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In cardiac cells, the coupling between the voltage across the cell
membrane (V) and the release of calcium (Ca) from intracellular
stores is a crucial ingredient of heart function. Under abnormal
conditions and/or rapid pacing, both the action potential duration
and the peak Ca concentration in the cell can exhibit well known
period-doubling oscillations referred to as ““alternans,” which have
been linked to sudden cardiac death. Fast diffusion of V,, keeps
action potential duration alternans spatially synchronized over the
~150-pm-length scale of a cell, but slow diffusion of Ca ions allows
Ca alternans within a cell to become spatially asynchronous, as
observed in some experiments. This finding raises the question:
When are Ca alternans spatially in-phase or out-of-phase on
subcellular length scales? This question is investigated by using a
spatially distributed model of Ca cycling coupled to V. Our main
finding is the existence of a Turing-type symmetry breaking insta-
bility mediated by Vi, and Ca diffusion that causes Ca alternans to
become spontaneously out-of-phase at opposite ends of a cardiac
cell. Pattern formation is governed by the interplay of short-range
activation of Ca alternans, because of a dynamical instability of Ca
cycling, and long-range inhibition of Ca alternans by Vy, alternans
through Ca-sensitive membrane ionic currents. These results pro-
vide a striking example of a Turing instability in a biological context
where the morphogens can be clearly identified, as well as a
potential link between dynamical instability on subcellular scales
and life-threatening cardiac disorders.

arrhythmias | cardiac dynamics | nonlinear dynamics | pattern formation

hen a cardiac cell is stimulated by a change in the membrane,

Vm, calcium (Ca) is released from intracellular stores and
signals cell contraction (1, 2). This release of Ca occurs within
several thousand submicrometer-scale junctions distributed
throughout the volume of the cell. Within these junctions localized
clusters of Ca-sensitive ion channels called Ryanodine receptors,
which gate the flow of Ca across intracellular stores, open in
response to Ca entry via L-type Ca channels in the surface cell
membrane (1). Signaling within these junctions occurs through a
Ca-induced—Ca-release process (2, 3), which endows the system
with rich spatiotemporal properties typical of excitable media.

Rapid pacing rates, or abnormal physiological conditions, are
known to produce complex dynamics of both V7, and Ca at the cell
and tissue level. The most common nontrivial dynamics is the
phenomenon of alternans, where the action potential duration
(APD) and the Ca transient alternate from one beat to the next (4,
5). Alternans is clinically important because it has been shown to
correlate with the onset of life-threatening arrhythmias and sudden
cardiac death (6, 7). Historically, alternans has been attributed to a
period-doubling instability that depends on the electrical restitution
properties of cardiac cells (4, 8, 9), which itself is governed by the
kinetics of membrane ion currents. More recent studies, however,
have demonstrated that alternans also can result from an instability
of intracellular Ca cycling (5, 10-12).

Recently, Kockskamper and Blatter (13) used two-dimensional
(2D) line-scan confocal microscopy of cat atrial cells to image the
spatial distribution of Ca release when the cell was paced during
alternans. They observed that the release of Ca could be spatially
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out-of-phase, where one half of the cell alternated with opposite
phase with the other half. Out-of-phase subcellular Ca alternans
also has been observed by Diaz et al. (14) in rat ventricular cells.
These experimental results demonstrate that Ca release within cells
can form complex spatiotemporal patterns. However, what governs
the formation and dynamics of these patterns remains unknown.

To address this question, we explore the spatiotemporal dynam-
ics of Ca and V}, alternans using numerical simulations of a
physiologically based ionic model. A distinguishing feature of this
model, in comparison with previous models (10, 15, 16), is that it
captures the spatially distributed nature of the Ca cycling system,
along with a description of the membrane ion currents that couple
to this system. Hence, this model can be used to investigate pattern
formation of Ca signaling on subcellular scales. The simulations
reveal that spatially distant regions of Ca alternans can either
synchronize or spontaneously desynchronize depending on the
bidirectional coupling between the intracellular Ca and V5. This
bidirectional coupling is mediated by Ca-sensitive membrane ionic
currents that gate Vy,. Because Ca mediates the contraction of the
cardiac cell, these asynchronous subcellular patterns will influence
contraction on the tissue scale and thus may potentially affect the
function of the heart.

To shed light on this pattern formation process, we reduce the
multivariable ionic model to coupled reaction—diffusion equations
that govern the spatiotemporal evolution of the amplitudes of Ca
and 1, alternans. These amplitude equations describe the spatio-
temporal dynamics of Ca and APD alternans at the subcellular
scale. An analysis of these equations reveals that the spatial
desynchronization of Ca alternans results from a symmetry-
breaking Turing-like instability (17-19) mediated by V;, and Ca
diffusion. The amplitudes of alternans are shown to play the role of
diffusing morphogens, with Ca corresponding to the short-range
activator and V}, to the long-range inhibitor. The crucial require-
ment for a Turing instability, in which the inhibitor diffuses
significantly faster than the activator, is ensured by the fact that Vr,
diffuses across the cell membrane ~10* times faster than intracel-
lular Ca in the myoplasm.

Physiologically Detailed Model

Cell Architecture. The architecture of a cardiac ventricular cell is
shown schematically in Fig. 14. The cell membrane forms an array
of deep invaginations into the cell (t-tubules), distributed along
planes (z-lines) transverse to the long axis of the cell (20). The
t-tubules distribute dyadic junctions, where Ca signaling takes place,
uniformly over the cell volume. The volume in between z-lines is
referred to as the sarcomere and contains the sarcoplasmic retic-
ulum (SR). The SR is a diffuse tubular network that sequesters a
high concentration of Ca. A typical ventricular myocyte has a length
of 150 um and has ~75-100 sarcomeres.

We take advantage of the observed structural periodicity in the
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Fig. 1. Illustration of cardiac cell architecture and ionic model. (A) Schematic

representation of the structure of the cardiac cell. The cell is divided into
subcellular units, which correspond to sarcomeres. (B) lllustration of Ca cycling
machinery along with ion currents that regulate Vy, within a sarcomere.

longitudinal direction to treat each sarcomere as an equivalent
subcellular unit. This method lets us represent the cell as a 1D chain
of identical subunits, where each subunit is assumed to have an
identical distribution of dyadic junctions, and to enclose a roughly
equivalent volume of the SR network. We assume further that Ca
diffusion is sufficiently fast on the scale of one sarcomere, so that
the concentration of Ca can be accurately described by the local
spatial average. Note that atrial cells lack t-tubules, and conse-
quently Ca release propagates as a wave from the cell membrane
toward the central axis of the cell. We expect, however, the present
model to also be applicable to these cells as long as this propagation
time is shorter than the pacing period, in which case the cell can still
be divided longitudinally into equivalent subunits.

Vm Dynamics. The effective diffusion coefficient of V;,, (Dy =~ 2.5 X
10~* cm?/ms) (2) is large. Therefore, V,, equilibrates rapidly over
the length scale of a cell on a time scale of ~0.5 ms that is
comparable with the rise time of the action potential (1 ms) but
much smaller than the APD. Hence, we can assume that each
sarcomere senses the same V4, which is dictated by the ionic
currents averaged over the whole cell. The membrane ionic cur-
rents, which govern the dynamics of V3, across the membrane
surrounding a single sarcomere (here the kth subunit), are
shown schematlcally in Fig. 1B. Here, 1%, is the fast 1nward Na*

current, I% is the total outward K current, and I, and I, are the
Ca-dependent L-type and NaCa exchange currents, respectively.

Shiferaw and Karma

The ionic currents are formulated by using the canine ventricular
cell model of Fox et al. (15), which is based on Luo-Rudy currents
(16). The spatially uniform V;, across the cell membrane satisfies
the standard equation of charge-conservation

AV

1 N
dl - F E +Ik +INaCa+Istim)’ [1]

where Cy, is the cell membrane capacitance, and N is the number
of sarcomere units. Because the V;,-dependent Na and K currents
do not couple to the intracellular Ca transient, they are spatrally
uniform along the cell. Therefore, the sums over 1%, and I% in Eq.
1 can be replaced by the whole cell current. In contrast, Ca-
dependent currents are local and vary between sarcomeres. Igim is
a stimulus current applied to the whole cell simultaneously, con-
sistent with the fact that 17, is assumed to be spatially uniform. A
detailed formulation of these ionic currents is in Supporting Text,
which is published as supporting information on the PNAS web site.

Ca Cycling Dynamics. The Ca cycling dynamics within each sarco-
mere is described by using the model of Shiferaw et al. (10). The
essential elements of the local Ca cycling machinery are shown
in Fig. 1B. Ca entry into the sarcomere occurs via L-type Ca
channels (I%,), which triggers a Ca-induced—Ca release flux (J%,)
from Ryanodine receptor channels bound to the SR membrane.
The amount of Ca released into the sarcomere depends sensitively,
1n a nonlinear fashion, on the concentration in the SR (the SR-load
¢ X). Once the intracellular Ca concentration (c}) rises, powerful
uptake (Jk ) pumps on the SR membrane are actlvated and pump
Ca back into the SR. The Ca that enters the cell via I, is extruded
out of the cell via the electrogenic NaCa exchange current (Ix,c,),
so that at steady state, Ca entry balances Ca extrusion. The Ca
systems in nelghbormg sarcomeres are coupled by allowing diffu-
sion between the Ca in myoplasm (c¥) and SR (c ). Ca diffusion
(Dca = 150-300 pwm?/s) (2) is several orders of magmtude slower
than V/, diffusion driven by voltage gradients along the cell. Full
details of the Ca cycling model are described in Supporting Text.

Bidirectional Coupling. The coupling of V;, to the local Ca transient
within a sarcomere is determined by the experimentally established
phenomenon of graded SR Carelease (1, 21), where the amount of
SR Ca released increases in proportion to the local Ca entry (I%,).
The availability of L-type Ca channels at a given beat depends on
the previous diastolic interval, which is the time spent at full
repolarization before the next action potential upstroke. Now, a
larger diastolic interval gives more time for recovery of L-type Ca
channels at the resting membrane potential. Thus, in our sarcomere
model, graded release requires that the peak of the local Ca
transient increases in response to an increase of diastolic interval in
the previous beat, as illustrated in Fig. 24. This coupling will be
referred to hereafter as “positive V;,, — Ca coupling.” In principle,
it is also possible to have the opposite effect at slow pacing rate, also
illustrated in Fig. 24 (“negative V;;, — Ca coupling”). However, we
did not investigate this case in the present study.

The local Ca released into a sarcomere also couples to the global
APD by its effect on the local membrane ionic currents. As
discussed in ref. 22, there are two cases that need to be considered.
The first, referred to as “positive Ca — V,, coupling,” illustrated in
Fig. 2B, corresponds to the case when a large local Ca release tends
to prolong the APD. The second, referred to as “negative Ca — Vy,
coupling” (Fig. 2B), corresponds to the case when a large local Ca
release shortens the APD. The sign of the coupling is drctated by
the relative contributions of the local L-type Ca current (%) and
the NaCa exchange current (/ NaCa) to the APD. A larger Ca release
tends to inactivate the local I%, more rapidly through Ca-induced
inactivation, which tends to shorten the APD. However, a large
local Ca release also increases I%,¢,, which tends to prolong APD.
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Fig. 2. lllustration of bidirectional coupling between Ca and V. (A) Cou-

pling between the APD and the Ca transient on the next beat. (B) Coupling
between the Ca transient and the APD on the same beat.

For the ionic model used here, the sign of the coupling was
controlled by adjusting the degree of Ca-induced inactivation of the
I ’(‘;a, as described in Supporting Text.

Alternans. Steady-state alternans of the Ca transient within a given
sarcomere can be induced in the model by increasing the steepness,
at high SR loads, of the function relating SR Ca release to SR Ca
load, as described theoretically (10, 11) and experimentally (12). In
experiments under physiologically normal conditions (5), and in the
present ionic model, this bifurcation to alternans occurs at rapid
pacing rates (T < T,) when the cell is overloaded with Ca. For low
pacing rates T > T, the steady-state Ca transient is periodic from
beat-to-beat.

Alternans also can be induced by a purely V;,-dependent mech-
anism, independently of Ca cycling. This mechanism depends on
the kinetics of membrane ion currents, which regulate V;,, and are
typically described using the restitution relationship between APD
and diastolic interval (4, 8). However, in our study we found that
alternans due to the latter mechanism always yielded spatially
synchronized Ca alternans. The reason for this result is that when
the spatially uniform APD alternates, it simply drives local Ca
alternans in phase over the extent of the cell by means of the graded
coupling described in the previous section. Hence, in this study, we
have focused exclusively on alternans due to unstable Ca cycling,
which we found leads to nontrivial spatial patterns.

The bidirectional coupling between the APD and the local Ca
release determines the relative phase of APD and Ca transient
alternans at the subcellular level (23-25). For alternans due to
unstable Ca cycling, positive Ca — V;, coupling produces steady-
state electromechanically concordant alternans, where a large—
small-large local Ca transient corresponds to long-short-long
APD, whereas negative Ca — V;, leads to steady-state electrome-
chanically discordant alternans, where a small-large—small peak Ca
transient corresponds to a long—short-long APD. Both of these
modes of alternans have been observed experimentally under
various physiological conditions (23-25).

Numerical Results

We have simulated a set of N = 75 coupled sarcomeres with a
spacing of A = 2 um between Z-planes and a cell length L = NA =
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Fig.3. Spatiotemporal dynamics of subcellular Ca alternans in a cell with 75
sarcomeres for two different strengths of Ca-induced inactivation of the
L-type Ca current. (A) Weak Ca-induced inactivation (positive Ca — Vj, cou-
pling) leads to spatial synchronization of alternans. The thick black line
corresponds to the steady-state Ca alternans amplitude. The pacing rate is
0.35s, with T = 0.37 s. (B) Strong Ca-induced inactivation (negative Ca — Vi,
coupling) leads to spontaneous symmetry breaking resulting in desynchroni-
zation of two halves of the cell. The pacing rate is 0.35 s, with T. = 0.344 s.
Detailed parameters of the ionic model are given in Tables 1-7, which are
published as supporting information on the PNAS web site.

150 wm. To characterize the spatiotemporal evolution of Ca
alternans, we define the local amplitude of Ca alternans as Ac(x,
n) = (—1y(ck.; — &), where ¢® is the peak Ca transient in
sarcomere k at the nth paced beat, and where x = kA denotes the
position along the cell. The factor (—1)" is included so that the
phase of alternans does not change sign at every beat.

The parameters of the isolated sarcomere model are chosen such
that, at a pacing rate 7' < T, alternans due to unstable Ca cycling
develops and saturates at a steady-state value. The initial Ca
concentration in the SR was chosen to be ~10 uM less than its
steady-state value, so that fully developed alternans emerged only
after ~100 paced beats, i.e., the SR had to load with Ca before it
became dynamically unstable. Thus, for the first few beats, alternans
amplitude of Ca and APD was always zero for all sarcomeres in the
cell. To mimic realistic conditions, the initial conditions of Ca
concentration in the myoplasm and the SR were taken from a
Gaussian distribution with a standard deviation <1% of their
average value.

Our main finding is that the final steady-state pattern of Ca
alternans depends sensitively on the bidirectional coupling between
Ca and V;,. When model parameters were chosen such that the
Ca — Vi, coupling was positive, steady-state Ca alternans were
always in-phase over the extent of the cell. In Fig. 34, we plot the
amplitude of Ca alternans in a cell where the degree of Ca-induced
inactivation is adjusted so that the Ca — 1/, coupling was positive.
The spatial distribution of the amplitude of Ca alternans at the nth
beat, Ac(x, n), started at a very small value across the cell and grew
as the cell was paced at T = 0.35 s to a fully developed spatially
synchronized pattern. To assess the nature of the coupling for these
model parameters, we paced an isolated sarcomere at the same rate
and found that alternans were indeed electromechanically concor-
dant. In contrast, when the Ca — V}, coupling was negative,
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Fig. 4. Numerically computed linear stability spectrum showing the exponen-
tial amplification rate Q of sinusoidal perturbations of the spatially uniform
steady state with no alternans vs. the dimensionless wavenumber gL/m for
different pacing periods T = 0.34, 0.35, and 0.36 s. For all periods, the fastest-
growing wavelength is twice the cell length (g = 7/L). The model parameters are
the same as those that yielded the asynchronous state in Fig. 3B.

spatially out-of-phase alternans developed from an initially small
amplitude spatial distribution, as shown in Fig. 3B. In this case, the
final steady-state pattern was such that the two halves of the cell
alternated out of phase, and Ac(x, n) changed sign across a node in
the center of the cell. Remarkably, a qualitatively similar pattern
was observed in the experiments of Kockskamper and Blatter (13).
To assess the nature of the coupling for these parameters, we paced
again an isolated sarcomere and found that Ca and APD alternans
were electromechanically discordant.

To further analyze the pattern-formation mechanism that pro-
duces the asynchronous state for negative Ca — V7, coupling, we
carried out numerically a linear stability analysis of the spatially
homogeneous state with no alternans. We computed the amplifi-
cation rate ()(q) of small sinusoidal perturbations of wavelength A =
27/q in a large system of N = 400 coupled sarcomeres. For each
mode the amplification rate was obtained from the slope of a
linear-log plot of the average magnitude of alternans, defined as
C(n) = V1/NZ—1 yAc(kA, 1), vs. time £ = nT. The results of these
simulations are shown in Fig. 4 where (g) is plotted vs. the
dimensionless wave number gL/ for three different pacing peri-
ods. For all periods, the mode with the largest wavelength, which is
equal to twice the cell length, gL /7 = 1, has the largest amplifi-
cation rate. For 7' = 0.35 and 0.36 s, this mode is unstable, whereas
the spatially homogeneous mode, g = 0, is stable. The latter follows
from the fact that the onset of alternans for an isolated sarcomere
is T. = 0.344 s for the parameters used in these simulations. These
results demonstrate that the asynchronous state results from a
pattern forming linear instability.

Morphogenetic Roles of Ca and V,, Alternans

A basic understanding of this pattern forming instability can be
gained by considering the similarity between the amplitudes of Ca
and APD alternans and diffusing morphogens in a Turing-like
instability. It is useful to discuss this analogy qualitatively to set the
stage for amplitude equations in the next section, which provide the
formal mathematical framework to make this analogy precise.

Activator. The fact that Ca diffuses much slower than V;,, makes the
amplitude of Ca alternans the natural candidate for short-range
activator. This role can only be fulfilled, however, if the alternans
within an isolated sarcomere are due to an intrinsic instability of Ca
cycling rather than V},, dynamics. In this case, Ca transient alternans
will grow locally as the cell is paced and induce APD alternans. In
Fig. 54, we show the beat-to-beat Ca transient and V}, during
alternans for an isolated sarcomere that exhibits discordant elec-
tromechanical alternans. Next, consider a small fluctuation that
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Fig. 5. Analogy to a Turing instability mechanism. (A) Ca alternans ampli-
tude as short-range activator. The red line of the Ca trace corresponds to Ca
alternans that have larger amplitude than that shown by the black line. The
effect on the V,, trace is to increase the amplitude of APD alternans. (B) APD
alternans amplitude as long-range inhibitor. An increase in APD alternans
amplitude leads to a decrease in Ca alternans amplitude on the next beat.

leads to an increase in amplitude of Ca alternans, as indicated by the
red trace. The subsequent feedback of Ca on V), will tend to
increase the amplitude of APD alternans, as long as the subsequent
changes in APD do not feedback and cancel the effect of the small
fluctuation on the next beat. This condition will be made more
mathematically precise below but is essentially equivalent to saying
that the feedback of Ca on itself should be stronger than the
feedback of V,, on itself. If this condition is met, then the amplitude
of Ca alternans can be viewed as the activator of APD alternans.

Inhibitor. The extremely fast diffusion of V4, in the cell membrane
makes the amplitude of APD alternans the natural candidate for
the long-range inhibitor. To study the effect of APD alternans on
Ca transient alternans, consider a sarcomere in which alternans are
electromechanically discordant, as illustrated by the black lines in
Fig. 5B. The mathematical condition for this dynamical mode is that
dA,/d0c, < 0, where A, and ¢, denote the APD and peak Ca
transient at beat n. This condition, which is equivalent to negative
Ca — V, coupling, ensures that an increase in peak Ca transient ¢,
tends to decrease the APD A,,, and thus a large Ca transient will
correspond to a small APD and vice versa. A more rigorous
mathematical derivation of this condition using a nonlinear map
reduction is given in Supporting Text and Fig. 6, which is published
as supporting information on the PNAS web site. Now consider a
fluctuation that increases the amplitude of APD alternans, as
illustrated by the red V4, trace in Fig. 5B. Such a fluctuation will
cause the Ca transient peak in the next beat to be smaller if
dcn/dA,—1 < 0. This condition is equivalent to the requirement for
positive V, — Ca coupling as illustrated in Fig. 24 and is precisely
the coupling dictated by the phenomenon of graded release incor-
porated in our detailed ionic model. The later decrease in the peak
Ca transient is equivalent to a decrease in Ca alternans amplitude
because the larger Ca peak (red line) is smaller than it would have
been in the absence of the fluctuation (black line). Combining the
above two conditions, we can conclude that for APD alternans to
inhibit Ca transient alternans the condition (3A4,/dc,)(dc,/
dA,,—1) > 0 must be satisfied. This condition also can be satisfied
when alternans are electromechanically concordant if the sign of
both partial derivatives are reversed, although this case was not
explored here.
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After identification of the amplitudes of Ca and APD alter-
nans with diffusing morphogens, understanding the formation of
the asynchronous state follows straightforwardly from the anal-
ogy with a classic Turing instability mechanism. Namely, a
fluctuation that causes the amplitude of Ca alternans to increase
in a small region of the cell generates APD alternans that in turn
inhibit the growth of Ca alternans far from that localized
fluctuation (long-range inhibition). Thus, Ca alternans will not
synchronize spatially under these conditions and will develop
nontrivial spatiotemporal patterns.

Amplitude Equations

A more quantitative analytical understanding of the Turing insta-
bility can be obtained by deriving equations that govern the
spatiotemporal evolution of the amplitudes of Ca and APD alter-
nans (26). The derivation, which is detailed in Supporting Text,
exploits the fact that the local beat-to-beat dynamics in the detailed
ionic model can be described by an iterative map, and that the
alternans amplitudes are small and evolve slowly (over many beats)
close to the alternans bifurcation.

The starting point of the derivation is the 2D iterative map 4,, =
Fi(An-1, ¢), and ¢, = F2(An—1, ¢n—1), which relates the APD and
peak Ca transient at one beat to the next. Such a map was recently
shown to describe well the beat-to-beat dynamics of V7, and Ca in
a situation where the APD and Ca transient are assumed to be
spatially uniform (22). Here, we allow these quantities to vary
spatially and label each sarcomere by its position x along the cell.
We couple the maps spatially using nonlocal spatial kernels that
describe the cumulative effect of 1, and Ca diffusion in the interval
of one beat. For Vp, this coupling amounts to simply taking A, equal
to the spatial average of 4,, = F1(A,—1, cx(x)) owing to the fact that
Vm diffusion is essentially instantaneous. For Ca, we take c,(x) to
be the weighted average of F»(A4, -1, ¢,—1(x")) with a weight that
decreases smoothly to zero with increasing [¢ — x'| over a length
scale € ~ (Dca X T)V2, where D¢, is the average diffusion constant
of free Ca inside the cell, and 7 is the pacing period. Next, we make
the substitutions 4, = A* + (—1)"a(n) and c,(x) = c¢* + (—1)*c(x,
n) in the spatially coupled maps, where A* and c¢* are the fixed
point of the map, and a(n) and c(x, n) are the amplitudes of
APD and Ca alternans, respectively. We use the fact that the
amplitudes of alternans vary slowly from beat to beat close to
the alternans bifurcation to treat the beat number 7, or equivalently
the time ¢t = nT as a continuous variable, which allows us to write
Apiz — A, =~ 2T(—1)"3a/ot, and similarly ¢, 4> — ¢, =~ 2T(—1)"oc/
at. In addition, we assume that the amplitude of Ca alternans varies
along the cell on a scale larger than the spacing between sarco-
meres, such that x can be treated as a continuous variable. With
these simplifications, we get

da _

5o + Bc, [2]
Jdc _ 5
ao + puc + oc + Dogc, [3]

where ¢ = (1/L)f§c(x, t)dx denotes the spatial average of the
Ca alternans amplitude over the whole cell. For clarity, we have
omitted nonlinear terms that are not essential to characterize the
linear regime of the instability. The coefficients of the amplitude
equations, which are derived in detail in Supporting Text, can be
expressed in terms of the matrix elements of the Jacobian matrix
of the two-variable map defined by J1; = dF1/0A,,J12 = dF1/dcp,
J21 = 0F,/0A,, and J; = dF,/dc,, evaluated at the fixed point of
the map A* and c*. The effective diffusion coefficient of Ca
alternans amplitude is given by D = J5,E/2T.

It is important to emphasize that the reaction—diffusion Egs. 2
and 3 have a richer structure than the standard Turing model (17,
19) because of the fact that the diffusing morphogens measure the
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amplitude of period-doubling oscillations of two signals (Ca and
Vm), rather than the concentrations of two chemical species.
Consequently, the local rate of generation of the activator depends
both on its local value and on its spatial average over the cell, as
reflected by the appearance of terms proportional to ¢ and ¢ in Eq.
3, respectively. In contrast, there is no analog of the global coupling
term ¢ in the equation for the activator in the limit of the standard
Turing model where the inhibitor diffuses quasi-instantaneously on
the scale of the system. It is interesting to note that, beyond the
Turing analogy, the breakdown of synchronization leading to the
formation of phase domains also has been found to occur generi-
cally in oscillatory media in the presence of global coupling, as
observed in certain surface catalytic reactions (27).

The conditions for a Turing instability can now be readily
obtained from a stability analysis of the amplitude equations.
Taking a and ¢ proportional to exp(igx + Q(q)), the condition for
a nontrivial solution of Egs. 2 and 3 to exist yields an eigenvalue
equation for ()(g) that is quadratic in g. The most unstable branch
is easily found to be 20(0) = a + u + & + V(e — u — 8) + 4yB,
and Q(q) = & — Dq? for g # 0. The two conditions for a finite
wavelength instability are, first, that the fastest amplification rate of
modes with ¢ # 0 be positive, or here lim,—oQ(g) = 8 > 0, and,
second, that this amplification rate is larger than that of the spatially
homogeneous ¢ = 0 mode, or 6 > ()(0). Note that the analytically
predicted stability spectrum ()(q) is precisely of the form that was
calculated numerically using the physiologically detailed model in
Fig. 4 when these two conditions are satisfied (see Fig. 7, which is
published as supporting information on the PNAS web site).

Physical Interpretation. To interpret the above conditions for a finite
wavelength instability, we express the inequality conditions in terms
of the Jacobian of the beat-to-beat map. The first condition, & > 0,
is equivalent to J» < —1, which corresponds physically to the
condition that alternans are due to an instability in Ca cycling. The
second condition, & > Q(0), is shown in Supporting Text to be
equivalent to the two conditions J, < Jy; and Ji2J2; < 0. Because
Ji1 and J,; give a measure of the degree of instability of the V3, and
Ca cycling subsystems, the first condition is satisfied if the Ca
subsystem is effectively more unstable than the V7, subsystem, which
makes the condition for Ca to be the activator more precise, as
described in the last section. The second condition, J12J2; < 0, is in
turn equivalent to the condition for 1}, to be the inhibitor, (dA4,/
9¢n)(9¢,/3A,—1) > 0, derived in the last section by using qualitative
arguments. To see this condition, note that J»; = dc,/dA,—1, and
Ji2 = (9¢p/dcn—-1)(0A,/ dcy) and that dc,,/dc,—1 = Joz is negative for
alternans to occur.

Analysis of the leading eigenvector of the Jacobian reveals that
the relative phase of Ca and APD alternans is determined precisely
by the conditions above for the finite wavelength instability. Note
that condition J12J21 < 0 can be satisfied in two ways: J1» < 0 and
Jo1>0orJ;, > 0and /o <0.IfJ; <0, the condition for a finite
wavelength instability is identical to that for electromechanically
discordant alternans. This result is precisely the case investigated
here where APD alternans inhibit Ca alternans, consistent with the
qualitative arguments of the last section. If J>; > 0, the instability
condition requires that alternans are electromechanically concor-
dant. The latter case was not investigated here.

Comparison with lonic Model. The physical interpretation of the
amplitude equations is consistent with our numerical simulation
results. The simulations revealed that the asynchronous state de-
veloped after many beats only when we enhanced the effect of
Ca-induced inactivation. For the same model parameters, an iso-
lated sarcomere paced at the same rate exhibited electromechan-
ically discordant alternans. This dynamical mode emerged when
alternans are due to a steep relationship between SR Ca release and
SR load and when the Ca — 1, coupling is negative, as illustrated
in Fig. 2B. Because, furthermore, the 1}, — Ca coupling is positive
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in the ionic model by virtue of the graded release relation-
ship between Ca release from the SR and the L-type Ca current,
which triggers this release, the asynchronous state developed when
(Vm — Ca) X (Ca —V},) < 0, which is equivalent to the condition
Ji2J21 < 0 for a Turing instability obtained from the amplitude
equations.

Discussion

The main finding of this work is that heterogeneity of Ca cycling on
the subcellular scale can arise spontaneously from a Turing-type
instability mediated by Ca and V}, diffusion. In the present context,
symmetry breaking is produced by local self-enhancement of Ca
alternans and long-range inhibition of these alternans by APD
alternans. Amplitudes of Ca and APD alternans are predicted to
play a directly analogous role to activator and inhibitor species in
the context of reaction—diffusion models in which Turing patterns
have been studied (18). The crucial requirement that the inhibitor
diffuses faster than the activator is fulfilled here because Vi
diffusion is several orders of magnitude faster than Ca diffusion.

The conditions for this instability can be summarized as follows.
(i) Alternans at the subcellular level must be due to an instability
of Ca cycling. (if) Bidirectional coupling derived from the product
of the unidirectional couplings between Ca and V;,, must satisfy the
requirement that (V;, — Ca) X (Ca — Vy,) < 0. The latter condition
also determines the relative phase of Ca and V4, alternans at the
single sarcomere level, i.e., whether alternans are electromechan-
ically concordant or discordant in the absence of spatial coupling.
Under normal physiological conditions, the graded release rela-
tionship between L-type Ca current and Ca release from the SR
requires that the V},, — Ca coupling is positive. Thus, in this case,
the condition for instability is determined by the sign of the Ca —
Vm coupling, which is itself governed by the effects of L-type Ca
current and NaCa exchange current on the APD.

It is important to emphasize that the existence of the Turing-type
instability elucidated here does not depend on a specific mechanism
for the autocatalytic amplification of Ca alternans. Therefore, even
though we have assumed here that Ca alternans are due to a steep
relationship between SR release and SR load, other mechanisms of
instability also could potentially give rise to a Turing instability, as
long as the sign of the coupling between Ca on V;, is negative.

Our results provide a framework to interpret experimental
observations of out-of-phase patterns of subcellular Ca alternans
(13). In particular, they suggest that such patterns may result from
a symmetry-breaking instability, rather than from intrinsic spatial
heterogeneities of the Ca cycling machinery inside the cell. How-
ever, other mechanisms to form asynchronous patterns of Ca
alternans are possible. Specifically, spontaneous Ca release in one
region of the cell can desynchronize a spatially uniform state of
in-phase Ca alternans, in an analogous way that a premature
electrical stimulus can initiate out-of-phase electrical alternans in
cardiac tissue (27). Therefore, to distinguish between different
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potential mechanisms, it is essential to experimentally determine
the bidirectional coupling between Ca and Vy,. The possibility of
modulating this coupling is suggested by experiments in cat ven-
tricular cells by Rubenstein and Lipsius (25), who observed a
transition from concordant to discordant electromechanical alter-
nans by reducing the temperature of the cell from 35°C to 32°C.
Because theory predicts (22) that the relative phases of Ca and Vp,
alternans is determined by the sign of this coupling, these experi-
ments show that this sign can be reversed by a temperature change.
It therefore may be possible to validate the existence of a Turing
instability experimentally by observing how the degree of synchro-
nicity of subcellular patterns of alternans change with temperature
and pacing rate.

The Turing instability elucidated here causes a spontaneous
breakdown of synchrony of Ca alternans at a subcellular scale. This
breakdown will generally have an influence on the dynamics of
membrane voltage via Ca sensitive membrane ionic currents and
hence on repolarization alternans at a single cell level. Therefore,
this instability may have important implications for understanding
the onset of life-threatening cardiac arrhythmias insofar as repo-
larization alternans at the cellular level suffice to induce wave
instabilities and ventricular fibrillation at a tissue scale, as shown in
both experimental and modeling studies (7, 8, 23). However, the
link between subcellular and tissue scale instabilities remains to be
explored. This exploration may be possible by extending the present
study to networks of coupled cells.

The instability mechanism proposed by Turing (17) to explain
morphogenesis based on the interaction of diffusing morphogens
has been demonstrated experimentally in chemical systems that
mimic reaction—diffusion models (28-30). Turing instability mech-
anisms also have been invoked to explain various experimentally
observed patterns in biological systems (31, 32). However, the
complexity of these systems makes it generally difficult to identify
the morphogens that lead to the observed patterns. From this
standpoint, the present work highlights the existence of a rare, and
somewhat unexpected, example of a naturally occurring Turing-like
instability in a biological context where the diffusing morphogens
can be clearly identified. An important distinguishing feature of this
instability is that one morphogen is a chemical signal (Ca), whereas
the other is an electrical signal (V). Another distinguishing feature
is that both morphogens measure the amplitudes of underlying
period doubling oscillations of these signals rather than simply their
magnitudes. This feature leads to a more complex interaction of the
activator and the inhibitor, reflected in the reaction—diffusion
model, whose manifestations in a fully nonlinear regime of this
instability are yet to be explored.
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