straight at some randomly chosen position and the second on%ﬂ
tailored so that the right and the left pieces of each parent can be
joined together while keeping the original sequence of amin@ap insertionWhile the crossovers combine patterns, there is
acids. Any void space that appears at the junction point is filledill a need to generate these patterns. All the remaining operators
with null signs. Because of the specificity of this junction pointywere designed to serve this purpose. The gap insertion operator
where rearrangements can occur, this operator combines bothiththe simplest.
traditional properties of a crossover and those of a local This operator extends alignments by inserting gaps. Its
rearrangement mutation. Only the best of the two childremechanism is detailed in FiguteTo keep the sequences aligned,
produced that way is kept. each sequence will get a gap insertion of the same size. The
This one point crossover can be very disruptive, especially s&équences are split into two groups. Within each group, all the
the junction point. To avoid this drawback, we added a secomséquences get the insertion at the same position. The two groups
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except P1 (the position of the insertion in the first group of
sequences) are chosen randomly and all possible values of P1 are
tested. The value of P1 that gives the best scoring alignment is
chosen.

In general, it is dangerous to assume that the topology of the

underlying tree is correct. In the current usage, the main effect of

T T T an incorrect tree topology will be to slow the program down. The
e e pareas ability to find the globally optimal alignment should not be
changed, just the speed at which the solution will be found. When
two groups are chosen, using the tree, one of the groups can
consist of a single sequence. This means that, eventually, all

LaESE KE W 1™
i o o

e ;f.r,ﬁ'ﬁ'.ﬁ
w0 j"ﬁ:ﬂﬂj: 1 possible arrangements of gaps can be found, even if the tree

R
(o e Lo fa

topology is completely wrong. Ideally one would use fuzzy

groupings based on the tree but which allows alternative
Ty groupings.

Figure 3. A uniform crossover. All of the positions in the two parents that are ,BIOCk_ shufﬂlng.Generatlng an opt|m_a_l arrangement after a gap
consistent between the two alignments are marked (stars). Children aréNSertion can often be a matter of shifting a gap to the left or to the
produced by swapping blocks between the two parents where each block iight. Therefore we designed an operator that moves blocks of
randomly chosen between two consistent positions. gaps or residues (but not both together) inside an alignment. Here,
we depart from the usual definition of a block as a section of
alignment containing no gaps, with all of the sub-sequences
having the same length7). For the purposes of this operator, we
define a block of residues to be a set of overlapping stretches of
‘ ! residues from one or more sequences, each stretch being
Gl delimited by a gap or an end of a sequence. Each sub-sequence
can be a different length but all sub-sequences must overlap.
g1 Similarly, a block of gaps is a set of overlapping gaps. An example
of each is given in Figuiga. A block is chosen by first selecting
G2 one residue or gap position from the alignment and then deriving
the block to which it belongs. These can be moved inside the
alignment, to generate new configurations. Fidgirec and d
show some types of move that can be made inside an alignment.
These moves are an extension of those proposed for a simulated
annealing approach described b¥)( The limits of this move are
i 2 a1 pontained in. the alignment itse]f. A gap can only be shifted until
\\ - e it merges with another gap. Similarly, a stretch of residues can
e Rl e, MEKYEVDEVGEE - G only be shifted until it merges with another stret_ch of residues. We
g2 WOEVHEEEROOEA-OL WDEV=-WEEEWICEA-OL o can enumerate the different ways these operations may be used a

sepd  WOEWIAHAZEYSAERL — WIEVERHAIEYSAE '-/,.- follows:
25

sepd WEEWGGHAGETGAELAL HERVESHASEYGAE
b s Sl e Move a full block of gaps or a full block of residues.
(Fig. 5b).

Figure 4. Gap insertion.g) The estimated phylogenetic tree connecting the @  Split the block horizontally and move one of the sub blocks
five sequences is randomly divided into two sub trees. This gives two groups to the left or to the right The subdivision of a block is made

of sequences (G1 and G3)) Two positions P1 and P2 are randomly chosen . . .
in the alignment. A gap of random length (here 2 nulls) is inserted at position accordlng to the tree (Cf- gap insertion operator) GE'D

P1 in the sequences of subgroup G1, and the same number of nulls are inserigd Split the block vertically and move one half to the left or to
at position P2 in subgroup G2. the right (Fig:5d)

-]

® The move can be made in a semi-hill climbing way, looking

are chosen, based on an underlying estimated phylogenetic tree for the best position, or in a stochastic manner.
between the sequences. The tree is randomly split into tWidiese different combinations lead to a total of 16 possible
sub-trees (Figla). Each group consists of all the sequences in oreperators, designed to shuffle gaps, in all possible directions. All
of the two sub-trees. For one of the groups, a position is randonsiixteen operators are implemented in SAGA.
chosen (Fig4b). A gap of randomly chosen length is then
inserted in each of the sequences of the group at the same posiitotk searchingA set of operators including crossovers, gap
(P1 in Fig.4b). A gap of the same length is also inserted into alhsertion and block shuffling, is theoretically able to create any
of the sequences of the second group at some position withi@angement needed for the correct alignment, but it is also bound
maximum distance from the first gap insertion (P2 in #iy. to lose a lot of time, trying to generate some configurations that
This is the stochastic version of the block insertion operator. a simple heuristic would easily find.

The semi-hill climbing version of this operator is similar to the Therefore, we designed a crude method that, given a substring
stochastic one described above but in this case, all the parameieiene of the sequences, tries to find in the alignment, the block
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Fy point crossovers and the bloc shuffling operator. LAGA is
werHEmENnOEAL typically run for a number of generations equal to 10-fold the
WLENENH NG N L number of sequences and with a population size of 20.
REEVEHEEENEGERL
RIENHIHAIEY QABRL
WATTEADUAIHOCETL

) s mEnncE
MONILISTALLY
ACTTIMEENE T THE TRET

H) ST HLOCK VERTECALLE

Dynamic scheduling of the operators

The 16 block shuffling operators, the two types of crossover, the
block searching, the gap insertion and the local rearrangement
operator, make a total of 22 operators (uniform crossovers and
gap insertion may be used in a stochastic or semi hill climbing

way). During initialisation of the program, all the operators have

the same probability of being used, equal to 1/22. There is no
guarantee that these probabilities are optimal. Even if they were

“E:'-EE“-'UHU’WB'\L h'l::'.EEI’i'.'DE' kA '-:":.P.'ﬂ'-E:lT.‘-‘l’- GEAL . . H
HGENGRHMARYGARAL v el BEEVGARAGEYGATAL for the first stages of the run, they could become inadequate in
HDEEENHE EEVCCELL WA VBN EEEVOSEAL wORVERREIEVIGEAL later stages. They could also be test case specific. How to
i . b K b ER L FEVEEEAG < . . .
HATVEABVASHIQEIL BAFVEADVRIHEQIIL MAEVEAIVAGEG)ILL schedule the different operators in a general way that will be

efficientin many situations is a difficult problem. In fact, the more
operators one has, the more difficult it becomes. We implemented
Figure 5. Block shuffling. &) An irregular block of gaps (left example) or  an automatic procedure that deals with this problem and allows

residues (right example) is chosen in the alignment. The block is constructed,;s tg easily add or remove operators without any need for
starting with a randomly chosen position in a randomly chosen sequencq,etuning

(arrow). b) An example of moving a full block of gaps, one position to the . ..
left. () An example of splitting a block of gaps horizontally (according tothe ~ Dynamic S_Chedl-"esi optimised on the run, are an _elegant
tree). One of the sub-blocks is then moved in some direction (e.g. one positioisolution to this problem, that was proposed by D&k (n this

to the left). @) An example of splitting a block of gaps vertically. One of the  model, an operator has a probability of being used that is a
sub-blocks (e.g. the right one) is then moved to the right. function of the efficiency it has recently (e.g. 10 last generations)
displayed at improving alignments. The credit an operator gets
when performing an improvement is also shared with the
to which it may belong. Here we define a block as a short sectioperators that came before and may have played a role in this
of alignment without any gap&7). First, we select a substring improvement. Thus, each time a new individual is generated, if
of random length at a random position in one of the sequencésyields some improvement on its parents, the operator that is
Then, all substrings of the same length in all of the othetirectly responsible for its creation gets the largest part of the
sequences are compared with the initial substring and the besidit (e.g. 50%). Then the operator(s) responsible for the
matching one is selected. This new substring is added to the figgdation of the parents also get their share of the remaining credit
one, in order to form a small profilgl). Then, in the remaining (50% of the remaining credit, i.e. 25% of the original credit), and
sequences, the best match is located and added to the profile. 3tven. This report of the credit goes on for some specified number
process goes on iteratively until a match has been identified in eflgenerations (e.g. 4).
the sequences. The sequences are then moved to reconstruct thfter a given number of generations (e.g. 10) these results are
block inside the alignment. This method does not depend on theémmarised for each of the operators. The credit of an operator
underlying phylogenetic tree or on the order of the sequencess equal to its total credit divided by the number of children it
The initial substring is randomly chosen (typical length 5-19enerated. This value is taken as usage probability and will
residues). The block searching is not performed on the whalemain unchanged until the next assessment, 10 generations later
alignment, but only in a section tailored randomly around th®o avoid the early loss of some operators that may become useful
position of the initial substring (typical size between 50 and 15@ter on, all the operators are assigned a minimum probability of
alignment positions). The ultimate rearrangement occurs insiéheing used (the same for all them, typically equal to half their
that section only. This precaution is taken in order to minimise thgiginal probability i.e. 1/44).
side effect that could be caused by the existence of repeated
motifs inside some of the sequences. This block searchigghgice of the mutation sites
mutation generates more dramatic changes than any of the other
operators. Experience shows that, while monitoring the search, areas
) . o containing gaps are those that are most likely to change during a
Local optimal or sub-optimal rearrangemeBiome situations  run, For this reason we found it useful to bias the choice of the
remain where the presence of a very stable local minimum makegitation site by some probability related to the concentration of
it quite difficult for the other operators to generate the optimgjaps in an area. This bias is moderated in order to avoid local
configuration. In order to overcome this problem, we designeginimum problems but it greatly helps the algorithm. Typically,
our last operator. It attempts to optimise the pattern of gaps insigiethe middle of a run, the probability of hitting a position
a given block. This is done in two ways: (i) by exhaustivgontaining a gap is twice the probability of hitting a position
examination of all gap arrangements inside the block or (i) by\githout gaps.
local alignment GA (LAGA).
The exhaustive examination is carried out if it requires less th%st cases
a specified number of combinations to examine (typically 2000).
Otherwise, LAGA is used. LAGA is a crude version of the simpl&Ve used a set of 13 test cases based mainly on alignments of
genetic algorithm described by GolbeRf)( It uses only one sequences of known tertiary structure. Twelve were chosen from
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the Pascarella structural alignment data baSegnd one of Implementation
chymotrypsin sequences fror§,12). We chose test cases of

varying length (60-280 residues) and various numbers MS system. Memory requirements are low, the main usage

sequences (4-32). being to store the separate alignments in the population. For 10

The test cases were divided into'two groups. The first 9rouquences with an average alignment length of 200 and a
(nine test cases) is made of small alignments (4-8 sequences, ghs{ulation size of 10011 Mb of memory is sufficient. The source

60-280 residues long) that can be handled by MSA. Because theyie is available free of charge from the authors; please send an
can be computed by MSA, they allow us to asses SAGAs abiligzmail message to Cedric.Notredame@EBI.ac.uk .

to minimise the MSA OF. The second group (four test cases) is

made of larger alignments (9, 12, 15 and 32 sequences). ThreRefSULTS

them are only extended versions of some of the small test cases, . .

the fourth contains 32 sequences of immunoglobulins (for detalfse analysed three aspects of SAGA in detail. As the robustness
see Tables and2). These test cases cannot be handled by MSA' U optimisation strategy depends on the dynamic operator

and are designed to show the ability of SAGA to perform multipl etting, we checked its behaviour on various test cases. In prder
. L show that SAGA was able to perform a rigorous optimisation,
sequence alignments of realistic size. We analysed the resultéé)

GA was written in ANSI C and was implemented on an open

) i . used the first group of nine test cases, for which, thanks to
comparing the scores obtained by MSA and SAGA using OFdisa 4 mathematically optimal, or sub-optimal solution is

and CLUSTAL W and SAGA using OF2. _ known for OF1. We verified that SAGA was able to find a

To analyse the similarity between the structural alignments aQ@|ytion at least as good. Then, using the second set of four test
those obtained by one of these three programs, we use a meaggis, we analysed the ability of SAGA to perform a multiple
of consistency between two alignments. This measure gives tigjnment on sequences that could not be aligned by MSA. We
percentage of residues that are aligned in a similar manner in #ifmpared these results with those given by CLUSTAL W on the
two alignments. It allows us to measure the level of sequentighme test cases. With these two sets of experiments, we also triec
consistency between computed alignments generated by SAGé assess the biological relevance of the alignments produced by
MSA and CLUSTAL W and the reference structural alignmentsSAGA by reference to the structural alignments.

Table 1.The performance of MSA and SAGA on nine test cases

Test case Nseq Length MSA MSA versus  CPU-time SAGA SAGA versus CPU-time
score structure (%) score structure (%)
Cytc 6 129 1051 257 74.26 7 1051 257 74.26 960
Ger 8 60 371875 75.05 3 371 650 82.00 75
Ac protease 5 183 379997 80.10 13 379 997 80.10 331
S protease 6 280 574 884 91.00 184 574 884 91.00 3500
Chtp 6 247 111 924 * 4525 111 579 * 3542
Dfr secstr 4 189 171979 82.03 5 171 975 82.50 411
Sht 4 296 271747 80.10 7 271 747 80.10 210
Globin 7 167 659 036 94.40 7 659 036 94.40 330
Plasto 5 132 236 343 54.03 22 236 195 54.05 510

Nseq, number of sequences; Length, the length of the final SAGA alignment; Score, the alignment score using OF1. The columns marked ‘versus structure
the percentage of the alignment that matches the structural alignment. CPU time is given in seconds and is taken from the best of three runs for SAGA. The
structure identifiers for each test case are as foll@ysc 451c, 1ccr, 1cyc, 5c¢yt, 3c2c, 15%&gr: 2gcr, 2gcer-2, 2gcr-3, 2gcr-4, 1gcr, 1ger-2, 1gcr-3, 1gées;
protease 1cms, 4ape, 3app, 2apr, 4p§mproteaselton, 2pka, 2ptn, 4cha, 3est, 3rpfr secstr 1dhf, 3dfr, 4dfr, 8dfrChtp 3rp2, M13143 (EMBL accession
number), 1gmh, 2tga, lest, 1s8ht 1cse, 1sbt, 1ltec, 2priglobin: 4hhb-2, 2mhb-2, 4hhb, 2mhb, 1mbd, 2lhb, 2Rtksta 7pcy, 2paz, 1pcy, lazu, 2aza.

Table 2. The performance of CLUSTAL W and SAGA on four test cases

Test case Nseq Length CLUSTALW CLUSTAL W CPU-time SAGA SAGA versus CPU-time
score versus structure (%) score structure (%)

Igb 32 144 31812 824 55.86 60 31417 736 55.97 41 135

Ac Protease2 10 186 10514 101 41.02 16 10 393 145 43.50 12 236

S Protease2 12 281 16 354 800 64.37 21 16 282 179 66.18 20 537

Globin2 12 171 5249 682 94.90 18 5233 058 94.01 2538

The columns are as for Table 1 but score refers to the optimisation of OF2. The PDB identifiers for the structures in each test case aigbagflodlp@fe4-2,
2fb4-3,2fb4-4, 2fbj, 2fbj-2, 2fbj-3, 2fbj-4, 1fc2, 1fc2-2, Imcp, Imcp-2, 1pcf, 1rei, 2rhe, 3fab, 3fab-2, 3fab-3, 3fab-4, 2hfl, 2hfl-2, 2hfl-3, 1fl9, 1f19-2, 1f9-3, 1fI9-4
1cd4, 3hla, 3hla-2, 4fab, 3hfm, 1mcic protease2lcms, 4ape, 3app, 2apr, 4pep, 1cms-2, 4ape-2, 3app-2, 2apr-2, &ppiase2lton, 2pka, 2ptn, 2trm,

4cha, 3est, 1hne, 3rp2, 1sgt, 2sga, 3sgb, Eghin2: 4hhb, 4hhb-2, 2mhb, 2mhb-2, 1fdh, 1mbd, 1mbs, 2lhb, leca, 2lh1, 1pmb, 1mba.
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Some operators are stochastic and some work in a semi-hill
climbing way. We verified that these semi-hill climbing operators
were not over-weighted with respect to the other operators. The
results are shown in Figusb. This figure clearly reveals that the
semi-hill climbing and stochastic operators behave in a comple-
mentary way during the run. During the early stages, semi-hill
climbing operators that easily generate improvements are fa-
voured. Once all the possible easy improvements have been
made, however, stochastic operators gradually replace the
semi-hill climbing ones, opening the way for new configurations.
This alternate use of both types of mutation is repeated through
a series of cycles, until the evolution stops. When this point is
reached, operators find it difficult or impossible to generate new
improvements and they stabilise at their original, default level of
1/22 (when no improvement has been made for some specified
number of generations). Although these schedules vary from one
test case to another, the main patterns, described above, occul
consistently. Closely related operators compete with each other
and may display cycles of oscillation. Each possible modification
may be viewed as a niche for which the various operators compete
during the run. It must be emphasised here that these schedules
are natural in the sense that no coding is responsible for the

| observed phenomenon of oscillation that we described. These
] results suggest that SAGA through the dynamic operator setting

T, is able to optimise the use of each operator according to its real
behaviour.

Optimisation of OF1

SAGA and MSA were compared with regard to their ability to
optimise OF1. This is the OF that MSA attempts to optimise. For
nine of the test cases, we compared the alignments produced by
MSA and those generated by SAGA. SAGA was run with default
parameter settings. The results shown in Thhte the best from
three trials. On a larger number of runs it was verified that SAGA
Fig,]%rfmeéfgstggégricﬁﬁgead#grgigfvm °%e,§§f%?a©0”ft‘ﬁ‘éi”ﬁgé?ﬁstglfligg Witreaches this solution in at least one third of the runs. In all the
gtr;ndard settings. .The figureyshows ths probabilities of e:gch of these operatogéses’ SAGA was able to produce a score at least as good as the
of being used at any time during the ru). $tochastic mutations, semi-hill ~ Produced by MSA (note that the lowest scores are the better ones).
climbing mutations and crossovers (uniform and one point) for the globin tesin four cases, this score was better. We tried to derive a correlation
case. The stochastic mutation data were obtained by summing the usaggetween the mathematical optimisation of OF1 and its biological
probability of all the stochastic mutations. Crossovers and semi-hill climbing ajevance. To do s0, these four alignments were compared with
were obtained in a similar way. . . . .
the structural reference alignments for consistency. This analysis
reveals that an improvement of the optimisation consistently
correlates with an improvement of the accuracy: the alignments
for which SAGA outperforms MSA are more similar to their
structural references. Recently, MSA has been upgraded by a
newer, faster version but the results are idenfigal (
SAGA was run on all the test cases, and the schedules for all thén principle, MSA can be used to find the guaranteed optimal
operators were plotted. Figuda and b present some of thesealignment for a set of sequences. In practice, however, the
results. Figuréa shows that the probabilities of being used of thparameter settings required to do so will often be prohibitively
two types of crossover (one point and uniform) evolve accordirgkpensive in terms of time and memory. By default, MSA uses
to different schedules. In the early stages, the young populatibauristic bounds which do not guarantee optimality. In cases
is very heterogeneous and lacks consistency. Thus the unifowhere SAGA achieves a better score than MSA, one can calculate
crossover can hardly be used. Later in the run, when some ordew bounds from the SAGA alignment and use these to run MSA.
has been created, the uniform crossover can be applied mbordhis case, MSA achieves the same score as SAGA (data not
easily. It then gradually replaces the one point crossover. ThiBown). In practice, if you do not have a higher scoring reference
graph clearly shows that the two types of crossover are competagnment (e.g. from SAGA), adjusting the bounds is not trivial.
with each other, although no extra information regarding the type they are set incorrectly, you either do not get the optimal
of the operator is given to the algorithm. All the operators weralignment or MSA runs out of memory. Attempts at finding better
analysed in the same way, in order to verify that they were needmlutions than those found by SAGA by increasing the bounds
(data not shown). used by MSA, failed to find better scoring solutions. Starting with

-] - Chedd i

Self tuning ability
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MSA uses quasi-natural gap penalties because of the COMPLIATE aaa vat eisecn A ienbhoaaon: s e o o

tional cost of using natural ones. It can be argued that natural ¢

penalties are more biologically realisti&) and we therefore use

them for the remaining four test cases. MSA is also severe

limited regarding the number and the length of the sequences L = A

can align. In these four test cases, there were too many sequelzpzn - - -gCRGHHE PG TR SH T KO TTASH-

for MSA to perform its task. Without the MSA reference, it;=™ :::ﬁﬂﬁ:ﬁﬂﬁ:ﬂ%‘ﬁ;%:

becomes difficult to assess the efficiency of the optimisationast - - -G TERETVETEY 52 Y T SHIMENTASH-

Therefore, we replaced the MSA reference with an alignmeibn= --'GC-;EELTFE'-"-FJ"P‘FMWHEIDEZI'}"

produced by CLUSTAL W. It must be stressed here thaiie - cosmmm oo mey et -

CLUSTAL W does not explicitly try to optimise any OF. DespiteZ=aa - --GiCE TG T TEY QP TEAL AN EA T L~

these limitations, by choosing an appropriate set of paramets"';ﬂg ;;;{:{Eﬁﬁgggﬁﬁﬂzﬁgﬁﬁ:

we used CLUSTAL W in conditions where it would produce a

result as close as possible to the optimisation of OF2. These

alignments were compared with those obtained from SAGAigure 7.Example of an alignment obtained with SAGA.This is the N-terminus
while optimising OF2. ofthe S protease2 alignment, used in Table 2. Completly conserved positions are

Both sets of alignments were then compared to the StrUCturgErl-(Ed (st_ars). The boxed column ofglycir_]e was not found with CLUSTAL W.
. sidues in upper case are correctly aligned with respect to the structural

reference alignments of Pascarel20)( These results are reference, those in lower case are misaligned.
presented in Tabl2 and show that in all four test cases SAGA
builds an alignment with a better score than CLUSTAL W, , i
regarding OF2. This Table also shows that in three out of four téd@rameter settings and refine these. We prefer not to, however, as
cases, the alignment generated by CLUSTAL W is less similar tae Starting alignments could be trapped in local minima. If the
the structural alignment than is that produced by SAGA. The§éarting alignment is close to the optimal solution, SAGA could
results suggest that with similar types of weights, similar types B Used very easily as an alignmentimprover. This would provide
substitution cost (Pam 250) and similar range of gap penaltiéd) €asy method for generating hybrid alignments for very large
SAGA performs more accurately than CLUSTAL W on data sef€st cases but we have not evaluated SAGA in detail in this
of realistic size. respect. _ _

Figure7 presents the N-terminus portion of the S protease2 testGenetic algorithms have been used successfully as a practical
case obtained with SAGA. The reference structural alignmeMy to solve many computationally difficult problems. They are
contains 12 completely conserved positions. SAGA is able tptellectually satisfying in their simplicity and the way they
reconstitute 11 of these positions while CLUSTAL W only findsittempt to mimic biological evolution. From the point of view of
10 of them. Overall, the comparison of the SAGA alignment witultiple sequence alignment, the use of stochastic optimisation
the structural reference shows that the main features drethods has proved to be difficult with just a few exceptions

accurately found by our algorithm. (9,32). We found that a simple GA, applied in a straightforward
fashion to the alignment problem was not very successful. The
DISCUSSION main device which allowed us to efficiently reach very high

quality solutions was to use a large number of mutational and
We believe SAGA to be a powerful and flexible tool for sequencerossover operators and to automatically schedule them. At first
alignment. This can be seen by the ability of SAGA to achievglance, this is not very satisfactory in that it makes the method
what appear to be optimal alignment scores and by thleem very complicated and cumbersome. Multiple alignment,
consistency of our alignments with test cases of known tertiahowever, is not a simple problem. The most useful of our
structure. The consistency of the SAGA alignments witloperators are the ones which appear most based in biological
structural reference alignments is mainly a measure of theality e.g. moving blocks using the tree as a guide. In reality,
usefulness of the particular OFs we have tested. Nonetheledsting the course of the evolution of a sequence family, many
even with the very limited range of OFs that we have tried, SAG4ifferent evolutionary events may take place. The automatic
performs extremely well. SAGA is still fairly slow for large testscheduling has a further advantage. Should it turn out, in the
cases (e.g. with >20 or so sequences) but we have made liftiure, that SAGA is not very efficient at handling certain types
effort at optimising the program for sheer speed. In the future,af situation, it is a simple matter to invent some new operators
may be desirable to use a hybrid progressive/genetic algorittdasigned specifically for the problem and to slot them into the
approach in order to combine the speed of the former with tlexisting scheme. The automatically assigned probabilities of
accuracy of the latter. usage at different stages in the alignment give a direct measure of

Currently, we seed the starting population of alignmentssefulness or redundancy for a new operator.

completely randomly. We could use heuristic alignments gener-The second major reason for using GAs in the context of
ated by CLUSTAL W, for example, perhaps with differentmultiple alignmentis the complete freedom to use any OF one can
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think of. This is perhaps the most important single feature of thé
approach. One key to successfully tackling the multiple align-
ment problem is to have a good measure of multiple alignmeﬁq
quality. The GA used in SAGA offers the opportunity to;q
implement and test new OFs.

After sequence alignment, there are two related questions
which one might wish to ask. First one might like to know if the
alignment is significant with respect to some statistical model e &
one might like to know the probability of observing any particulas ,
alignment by chance alone. This is a very difficult problem whic
has solutions for two sequences under certain conditiahs (
The second question is how stable is the alignment or whigh
pieces of the alignment are stable i.e. are there alternati{®
alignments with similar alignment scores? This is important if
one is to usefully interpret new alignments and there are so
solutions, again, for just two sequend&3.(A by product of the
GA strategy in SAGA is a measure of consistency for eacts
column in the final alignment. This shows which columns ar&d
stable and which ones have high scoring alternative arrang%eg-
ments. The consistency is derived by counting how often
particular column occurs in the 100 alignments of a SAGA
population during or after optimisation. We have no statistical
interpretation of this consistency measure but it is an extremedy
useful by product of the SAGA alignment process at no extra

computational cost. -
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