
 1996 Oxford University Press 1395–1403Nucleic Acids Research, 1996, Vol. 24, No. 8

Palingol: a declarative programming language to
describe nucleic acids’ secondary structures and to
scan sequence databases
Bernard B illoud* , Milutin Kontic and Alain Viari

Atelier de Bio-Informatique URA CNRS 448, Institut Curie, 26 rue d’Ulm, 75005 Paris, France

Received February 21, 1996; Revised and Accepted March 4, 1996

ABSTRACT

At the DNA/RNA level, biological signals are defined by
a combination of spatial structures and sequence
motifs. Until now, few attempts had been made in
writing general purpose search programs that take into
account both sequence and structure criteria. Indeed,
the most successful structure scanning programs are
usually dedicated to particular structures and are
written using general purpose programming languages
through a complex and time consuming process
where the biological problem of defining the structure
and the computer engineering problem of looking for
it are intimately intertwined. In this paper, we d escribe
a general representation of structures, suitable for
database scanning, together with a programming
language, Palingol, designed to manipulate it. Palingol
has specific data types, corresponding to structural
elements—basically helices—that can be arranged in
any way to form a complex structure. As a consequence
of the declarative approach used in Palingol, the user
should only focus on ‘what to search for’ while the
language engine takes care of ‘how to look for it’.
Therefore, it becomes simpler to write a scanning
program and the structural constraints that define the
required structure are more clearly identified.

INTRODUCTION

In the course of a sequence analysis project, much attention is paid
to searching for functional regions of DNA or RNA molecules.
Until now, most of the known biological signals were defined at
the primary structure level by one or more sequence patterns.
Numerous algorithms and software packages were thus designed
for identifying such signals in sequence data bases, the most
sophisticated and complete one probably being the ANREP system
(1) and the most well known, the FindPattern utility included in the
GCG Package (2). For several biological processes, however, true
signals are actually defined by a combination of spatial structure
and sequence motifs (3–6). This is especially true of RNA
molecules for which compensatory base change studies and/or
experimental evidences have clearly shown that a secondary or
tertiary structure can be a stronger constraint than the primary
sequence itself (7–10). There is therefore a growing demand for

general purpose search programs that take into account both
sequence and structure patterns (11). It should be pointed out that
we are concerned here with the specific problem of searching for
known ‘structure patterns’ within a sequence database and neither
finding the optimal folding of a sequence (12,13) nor learning a
common fold of a set of sequences (14), which are different
problems. The main difficulty of our specific goal is in establishing
a general representation of ‘structure patterns’ suitable for database
scanning and, until now, few attempts have been made in this
direction. The tree representation initiated by Shapiro (15) is
unfortunately limited to ‘pure’ secondary structures. Therefore, it
cannot capture tertiary structural interactions such as non-pairwise
interactions or pseudoknots and cannot deal with complex user
requirements such as mixtures of structure and sequence patterns
elements. Until recently, the most accomplished efforts to devise
structure scanning programs were generalizations of pure sequence
searching algorithms. Some elements of this approach, presented
by Saurin and Marlire (16) were further generalized by Sibbald
et al. (17), but the most complete program to date is probably
RNAMOT (18,19). This approach may be called ‘descriptive’
since the search is based on the association of specific sequence
and structure descriptors that act as ‘patterns’. The advantage of this
approach is that all the sequence and structural constraints are clearly
identified independantly from the procedural details of the search
itself. As mentioned in Gautheret et al. (18), its main drawback
appears when complicated correlations between sequence and/or
structure elements must be introduced (or when some global
scoring must be performed) such as ‘if length of helix H3 is
greater than 4, then single-strand #2 may have a length of zero’.
As the authors explain: ‘The complexity and diversity of these
constraints will require much greater flexibility in the coding of
pattern descriptors’. The consequence of this situation is that, at
the present time, the most sophisticated and successful structure
scanning programs are very specific and usually written from
scratch using a high level, general purpose programming
language like C. This is what we call the ‘programming’ approach
in this paper. Examples of these specific programs are tRNAscan
(20) for tRNAs, d’Aubenton’s program (21) for Escherichia coli
rho-independent transcription terminators and CITRON (22) for
Group I catalytic introns. Writing such a program is often a
complex and time-consuming task because it involves two very
different skills corresponding to two distinct tasks. The first one is
to define ‘what to search for’ and is the true biological question,
while the second one is to define ‘how to look for it’ and is a

* To whom correspondence should be addressed

Nucleic Acids Research, 1996, Vol. 24, No. 81396

Figure 1. The overall process of searching a structure in a sequence database. The process starts with the description of the required structure as a set of elementary
helices together with constraints. Local constraints act on each helix, whereas global constraints specify arbitrarily complex relationships between them. These
constraints are written using the Palingol syntax, giving rise to a Palingol program. The elementary helices are searched by an external program (HelixSearch) that
can be supplied by the user (a default HelixSearch program is however supplied with Palingol). Then the Palingol interpreter reads the program and, by evaluating
the constraints on the list of helices, searches for all valid subsets of helices.

computer engineering problem. It is important, therefore, to set up
a system in which these two tasks are clearly separated.

The main idea behind the development of the Palingol language
described in this paper is to offer the capabilities of both the
descriptive and programming approaches. It should therefore: (i) be
general enough to act as a real programming language; (ii) be
specialized in the treatment of secondary structures, so that the
specification of common constraints does not require a lot of code;
(iii) emphasize the descriptive aspect of programming rather than its
procedural details.

With this aim, Palingol is dedicated to RNA structure handling
and has some specific data types, corresponding to structural
elements that the user can manipulate directly. More importantly,
Palingol is a declarative, as opposed to procedural, language. This
means that the user needs only to focus on the description of the
structure to search for, while the language engine takes care of the
searching process itself.

DESCRIPTION OF SECONDARY STRUCTURES

Overview

An overview of the whole process, starting with the graphical
description of a secondary structure and leading to the list of all
sequences in a sequence data bank that are able to fold to this

structure, is given in Figure 1. At the beginning of the process, the
user should describe the structure as a list of helices and a list of
constraints between them. There are actually two kinds of
constraints: local constraints, that act on each individual helix
specifying its length, the size of the loop, the presence of particular
primary sequence patterns etc., and global constraints that act
between helices, specifying their relative location or any kind of
cross-conditions and correlation between properties of different
helices. These latter constraints can involve features that participate
in tertiary rather than secondary interactions. More generally, both
local and global constraints can actually act on the helices
themselves or on any single-stranded region anywhere on the
sequence. Once all the local and global constraints are identified
and written down in natural language, they should then be
translated in the Palingol syntax giving rise to a Palingol program.
The rest of the analysis proceeds in two main steps: the search for
elementary helices and the Palingol interpretation/search.

In the first step, the sequence database is scanned by an external
program (which we generically call HelixSearch) which builds,
for each sequence, an ordered list of all helices found on it. We
shall see later what ‘ordered’ means. It is important to note that,
at this step, the Palingol program is not yet involved, HelixSearch
just makes a list of helices without checking any constraint
between them. In fact, for efficiency reasons, HelixSearch may
already perform some simple checking to avoid generating too

1397

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1996, Vol. 24, No. 81397

Figure 2. Some examples of structures that can be represented in Palingol. (a) and (a′) are pure secondary structures; (b) is a non-nested (tertiary) structure and (c) is
an ‘alternate’ structure that may correspond to an equilibrium (like in bacterial attenuators for instance).

long a list of helices, but this is not strictly necessary. The only
important point is to ensure that HelixSearch produces all helices
that could be involved in the structure; it does not matter if it
produces more of them since Palingol will take care of checking
the proper constraints. We chose to clearly separate the helix
search from the constraint checking process for two main reasons:
first, HelixSearch can be any user supplied program which might
involve some thermodynamical model restricting the set of valid
helices or any kind of user preferences; secondly, the set of helices
produced by HelixSearch can be stored in a file so that modifying
the constraints in the Palingol program does not require the
helices to be recomputed. Of course the Palingol package comes
with a default HelixSearch program called Palamou. In its present
version, Palamou allows for non-canonical base pairings but not
for bulges; the loop size can be as large as required.

The second step, which constitutes the main subject of this
paper, is performed by the Palingol interpreter and engine. The
interpreter reads the user’s program written in Palingol and builds
an evaluation tree for all the constraints. Then the engine runs
through the list of helices, trying to find all subsets of helices which
match the required constraints. This is done by a Branch-and-
Bound procedure which is described below.

Description of secondary structures in Palingol

The elementary objects manipulated by Palingol are the helices
computed by HelixSearch. Each helix is described within Palingol
by three physical elements, respectively called: ‘head’, ‘tail’ and
‘loop’, where ‘head’ and ‘tail’ represent the two paired regions and
‘loop’ represents the region in between (that may itself contain
other helices or parts of helices). The start and end positions of each
of these three elements on the sequence are respectively referred to
as ‘start’ and ‘end’. For instance ‘start head’ refers to the index on
the sequence of the beginning of the head. Together with these
positions and the complete sequence, the presence and position of
bulges—if allowed by HelixSearch—should also be attached to the
helix description. From this knowledge, other helix properties,
such as the energy according to a given thermodynamical model,
can be further computed within Palingol itself.

We call ‘local’ the constraints acting on one elementary helix
alone. For instance, the following requirement ‘the length of the
head should be less than 5’ is a local constraint. As we shall see
later, Palingol allows a great variety of constraint specifications
about the size and position of the physical elements, the presence
of particular symbols or patterns within the helix itself or in single
stranded regions positioned relative to it.

A real secondary structure is actually described by the association
of several elementary helices. More precisely, it is described by a

set of elementary helices (each of them with local constraints) and
a set of constraints between them. These latter constraints are
referred to as ‘global’. For instance, the structure described in
Figure 2a′ may be represented by two elementary helices, together
with the specification that ‘helix 2 is fully embedded in helix 1’.

In order to identify without ambiguity each elementary helix
composing a complete structure, we should order them. By
convention, in Palingol this ordering is based on the value of ‘start
head’ (this defines a total order on the sets of helices). Note that if
two elementary helices do start at exactly the same position then
their order is arbitrary and does not matter in Palingol.

It should be pointed out that this representation of structures is
general and not restricted to ‘planar’ structures (that is structures than
can be drawn on a plane without crossing lines). This is illustrated
in Figure 2, in the case of a ‘planar’ structures, a ‘non planar’
structure (a pseudo-knot) and an ‘alternate’ structure (which
correspond to two different planar structures).

The global constraints specify the relative locations of the
elementary helices. The full embedding of 2 in 1 in Figure 2a′ may
be described by requiring that ‘start head of 2 is greater than end
head of 1’ <and> ‘end tail of 2 is smaller than start tail of 1’, In
the same manner, the crossing of 2 and 1 in Figure 2b may be
described by requiring that ‘start head of 2 is greater than end
head of 1’ <and> ‘start tail of 2 is greater than end tail of 1’.

Global constraints may also be used to specify ranges of
distances between the various elementary helices. For instance in
Figure 2b we may require that the distance between ‘start head of
2’ and ‘end head of 1’ lies between 2 and 5 bases. Finally, global
constraints may be used to specify a great variety of dependencies
between the elements of a structure in conditional statements like
‘if there is at least 2Gs in head of 1 then there must be at most 3As
in tail of 2’ or ‘the last three bases of head of 1 must be
complementary to three bases anywhere in loop of 2’.

In summary, the complete description of a secondary structure
can be reduced to a sorted list of elementary helices together
with several local and global constraints. As shown in the
previous examples, these constraints may be computationally
very sophisticated yet simple to describe in natural language.

THE PALINGOL LANGUAGE

General principles

From the user’s point of view, a constraint (or logic) programming
language (like Prolog) mostly differs from a procedural language
(like Fortran or C) in the fact that with constraint programming, the
user should only specify what he or she wants to do, whereas he
or she should also specify how to do it in a procedural language.

Nucleic Acids Research, 1996, Vol. 24, No. 81398

In order to work properly, a logic programming language must have
its own general purpose search procedure built into the language,
called the language ‘engine’. Palingol is a constraint programming
language whose data types and search engine have been particularly
adapted for secondary structures. The engine is based on a classical
Branch and Bound mechanism whose main outlines will be
described next.

The Branch-and-Bound

Starting with the list of all helices provided by the HelixSearch
program, Palingol’s engine first tries to build a list of candidates by
evaluating local constraints on each individual helix. Since this list
is ordered, this is performed in the following way: (let us suppose,
as an example, that we are looking for a structure with three
helices) Palingol first looks through the list for a candidate as the
first helix, then for the second helix candidate, starting in the list
after the first, then for the third, starting after the second etc. Once
the third helix candidate has been found, the sub-list of three
candidates is then checked against the global constraints. Then the
process continues with another third candidate starting just after the
previous one. This goes on until the list is exhausted for possible
third candidates and the process recurses to the next second
candidate and, when the list is exhausted for possible second
candidates, to the next first candidates. At this step, we have done
an exhaustive exploration of the search space. But this exploration
can be efficiently bounded by a simple consideration. Keeping in
mind that we are looking for local structures it appears efficient to
stop the search for the nth candidate as soon as it is too far away
from the (n–1)th. In a tRNA for instance, if one assumes a
maximum intron size of 120 nt, then looking at a potential TΨC
arm candidate located 150 bases downstream from the current
anticodon arm is totally useless. These additional bounding
constraints are called ‘span constraints’ in Palingol. Although,
strictly speaking, they are not required in a Palingol program, they
are very important, since they can speed up the search process by
several orders of magnitude. Thus we shall describe them more
precisely later.

Language syntax

We will not present all technical details of the language syntax but
rather outline its general aspects. The syntax of Palingol is strongly
inspired by functional programming languages (like LISP) and is
based on parenthesized expressions of the following form:

(operator argument argument ...)
where ‘operator’ stands for one of the built-in operators of the
language and ‘argument’ is either: (i) a constant, (ii) a named
variable or (iii) another parenthesized expression (without
limitation on the nesting level).

The number of arguments in an expression depends upon the
operator. The ‘value of an expression’ is the result of the operator’s
action on the arguments and what we call the ‘type of an expression′,
is actually the type of its result. In addition to the traditional types
(boolean, numerical, string), Palingol makes use of a new and
specific type called ‘physical’. It is intended to represent all the basic
information pertaining to an elementary helix that has been
computed by the ‘Helix Search’ program. The user can access these
data by using three physical constants: head, tail and loop. In
addition, the user can gain access to the complete sequence being
processed through the physical constant fullsequence.

Because of the practical importance of these physical elements,
we should emphasize now some of the operators that compute
various values by acting on them. Two numerical operators start
and end take one physical argument and return the position of the
physical element in the sequence. For instance: (start head) is a
numerical expression, whose value is the position of the first
symbol belonging to the head. The string operator sequence takes
one physical argument and returns the string of characters
composing the physical element. For instance, (sequence tail) is a
string expression whose value is the sub-sequence of the tail.
Palingol provides a lot of other operators covering a wide range of
traditional and more specific operations. Classical boolean and
numerical operations (and, or, add, sub, div etc.) are of course
present along with most classic string operations (substring
extraction, string searching, etc.). Some biologically specific string
operators have been included (complementation, inversion etc.).
Finally Palingol also provides still more specific operators like
pattern matching with IUPAC codes, or consensus matrix
computations. It should be noted that a constraint is always
expressed in Palingol as a boolean expression: the constraint is said
to be satisfied if the value of the corresponding expression is true.
A set of constraints is therefore expressed as logically connected
boolean expressions. Since and is the most usual connector, it is
considered to be implicit when the boolean expressions are simply
juxtaposed. Thus writing

(expression1)
(expression2)
(expression3)

is equivalent to writing: (and (and (and (expression1) (express-
ion2)) (expression3))). In a similar way, the parser of Palingol is
smart enough to add some missing operators when the context is
unambiguous. As mentioned above, the search engine in Palingol
tries to satisfy the constraints which have been specified by the
user. These constraints are expressed as boolean expressions. When
evaluating an expression composed of several sub-expressions, the
engine stops as soon as it is sure that the final result will be true
or false regardless of the values of the sub-expressions which
have not yet been evaluated. This process of stopping evaluation
is called pruning. By default the Palingol engine does pruning on
and and or expressions. Because of this, it is important to specify
the order of evaluation of the expressions: this is from left to right
at a given parenthesis level and from deeper to upper parenthesis
levels. For instance in (and (and (expression1) (expression2))
(expression3)), expression1 is evaluated first, then expression2 (if
needed), and finally expression3 (if needed). By using the implicit
and which has been described above, this just means that the
expressions are evaluated from top to bottom. Note that this has an
important consequence to the optimization of Palingol programs: if
several anded expressions can be evaluated in several different
orders, then it is more efficient to place the ‘strongest’ condition first
(the strongest condition is the one which is most often false), since
the evaluation will stop sooner.

Palingol allows the user to store intermediate results into variables
(whose names start with a $ sign). Two operators are provided to set
and get variables: (set $variable value) and (get $variable). Variables
do not need to be declared, their type is automatically determined
when set and automatically cast when get. (set $variable value) and
(get$variable) are treated as boolean expressions which always have
the value true (they are ‘side effect’ expressions). This allows these
expressions to be inserted anywhere within an implicit and
structure without stopping the evaluation.

1399

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1996, Vol. 24, No. 81399

Figure 3. A Palingol program layout. The main part is composed of three
subparts respectively called helix, span and cross part. The helix part(s) specify
local constraints acting on each elementary helix, the span part is optional and
is used to prune the Palingol engine’s search; the cross part specifies global
constraints acting across different helices.

Although this may appear quite contradictory with constraint
programming, Palingol also provides control structures, namely
the if..then..else and the while structure. It should be pointed out
that they are not used to control the engine process itself, but
mostly to simplify the writing of constraints.

Structure of a program

The overall structure of a Palingol program can be decomposed into
three principal parts: (i) the prologue sections (optional), (ii) the
main section and (iii) the epilogue sections (optional). The main
section is the only required one. It contains the description of the
structure and is composed of three parts corresponding to various
constraint levels: the helix part(s), the span part and the cross part.
This overall layout is given in Figure 3a. The helix part(s)
describe local constraints for each helix in the structure. The helix
sections are ordered as indicated above. There must be as many
distinct helix sections as there are distinct helices in the required
structure. Each helix section is composed of one boolean expression
(usually containing several boolean expressions implicitly anded).
Once a sub-list of n candidates (where n is the number of helix
sections) has been found by the engine, this list is submitted to the
global constraints described in the cross section. Again, this section
is composed of one boolean expression (usually containing several
boolean expressions implicitly anded). Note that there is no specific
‘print result section’, this is done within the cross section, as a side
effect of the print operator. Finally, the optional span section has
been added to speed up the overall searching process. As previously
mentioned, it describes the maximum distance allowed between two

Figure 4. The traditional representation and description of an iron responsive
element (IRE).

consecutive helices. More precisely, the span section takes the
special form given in Figure 3b, where the ith line specifies the
maximal distance allowed between the ith and (i+1)th helix. This
distance is computed as the algebraic difference between ‘start head’
of the (i+1)th helix and %keyword of the ith helix, where ‘keyword’
can be any of start_head, end_head, start_tail or end_tail.

The optional prologue and epilogue sections are paired, each
prologue section having its epilogue counterpart, namely the
start/end sections and the before/after section. The start (prologue)
and end (epilogue) sections each contain one boolean expression
(the value is ignored) which is evaluated once at program startup and
ending respectively. This is useful for setting up variables (like
counters) or for printing some general information. The before
(prologue) and after (epilogue) sections each contain one boolean
expression which is evaluated once for each new sequence in the
sequence database (i.e. for each new list of helices provided by
HelixSearch). Only the value of the before boolean expression is
meaningful; if it is false then the main section is not evaluated. This
may be used to skip over specific entries in the data bank, by
checking that a specific pattern is present in the sequence, for
instance.

Like most the compilers and interpreters, the lexical and
grammatical analyzer of Palingol, requires pre-processing. This is
done by a small program called Galopin whose main responsibility
is to rewrite the user supplied Palingol program in a suitable form
for the analyzer, mostly filtering purely syntactic errors. This
preprocessor also provides additional features like file inclusion
directives and macros. This allows the user to build libraries of
program pieces that can be reused.

RESULTS

We present the use of Palingol with two example programs. Each
of them searches for a known functional secondary structure
defined by well-characterized secondary structure elements and
several sequence patterns. The first one concerns the iron responsive
elements (IREs) and the second, transfer RNAs. Efficient pro-
cedures have been published for identifying them in databases:
IREsearch (11) for IREs and tRNAscan (20) for tRNAs. It is
essential to note that our purpose here is not to challenge these
programs, but rather to try to imitate them as much as possible in
order to demonstrate that the constraints expressed by the

Nucleic Acids Research, 1996, Vol. 24, No. 81400

biologist and written by the programmer could be expressed just as
well in the Palingol formalism. IREs were chosen as a very simple
example to illustrate Palingol’s formalism, whereas tRNAscan was
chosen as a good example of ‘real-sized’ application featuring
complicated constraints. For this latter case particularly, it should be
kept in mind that the algorithm was designed by an experienced C
programmer, accustomed to procedural descriptions. As matter of
illustration and comparison with these previous works, we tried to
follow, as much as possible, the original ‘programming logic’ as it
was published even if in several cases, slight modifications would
lead to simpler, more efficient or ‘Palingol friendlier’ programs.
Finally, note that since our tests were performed on DNA databases,
sequences will contain ‘T’ instead of ‘U’, even if the considered
structures are defined on RNAs.

Iron responsive elements

IREs are involved in regulation of some mRNA’s translation or
stabilization by IRP (23). The definition of an IRE (3,24) is quite
simple and is described in Figure 4. It is basically made of one
helix bearing a bulgy C and the loop sequence is always
CAGTGH. This bulgy helix can be depicted as a pair of two
nested helices. The usual description of IREs uses this latter
definition and the two helices are traditionally named ‘Top’ and
‘Bottom’. In our case, our HelixSearch program (Palamou) does
not allow bulges in helices, and we will thus adopt this latter
definition. Moreover, instead of generating all possible helices,
we instructed Palamou to search for two sets of helices, one for
the top helices (minimum length 4, maximum length 5 and loop
size strictly equal to 6) and the other for the bottom helices
(minimum length 3, no maximum length and loop size equal to
17 or 18). We have now to deal with the Palingol description of
the constraints defining the IRE structure. The corresponding
program is given in Figure 5 and is detailed here. The start section
is executed once at program startup. It just initializes the base
pairing matrix which will be used later to compute the helix
scores. Then comes the main section, comprising in this case two
helix sections. The first helix section describes the bottom helix
since, by the convention described above, its head comes first.
The first constraint requires that it have a loop of 17 or 18 bases and
the second constraint requires that its helix score be at least 7. The
score is computed by the scorebp operator, using the matrix which
has been previously initialized with bpcompile. The second helix
section describes the top helix. As above, a loop size of 6 is in this
case a sufficient condition to select a potential top helix. The next

two lines check the presence of the IRE signal at the correct position.
This is done by extracting (using the sstr operator) the sequence just
after the bulgy C, i.e. 6 nucleotides upstream of the start of loop, and
of 12 bases long. This extracted string is stored in the variable $zone
for clarity and the IRE pattern defined by Dandekar,
‘CNNNNNCAGTGH’ is searched for in $zone with 0 mismatch
allowed. Note that in this particular case the searched zone has
the same length as the pattern, nevertheless we have used a
general patsearch operator. At this point, we have two helices,
each satisfying its local constraints. We now have to specify
their respective arrangement and potential cross-constraints. As
mentioned, the span section is used to speedup the engine by limiting
the distance between the first and second helices. In this case, the
head of the second helix cannot start downstream of the fourth base
after the end of head of the first one (a maximum two bases for the
bulge and possibly 1 non-paired base before the top helix). Finally,
the cross section checks the global constraints and prints the results.
Variables are used here for clarity. The first constraint is always
verified since set is a pure side effect operator that always returns
true. It sets the variable $bul to the length of the bulge (that is the
loop size of the bottom helix minus 16). Similarly, the $mis variable
is set to 1 if the bases next to the bulge are mismatched and 0
otherwise (i.e. 5 minus the length of the top helix). Using these two
variables, the actual cross constraints become very simple.

Starting from the end of head#1 and adding the bulge and
eventual mismatch size, we should come to the start of head#2.

Starting from the end of tail#2 and adding the possible
mismatched pair we should come to the start of tail#1.

Finally, a set of two helices satisfying all of the above constraints
is identified as an IRE and the only purpose of the next lines is to
print the result. Again, we use variables to make the program easier
to read. $pos is just the position of the start of head #1, and $size is
the total size of the detected IRE. The printing instructions cause
output of the sequence name, the position and the sequence of the
IRE, respectively. This ends the cross section, and the main program
section.

We tested the IRE searching program on four different sets of
vertebrate sequences of length �23 nt (minimum size of an IRE),
extracted from the EMBL release 43 by using the Hovergen
database (25): (i) known IRE of ferritin related sequences, i.e.
sequences having ‘ferritin’ as a keyword, (ii) 5′ non-coding regions,
(iii) 3 ′ non-coding regions and (iv) introns. The results and scanning
times are summarized in Table 1, which displays the number of
positive sequences meeting increasingly stringent requirements.

Table 1. Searching for IRE in four test sets of vertebrate sequences

Set of sequences Total (nt) MOTIF TOP IRE Time

Ferritin 59 943 51 22 19 28 s
5′ non-coding 6 971 415 1705 66 34 58 min

3′ non-coding 12 010 172 3199 98 47 1 h 43 min

Introns 9 129 148 2266 43 16 1h 17 min

Total: total number of nucleotides scanned.
Number of positive sequences meeting increasingly stringent requirements:
MOTIF: consensus motif, CNNNNNCAGTGH;
TOP: whole top helix, i.e. MOTIF and an helix of 4 or 5 base pairings;
IRE: recognized as true IRE: TOP and bottom helix;
Time: total time required on a SPARC20 workstation to scan the set with the complete IRE program.

1401

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1996, Vol. 24, No. 81401

Figure 5. A Palingol sample program to search for IREs. Lines starting with a
‘#’ are considered as comments by the interpreter.

Ferritin related set. Amongst the 58 sequences in EMBL 43
which contain ‘ferritin’ as a keyword, the primary IRE motif,
CNNNNNCAGTGH, was found in 51 sequences. Twenty-two of
them are able to form a correct top helix, and could be therefore
considered as true IREs (Table 2). However only 19 of them meet
all the criteria given in the IRE.p program (Table 2a). The three
false negatives are displayed in Table 2b. HSAFL12 and
MMFERLSUB were rejected because they bear a bulge and a
mismatch in the bottom helix; a feature which was not allowed in
our description. The third sequence, MMFERLA, is actually too
short at its 5′ end to form a sufficiently long bottom helix.

5′ non-coding. This set is composed of 17642 sequences totaling
6 971 415 nt. Our IRE program found 34 IRE sequences in this

Figure 6. Summary of the tRNAscan algorithm and rewriting as structural
constraints. The Step column indicates the seven steps of the Fichant’s algorithm.
The Constraint column indicates the corresponding Palingol constraints. The
Actual column indicates which constraints were actually applied when
ambiguities arose in the original paper or when the original specifications had
to be slightly modified.

set, including those originally characterized by Dandekar (11),
which were not known to be involved in the iron homeostasis
system. In particular, eALAS IRE was found correctly (HSA-
LASR).

3′ non-coding. This set is composed of 20 171 sequences totaling
12 010 172 nt.

Introns. This set is composed of 21 288 sequences totaling 9 129
148 nt. No functional IREs are expected to be found in introns.
Thus, all of the ‘IREs’ found here should be false positives. As
expected, although this set contains the largest number of
sequences, it has the smallest number of detected IREs: 16
positive answers (two of them being alternative foldings at the
same position). Strikingly, 0.7% of the sequences matching the
consensus motif are finally identified as IREs, while this ratio is
1.9% for 5′ and 1.4% for 3′ non-coding regions. Similarly, the
ratio of sequences identified as IRE to those with only the TOP
helix (37%) is also the smallest of all (others: 47–86%). These
results reflect the fact that these patterns and TOP helices occur
here only by chance and not as part of a functional IRE.

Bacterial tRNAs

tRNAs are more complex structures, comprising four stems
arranged in a well defined manner, i.e. the well-known cloverleaf
structure. tRNAscan, the algorithm devised by Fichant et al. (20)
involves seven sequential steps which are summarized in Figure 6.
It also features a sophisticated scoring scheme. At each step,
examination of a structural element can lead to (i) increasing the

Nucleic Acids Research, 1996, Vol. 24, No. 81402

Table 2. The 22 IREs and TOPs found in Ferritin related sequences

(a) Nineteen found IREs.
(b) Three missed IREs. Mismatching and bulgy nucleotides are underlined. Missing nucleotides are replaced by dots.

score, (ii) continuing the algorithm without increasing the score, or
(iii) rejecting the sequence fragment. The final score has to be 5 or
above. Our purpose here was not to challenge the Fichant’s
procedure, but to illustrate Palingol programming logic with this
example. To simplify, we considered in a first time, only intronless
prokaryotic sequences. Each step was translated into a Palingol
constraint. Other parameters (for instance the distance between
stems), not fully detailed in the original paper, were derived from
the tRNAscan C source code, kindly provided by the authors. For
clarity in the resulting Palingol program, we took care to write
constraints in an order similar to that of tRNAscan, instead of
trying to optimize the computing process for the Palingol engine.
For example, to fit Fichant’s algorithm, step 7 (‘T in 5′ from
anticodon’) was examined only if the score was 4 or more after the
five first steps were fulfilled.

We used both Palingol and tRNAscan with the Bacillus subtilis
database release 6 (26). Both found 100% of known tRNAs, with
no false positives. In this particular case, we could conserve the same
100% retrieving without false positive even after modifying three

constraints:
(i) 3/4 invariant (instead of 2/4) bases in TΨC signal;
(ii) T-Ψ-C arm can be only 3 bp long if it contains only GC
pairings;
(iii) a T residue is necessary in 5′ of the anticodon, instead of just
increasing the score.

Moreover, examining D arm is not necessary, as removing this
constraint did not change results at all. Note that modifying these
constraints in the C source code would not be an easy task,
whereas it is much simpler in the Palingol description, even if the
user did not write the original program. In the particular case of
the removal of the D arm constraints, this modification is achieved
by simply (i) removing the whole helix section depicting the D arm
(ii) changing in the cross section, the numbering of helices 3 and
4 to 2 and 3 respectively and (iii) removing the corresponding span
instruction. From this point of view, Palingol could be also
considered as a practical tool for constraint exploration e.g. for
adapting general constraints to a specific organism, as in this
example.

Table 3. Comparison of results found by tRNAscan and the Palingol program trna.p

Total True positive False positive False negative

tRNAscan 651 614 37 (0.079%) 64 (10.42%)

trna.p (Palingol) 645 615 30 (0.064%) 63 (10.24%)

tRNAscan not trna.p 29 19 10 20

trna.p not tRNAscan 23 20 3 19

Numbers in parenthesis are percentages computed using the method described in Fichant and Burks (1991). Set of sequences: prokaryotic sequences in EMBL43,
with size <1000 bases: 8998 sequences, totaling 3 625 000 nt. This set contains 678 annotated tRNA sequences on the direct strand, without intron. Unannotated
tRNA sequences are considered as not being tRNAs, thus increasing the apparent number of false positives. Total CPU time (SPARC670 workstation): tRNAscan:
5 min; trna.p: 12 min (preprocessing by Palamou: 13 min).

1403

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1996, Vol. 24, No. 81403

We undertook a second experiment on a set of prokaryotic
sequences in EMBL release 43. The comparison between tRNAscan
and the Palingol program (trna.p) is given in Table 3. As stated
above, our Palingol description was intended to imitate tRNAscan.
Indeed, most of the 678 annotated tRNAs are found by both
programs and both display few false positive (37 for tRNAscan and
30 for trna.p with 27 common to both). Moreover, closer
examination of these ‘false positive’ sequences shows that most of
them are actually true tRNAs, although not annotated as such in
EMBL. There are, however, slight differences between the two
results in terms of false negatives: 20 true tRNAs are missed by
tRNAscan but found by trna.p, whereas 19 are missed by trna.p and
found by tRNAscan. These discrepancies reflect differences
between the definitions of helices used in the two programs.

A more complete (and complex) tRNA program, taking introns
into account, gave similar results: 665 tRNA sequences were
found by tRNAscan and 684 by Palingol where 644 are common
to both.

CONCLUSION

To quote Dandekar (27), the purpose of Palingol could be described
as having to ‘search the hairpin in the haystack’, i.e. build
sophisticated sieves to screen a set of hairpins, looking for those that
meet a specific set of criteria. This is done by using a real
programming language which allows—as opposed to the descrip-
tive approach—arbitrarily complex constraints to be expressed,
involving sequence patterns, ‘pure’ secondary structure description
but also tertiary structure elements (like pseudoknots or other
non-nested hairpins) or even ‘equilibrium’ structures (like bacterial
attenuators). Of course, there is still room for improvement in this
approach. The language itself still needs to grow, by including new
operators. It should however be pointed out that this enrichment
should be directed by the usage; that is by programming new
structures. Until now, we successfully applied Palingol in our
laboratory in our studies of prokaryotic genomes—particularly on
the E.coli and the B.subtilis chromosome. This involved writing
Palingol descriptions to search for: bacterial tRNAs, terminators of
the transcription and tRNA synthetases regulatory elements (28).
From this point of view, Palingol proved to be a convenient tool for
constraint exploration, to investigate quickly which constraints in
the description of a structure are really important. This is done
mostly by a trial and error approach which consists of modifying
the constraints and searching the whole database for the number of
true/false positives and negatives. Once a convenient description
has been found, it can be ‘frozen’ and subsequently used as a
specific recognition program. We have already included Palingol
in the co-operative computer environment, dedicated to the study
of the B.subtilis genome, which is developed in our laboratory (29).
Finally, during the course of this work, we noticed several times
that the constraints described in papers were ambiguous and we
had either to resort to the original sources or to set up our own
definitions. The fact that Palingol requires all the constraints to be
clearly specified in a formalized way thus appears to us an

important benefit, since it could provide the starting point for the
unambiguous transmission of this information in the biological
community.

Palingol has been implemented in C using the lex and yacc unix
tools. Full documentation, sources and binaries for SUN and
Silicon Graphics workstations are available on anonymous ftp at:
ftp.radium.jussieu.fr /pub/palabi.

ACKNOWLEDGEMENTS

This work was supported by the Ministre de l’Enseignement
Suprieur et de la Recherche (MESR). We wish to thank Laurent
Duret for his help in selecting NCRs using the Hovergen database,
Antoine Danchin for initiating the work with helpful discussions and
Kyle Weinandy, Chris Burge and Boris Barbour for proof-reading
the manuscript.

REFERENCES

1 Mehldau, G. and Myers, G. (1993) Comput. Appl. Biosci. 9, 299–314.
2 Devereux, J., Haeberli, P., and Smithies, O. (1984) Nucleic Acids Res. 12,

385–395.
3 Hentze, M.W., Caughman, S.W., Casey, J.L., Koeller, D.M., Rouault, T.A.,

Harford, J.B. and Klausner, R.D. (1988) Gene 72, 201–208.
4 Grundy, F. and Henkin, T. (1993) Cell 74, 475–482.
5 Spedding, G., Gluick, T.C. and Draper, D.E. (1993) J. Mol. Biol. 229,

609–622.
6 Cotmore, S.F. and Tettersall, P. (1994) EMBO J. 13, 4145–4152.
7 Woese, C.R., Gutell, R., Gupta, R. and Noller, H.F. (1983) Microbiol. Rev.

47, 621–669.
8 Michel, F. and Westhof, E. (1990) J. Mol. Biol. 216, 585–610.
9 Gutell, R.R. (1993) Curr. Opin. Struct. Biol. 3, 313–322.

10 Pleij, C.W.A. (1994) Curr. Opin. Struct. Biol. 4, 337–344.
11 Dandekar, T. and Hentze, M.W. (1991) EMBO J. 10, 1903–1909.
12 Gouy, M. (1987) In Bishop, M.J. and Rawlings, C.J. (eds), Nucleic Acid

and Protein Sequence Analysis. IRL press, Oxford, pp. 259–284.
13 Zuker, M. (1994) In Griffin, A.M. and Griffin, H.G. (eds), Computer

Analysis of Sequence Data, Part II. Totowa, N.J., pp. 267–294.
14 Eddy, S.R. and Durbin, R. (1994) Nucleic Acids Res. 22, 2079–2088.
15 Shapiro, B.A. and Zhang, K. (1990) Comput. Appl. Biosci. 6, 309–318.
16 Saurin, W. and Marlire, P. (1987) Comput. Appl. Biosci. 3, 115–120.
17 Sibbald, P.R., Sommerfeldt, H. and Argos, P. (1992) Comput. Appl. Biosci.

8, 45–48.
18 Gautheret, D., Major, F. and Cedergren, R.J. (1990) Comput. Appl. Biosci.

6, 325–331.
19 Laferrire, A., Gautheret, D. and Cedergren, R. (1994) Comput. Appl.

Biosci. 10, 211–212.
20 Fichant, G.A. and Burks, C. (1991) J. Mol. Biol. 220, 659–671.
21 d’Aubenton Carafa, Y., Brody, E. and Thermes, C. (1990) J. Mol. Biol.

216, 835–858.
22 Lisacek, F., Diaz, Y. and Michel, F. (1994) J. Mol. Biol. 235, 1206–1217.
23 Melefors, O. and Hentze, M.W. (1993) BioEssays 15, 85–90.
24 Leibold, E.A., Laudano, A. and Yu, Y. (1990) Nucleic Acids Res. 18,

1819–1824.
25 Duret, L., Mouchiroud, D. and Gouy, M. (1994) Nucleic Acids Res. 22,

2360–2365.
26 Moszer, I., Glaser, P. and Danchin, A. (1995) Microbiology 141, 261–268.
27 Dandekar, T. (1995) Trends Genet. 11, 45–50.
28 Grundy, F. and Henkin, T. (1994) J. Mol. Biol. 235, 798–804.
29 Médigue C., Moszer, I., Viari, A. and Danchin, A. (1995) Gene 165,

GC37–GC51.

