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Recent physiological studies indicate that the tuning properties of
neurons under acute preparation in primary visual cortex can
change over time. We used a psychophysical reverse correlation
paradigm to examine the potential repercussions of this neuronal
property for human observers’ ability to discriminate the orienta-
tion of targets over time. Observers were required to identify the
orientation of a Gabor target presented within dynamic white
noise. Frames from the noise movies were pooled to compute
dynamic classification images (CIs) associated with the observers’
discrimination performance, which then were fit with a weighted
difference-of-Gabor function. Best-fitting templates were tempo-
rally bandpass, tuned to more oblique orientations than the
stimulus but, crucially, did not change over time. The results
suggest that the template for orientation discrimination is selected
within the first 50 ms of stimulus onset and that, unlike the
response of single cells, there is no measurable dynamic compo-
nent to either orientation or spatial frequency tuning of human
orientation discrimination.

psychophysics � vision

V isually responsive neurons are sensitive to structure within a
region of space referred to as their ‘‘classical receptive field.’’

Although this field has been assumed to be a largely fixed property
of the neuron, there is now considerable electrophysiological evi-
dence that neurons’ tuning to various visual properties can vary
substantially over time (1–5). For example, the orientation tuning
of neurons in macaque V1 (measured with an acute preparation)
is initially broad, but �40–50 ms after stimulus onset, responses
become increasingly selective. After a peak in selectivity at �60–
100 ms, tuning becomes broader (1, 4, 6) and sometimes indicates
a radical change in preferred orientation (1, 4). A similar change in
tuning has been reported for spatial frequency (SF) (2, 3) and
binocular disparity (5). However, these findings are controversial:
using intracellular recordings (7) and in awake preparations, both
Celebrini et al. (8) and Mazer et al. (3) have failed to find a dynamic
shift in orientation tuning. In light of these differences, we sought
to examine whether the changes in tuning that had been observed
in the first few hundred milliseconds of stimulus presentation might
be reflected in the behavior of human observers.

A number of psychophysical studies have examined the influence
of stimulus exposure duration on visual performance. Form and
sharpness discrimination (9–11), stereoacuity (12) as well as con-
trast sensitivity for moving patterns (13) improve with exposure
duration. Contrast sensitivity is lower for briefly presented than for
steady-state stimuli but in a manner inconsistent with a change in
tuning (14). Although there is a clear dependence of sensitivity on
duration, the change in tuning (i.e., peak sensitivity and bandwidth)
of the underlying detectors has not previously been examined
systematically as a function of the time course of the stimulus (i.e.,
for different epochs within the stimulus presentation).

Here, we examine how visual selectivity changes over time using
a ‘‘classification image’’ (CI) or psychophysical reverse-correlation
technique. Reverse-correlation paradigms estimate the correlation
between the behavior of a sensory system and some attribute of a
stochastically varying stimulus (typically the luminance of pixels in
white noise). In electrophysiology, for example, the technique

consists of presenting rapidly changing one- or two-dimensional
luminance noise patterns over a neuron’s receptive field (e.g., refs.
1, 15, and 16). Noise that is positively correlated with subregions of
a receptive field (i.e., light pixels within an ‘‘on’’ zone) will increase
the probability of firing. Noise that is negatively correlated (i.e.,
light pixels within an ‘‘off’’ zone) will decrease the probability of
firing, whereas uncorrelated noise produces no change. The cor-
relation between the noise in a given region before the spike
generation and the number of spikes elicited has been used to map
out the fine structure of receptive fields in two-dimensional space
(1, 15, 16) and disparity (5, 17). More recently, reverse-correlation
techniques have been elaborated to include higher-order statistical
properties of the noise (18, 19).

An analogous paradigm in psychophysics relies on the same
principle of correlation between noise and behavior to yield CIs that
in turn can be used to infer underlying ‘‘perceptual receptive fields’’
or ‘‘templates’’: the regions of an image that are important for
performing particular visual tasks (20–28, †, ‡). In general, for a
stimulus embedded in a white-noise mask, positive correlations
between stimulus and noise promote detection of the target,
whereas negative correlations inhibit detection. By adding the noise
fields associated with correct performance and then subtracting the
sum of those noise fields associated with errors, one creates a CI in
which the luminance of each pixel encodes whether it has a positive
or negative influence on the observer’s response. If the human
visual system operated as an ideal system, then the CI should, for
a detection task, converge on an image of the stimulus. For a
discrimination task in white noise, the ideal CI is the arithmetic
difference between the two possible targets; i.e., locations that are
informative about difference are highlighted. In practice, the CI
reflects observer’s (nonideal) visual processing, which cannot be
wholly attributable to the physics of the stimulus. For example, CIs
derived for detecting the curvature of illusory contours show
contour completion (29), and CIs derived for discriminating the
contrast polarity of stimuli inducing the Craik–Cornsweet illusion
show ‘‘filling-in’’ (28). Solomon (25) derived the CIs for either
detecting a Gabor patch in noise or discriminating its orientation.
The results showed that the phase of the target was irrelevant for
the detection task, a finding that he concluded was analogous to
phase insensitivity observed for complex cells. Furthermore, the CI
for the discrimination task was more oblique than the target,
suggesting that observers were basing their decision on the activity
of noise-limited channels that showed the greatest differential
response to the two target orientations (‘‘off orientation
looking’’).

In summary, static CIs have been used to identify the human
receptive fields used to perform visual tasks. In this work, we adapt
the CI paradigm to examine changes in spatio-temporal tuning in
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the human visual system over short periods of time and so scrutinize
the discrepancy in the electrophysiological literature concerning the
temporal evolution of orientation tuning in single neurons.

Subjects were required to identify the orientation of a target
stimulus (a Gabor patch) embedded in dynamic random noise,
which was maintained at a contrast level near its detection thresh-
old. Over the course of an experiment, we collected the noise
samples associated with correct and incorrect responses and used
them to compute a dynamic CI, i.e., a frame-by-frame map of which
parts of the stimulus the observer uses to perform the task. We then
fit the CIs with weighted difference-of-Gabor patterns that allowed
us to examine the dynamic evolution of various attributes of the
perceptual receptive field (e.g., its orientation tuning).

Results
Fig. 1 illustrates three CI frames associated with correct and
incorrect identification of the tilt of an anticlockwise Gabor
target embedded in noise. The 32 frames from any one trial are
similarly categorized according to psychophysical response and
summed, across trials and within response category. Inspecting
the mean CIs (Fig. 1b, top rows), two features emerge. The first
is that CIs are more oblique than the target orientation, a finding
reported by Solomon (25) who suggested that discrimination was
based on the differential responses of template-pairs, such that
more obliquely oriented template pairs are more sensitive to
orientation difference than the closest matching template pair.
The second feature is that the CIs appear ‘‘Gabor-like’’ for some
observers (e.g., I.M., 7) but more checkerboard-like for others
(particularly the only psychophysically inexperienced observer,
M.S.T.). Although checkerboard-like CIs are optimal templates
for ‘‘signal discrimination,’’ Gabor-like templates are optimal for
‘‘signal detection.’’ Because detection must precede discrimina-
tion, it may be that our experienced observers were limited by
early (i.e., detection-limiting) noise, whereas our inexperienced
observer was limited by later (discrimination-limiting) noise. We
speculate that one consequence of psychophysical experience
may be to reduce late (decision-based) noise.

To examine the temporal dynamics of the decision CIs, we fit
combinations of frames (weighted by a temporal-Gaussian func-

tion; see Methods) within the 32-frame sequence. Fig. 2 shows how
parameters of the component templates vary over time (data are
from experienced observers: most frames from observer MST were
rejected according to our analysis based on the statistical criteria
described below, so his data are not shown). In Fig. 2a, the
estimated SF of the component template is plotted for the three
observers in the two different SF conditions [open symbols are at
2.5 cycles per degree (c�deg); filled at 7.0 c�deg]. The shaded gray
areas represent the range of SFs over which the template fits were
allowed to vary; the dashed lines represent the actual SF of the
target. A few points emerge from this plot. First, in both the low and
high SF conditions, the estimated template SFs approximate the
target SF (slightly lower in the high SF condition). Second, the
template SFs do not vary over time. The slopes of the best-fitting
lines to the individual observers’ data weighted by their error bars
were flat (�0.0014, I.M., 2.5 c�deg; 0.0013, I.M., 7 c�deg; 0.0003,
P.J.B., 2.5 c�deg; 0.0043, P.J.B., 7 c�deg; �0.0009, S.C.D., 2.5 c�deg;
and 0.0014, S.C.D., 7 c�deg) and have not been included on the
graphs for visual clarity. Bootstrapped estimates of these slopes
were calculated, and the standard deviations (SDs) were on average
0.002. In addition, these values are similar to slopes calculated on
a subset of temporally unweighted frames that reached significance
and were found to be not significantly different from zero (0.0004,
I.M. 2.5 c�deg; 0.0133, I.M., 7c�deg; 0.0007, P.J.B., 2.5 c�deg; 0.001,
P.J.B., 7 c�deg; 0.004, M.S.T., 2.5 c�deg). Interestingly, although the
stimulus was present throughout, most of the significant frames fell
within the first 10–300 ms. Note that there was very little variation
on the parameters within the limits that were imposed by the fitting
procedure, indicating that constraints were not hindering the fitting
procedure.

Fig. 2b plots the estimated component template orientation for
both SF conditions, with the dashed line corresponding to the actual
orientation of the target. The estimated template orientation was
more oblique than the target’s by �10° at both SFs. Again, there was
no change in these values over time. Estimates of the component SF
bandwidths are plotted in Fig. 2c, and component orientation
bandwidth estimates are in Fig. 2d; both are similar to the actual
value of these parameters in the stimulus (dashed line).

Fig. 1. CI technique and fitting procedure. (a) Subjects reported whether a Gabor target, continuously present within 32 frames of dynamic white noise, was
tilted clockwise or anticlockwise of vertical. Noise frames were stored according to the observers’ response into the ‘‘correct’’ (center left column) or ‘‘incorrect’’
(center right column) category. The 32 single frame CIs obtained at the end of 10,000 trials (rightmost column) were obtained from the difference between
incorrect and correct CIs. Mean CIs for the correct-incorrect categories can be obtained by averaging the corresponding columns. (b) Fitting procedure. Because
observers are performing a discrimination task, the optimal template for performing this task is the difference between the two possible targets. Consequently,
CI data were fit (having first been spatially blurred) with a weighted difference of two component templates (Gabors, one the mirror image of the other). Fits
had six parameters, five for the components and one for their weighting. The component-pairs are illustrated in the two rows below the blurred CIs. The decision
templates are the differences of the component templates weighted by the r value given below. Note that fitted decision templates account well for the
appearance of the CIs including the checkered appearance of the template for M.S.T. Most of the decision templates were dominated by a single component
indicating that some observers’ performance was limited by their ability to detect the target rather than tell what orientation it was (see Supporting Text and
Fig. 4 for details).
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The ideal discrimination template is the weighted sum of the two
target components, each weighted by 0.5. Estimates of the ratio in
which the component templates contribute to the discrimination
template are plotted in Fig. 2e. Although the error bars are larger
in this plot, there is no systematic change in the ratio over time and
the average clusters �0.7 for the three observers. Given that these
values are neither 0.5 (pure discrimination) nor 1 (pure detection),
this result suggests that the CIs obtained on this task reflect a
combination of limits on observers’ detection and discrimination.

Contrast thresholds (the average contrast level associated with
the final 20 response-reversals, i.e., switching from correct-to-
incorrect or vice versa, within a run) did not vary between the two
different SF conditions for the observers and were, for the 2.5 and
7 c�deg conditions, respectively, 3.9% and 3.7% (I.M.), 6.6% and
6.1% (P.J.B.), 8.0% and 8.6% (S.C.D.), and 3.6% (M.S.T.). Because
an ideal observer performing this task produces a contrast thresh-
old of 1.05%, our observers’ efficiencies for this task are 7.2% and
8.1% (I.M.), 2.5% and 3.0% (P.J.B.), 1.7% and 1.5% (S.C.D.), and
9.0% (M.S.T.).

Our data do not show any change in time across the different
component template parameters. However, a final point can be
made regarding the sensitivity of the mechanisms involved in the
task throughout the stimulus presentation. As mentioned above, the
range of frames producing statistically significant fits did not cover
the entire duration of the stimulus presentation. To examine which
frames were used to perform the discrimination, we cross-
correlated each unweighted frame of the CI sequence to the
decision template that best fit the mean CI across all frames (i.e.,
for I.M. at 7.0 c�deg, the decision template from Fig. 1b was
correlated with each of the 32 frames of the 7.0 c�deg CI sequence
and likewise for the other observers).

The results of this analysis are plotted in Fig. 3. Solid symbols
represent statistically significant correlations between the decision

templates and individual CI frames. The curves are the Gaussian
functions that best fit the correlation coefficient data. Temporal
tuning is clearly bandpass, peaking at �160 ms, for both SF
conditions. Interestingly, subjects use only the initial portion of the
stimulus to make a judgment, even though the stimulus is present
throughout and it would be more efficient for them to monitor the
entire sequence. We expected the functions to plateau after an early
peak that corresponded to the time constant of a leaky integrator
for contrast sensitivity. We also note that, on average, there was no
difference in the peak latency in the high and low SF conditions.
This finding is surprising because contrast sensitivity for noise-free
stimuli, increases with exposure duration, and the rate of increase
is greater at low SFs than high (30), so we would expect the 2.5
c�deg target to reach threshold contrast more quickly than the 7.0
c�deg target.

Single-frame CIs begin to achieve significant correlation with the
template at �40–50 ms, consistent with the onset of measurable
responses in single cells (1, 31). Also, and importantly, the presence
of a series of significant frames for all observers means that the CIs
did not substantially change over these frames (i.e., that in the raw
frames, as for the temporally smoothed ones, the parameters did
not vary). Note that the lack of correlation of the later frames to the
mean CI was not the result of a change in their tuning character-
istics, but rather that these were no longer significantly different
from noise.

Discussion
We used a behavioral technique to measure the visual mechanisms
that support a simple orientation discrimination task. Decision
templates were estimated by using a psychophysical reverse corre-
lation technique. The dynamic properties of templates were exam-
ined at 16.6-ms intervals throughout a 531-ms stimulus presenta-
tion. We report the following results.

Fig. 2. Changes in component templates over time. Plots show parameters derived from fitting weighted combinations of CIs; only parameters that met our
statistical criteria (described in Methods) are shown. (a) Template SF at 2.5 c�deg (open symbols) and 7.0 c�deg (filled symbols) for three observers. Shaded areas
indicate the range over which the fitting procedure could vary; dashed lines are the target SF. Error bars are 95% confidence intervals. (b) Template orientation.
(c and d) Template SF-bandwidth (c) and template orientation-bandwidth (d) derived from best fitting Gaussian functions. (e) Relative contribution of the
component templates to the decision template. ( f) Examples of CIs, and their corresponding best-fitting decision templates, from the first 166 ms of stimulus
presentation (observer I.M., SF of 7.0 c�deg). The CI remains largely unchanged over this period.
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1. Psychophysical CIs resemble the weighted combination of
two Gabor-like component templates [a result that can be
exemplified by using a simple variant on the ‘‘hard-
threshold’’ model of Solomon (25); see Supporting Text and
Fig. 4, which are published as supporting information on the
PNAS web site].

2. Component templates were more obliquely oriented than the
target.

3. There was no significant change in the tuning of component
templates over time.

4. The decision template did not vary systematically over time
(i.e., component templates contributed in a constant ratio).

5. The templates were temporally bandpass: observers’ discrim-
inations were based on visual information occurring �20–
300 ms after stimulus onset, regardless of the target SF.

Mismatch in Orientation Between Template and Target. The reliable
mismatch in orientation between the templates and the target was
present throughout presentation of the target at both SFs tested.
We speculate that this result may be attributed to ‘‘off-orientation

looking,’’ analogous to ‘‘off-frequency listening’’ in auditory psy-
chophysics (32). Off-frequency looking refers to the counterintui-
tive observation that whereas the most sensitive channel for target
detection is the one that is maximally responsive to the particular
SF and orientation of the target, the principle of univariance
dictates that this channel is not able to discriminate between stimuli
that are of equal but opposite distance from its own peak. For our
experiment, a channel tuned to vertical would be equally responsive
to stimuli that are equidistant from the peak sensitivity of the
channel. To discriminate the stimuli, observers must monitor
orientation channels on either side of the channel that is optimally
sensitive to the mean of the two stimuli. By relying on the channels
that are not optimally tuned for the midpoint between the stimuli,
the observer’s template is biased toward these channels and away
from the orientation of the target. Making some reasonable as-
sumptions about the channels (e.g., Gaussian orientation tuning,
Poisson noise), Itti et al. (33) show that the optimal orientation-
offset between channels (i.e., that maximizes the derivative of the
log likelihood: known as Fisher information) is equal to �2��

2,
where �� is the channel’s orientation bandwidth. For our stimuli,
this result indicates that channels at 112° and 68° maximize Fisher
information. This finding is closely consistent with our results in Fig.
2b (note that all data are normalized to anticlockwise-oriented
stimuli) where data points fall at �111°. Fisher information predicts
that there should be no such bias for the discrimination of orien-
tations that differ from one another by an amount �45°. We
confirmed this prediction in one observer (I.M.) for orientation
discrimination of targets that differed by either 80° or 90°. Under
these conditions, the CI was no longer more oblique than the target.

Temporal Sensitivity. When we examined the temporal sensitivity of
the templates, two findings emerged. First, we found no consistent
difference in latency of processing between the low and high SFs
across observers, and second, the temporal dependence of the CI
was bandpass. We consider these points in turn.

With respect to the lack of effect of SF on processing latency,
studies of threshold (30) and suprathreshold (34) contrast sensitiv-
ity have consistently shown that the time constant of temporal
integration is faster at low than high SFs. In spatial form vision, the
notion of coarse-to-fine processing (35) has received psychophysical
support from reaction time and visual evoked potential (VEP)
studies (36–38). There is also a growing body of physiological data
that supports this idea (2, 3, 5). It might therefore be expected that
the time constant of the discrimination template for the low SF
target would be faster than that for the high SF target. However, we
found no consistent difference in the peak temporal tuning of the
CIs for low and high SF targets. In a Vernier acuity task using
stimuli that were equated for visibility, Waugh and Levi (39) also
failed to find a shift in SF tuning over time, and McSorely and
Findlay (40) found that square-wave gratings that were presented
in fine-to-coarse SF sequence resembled a static square grating
more than a coarse-to-fine sequence. Collectively, the results sug-
gest that coarse-to-fine temporal processing is to some extent
dependent on the task used to measure it.

In considering the bandpass temporal dependence of the CI,
given that the target was present at threshold contrast on each
frame, it might be expected that the discrimination template and the
CI it produces should be relatively fixed throughout the stimulus
presentation. A small effect of forward and backward masking is
likely to occur both at the beginning and end of the stimulus, so
sensitivity may be lower at these points, and consequently one might
expect some loss of a clear CI for the first and last one or two frames
of the CI movie. However, in the presence of a mask presented for
the same duration as the stimulus, masking should be symmetrical
(41), but our results show clear asymmetry. In addition, Foley and
Chen (42) measured the strength of masks as a function of the
temporal and spatial offsets between mask and stimulus. They
found that when the mask and stimulus were spatially overlapping,

Fig. 3. The cross-correlation between the decision template (fit to CIs
averaged across all frames) and the CI on each frame. Filled symbols show
significant correlations (P � 0.05); open symbols show points that did not
reach statistical significance. Solid curves are the Gaussian functions that best
fit the data.
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backward masking was much weaker than forward masking. If this
finding applies to our data (because our mask was always spatially
overlapping), we would have expected to see a shallow (if any)
fall-off in sensitivity. This expectation was not the case. We
therefore conclude that the temporal characteristics of the CIs
reflect the tuning of the discrimination template rather than any
known temporal properties of contrast sensitivity or masking. A
final mention can be made about different response strategies that
observers may employ. Although attentional effects might have
influenced the overall performance of observers, we found no
changes in the contrast thresholds near the end portions of a run
(1,000 trials), suggesting that observers were maintaining fairly
constant attention levels and also probably similar response strat-
egies. However, the overall influence either of these factors may
have on our results cannot be distinguished from our data. To-
gether, we suggest that observers are most sensitive to the initial
frames of the stimulus for orientation discrimination, even though
integration over the entire movie would be a better strategy. In
addition to being defined in the first 50 ms after stimulus onset, it
appears that the tuning of the decision template is invariant over the
course of the stimulus presentation. This observation is consistent
with a recent finding that the orientation tuning for a population of
cells does not change over time,§ suggesting that orientation dy-
namics may be a characteristic of single cells that is lost in the output
of a network of cells.

Temporal and Spatial Resolution of the Technique. A difficulty in
relating our results to the tuning properties of single cells lies in the
fact that electrophysiological data are recorded with very high
temporal precision. We did find it necessary to perform some
smoothing across frames of our pooled noise samples to consistently
fit the resulting CIs and so derive the data presented in Fig. 2.
However, even looking at raw (nonsmoothed) single frames, we did
not find large changes in the components underlying the CI. We
were able to measure sequences of frames that were statistically
significantly correlated to the mean CI (Fig. 3), which suggests that
individual frames did not undergo large changes in any of their
parameters across single frames. A single frame from our stimuli
lasted 16.6 ms, less than the duration of some of the reported
changes in orientation lasting 20–50 ms (1, 4). This result is also
consistent with an initial analysis performed on nontemporally
smoothed frames that also showed no change in the parameters for
the considerably fewer frames that could be fit. As mentioned
previously, the spatial and temporal smoothing was performed to
increase the number of significant frames entering our analysis.
Regarding spatial resolution, it is unlikely that the smaller scale
changes (�5°) in peak orientation that have been reported were too
fine to measure (because we were able to reliably measure changes
in orientation from one frame to another on the scale of 1–2°).
Larger scale change, as well as the inversions in peak orientation
preferences (lasting between 20–50 ms for shifts in the peak or
orientation inversions to occur) would have been very clearly
resolved.

Thus, our failure to observe changes in our CI data suggests
that the reported changes in the tuning in single cells might get lost
in the activity of a larger population (consistent with population
analysis§) and has no measurable repercussions for human
observers.

Methods
Apparatus and Stimuli. An Apple Macintosh G4 computer running
MATLAB (MathWorks, Natick, MA) was used for stimulus gen-
eration, experiment control, and recording subjects’ responses. The
programs controlling the experiment incorporated elements of the
PSYCHTOOLBOX (43). Stimuli were displayed on a 22-inch Electron

Blue monitor (1,024 � 768 pixel; frame refresh rate 60 Hz; La Cie,
Hillboro, OR) driven by the computer’s built-in graphics card. We
achieved pseudo-12-bit contrast resolution in grayscale by attenu-
ating and combining the RGB outputs from the graphics card and
then amplifying and copying the resulting signal to all three guns of
the monitor. The display was calibrated by using a photometer and
linearized by using look-up tables in software.

Stimuli. The stimuli were 32-frame (16.6 ms per frame), 64 �
64-pixel dynamic white noise movies containing a centrally located
Gabor patch (envelope SDs � 6 pixels; sinewave wavelength � 12
pixels; at the viewing distance of 57 cm, 1 pixel subtended 2 arcmins)
that was tilted clockwise or counterclockwise of vertical by 11°. We
tested two target SFs (2.5 and 7.0 c�deg) in separate runs by varying
the viewing distance. The envelope SDs produced an orientation
bandwidth of 16° (SD of the best-fitting wrapped Gaussian func-
tion) and a SF bandwidth of 0.9 octaves (SD of best-fitting
Gaussian, fit on log axes). The noise was drawn from a normal
distribution and was fixed at 30% rms contrast, which has been
shown to optimize CI generation (25).

Procedure. We used a single-interval two-alternative forced choice
orientation identification procedure. Observers fixated a small
white square (2 � 2 pixels), which appeared for 49.8 ms and then
was extinguished during presentation of the dynamic stimulus. The
observers’ task was to indicate with a key-press whether the target
Gabor was tilted clockwise or anticlockwise of vertical (90°).
Auditory feedback followed a response error. The contrast of the
target was varied by using a staircase (44) procedure that reduced
the contrast by 1�3 dB or increased it by 1dB after a correct or
incorrect response respectively. This procedure converges on the
stimulus contrast (threshold) eliciting 75% correct discrimination.
Observers completed 10,000 trials per condition, in blocks of 1,000
trials. Different conditions were tested in random order, and on a
given trial the orientation tested was randomly selected.

Observers. The three authors and one naı̈ve subject served as
observers. All wore optical correction as necessary and performed
practice trials until their discrimination thresholds stabilized.

CIs. On any given trial, subjects could make one of two possible
responses [clockwise (C) or anticlockwise (A) of vertical] for the
two possible target configurations [stimulus clockwise (SC) or
anticlockwise (SA) of vertical]. This method yields four stimulus–
response combinations (denoted C-SC, C-SA, A-SC, and A-SA).
Noise images were summed according to whether they elicited a
correct or incorrect response. C-SC and A-SC were mirror-reversed
(around vertical) before summing; thus, resulting CIs are defined
relative to an �11° (i.e., anticlockwise) target. The difference image
between the correct and incorrect response noise images gives the
‘‘correct response’’ CI. This process is illustrated schematically in
Fig. 1a, where the target is oriented anticlockwise throughout the
32 frames (only 3 frames shown for clarity). In our procedure,
correct and incorrect noise images were weighted equally. Depend-
ing on the observer’s response, the 32 noise frames were stored in
either C-SA or A-SA categories. If the stimulus had been presented
clockwise, the noise sequence would have been stored in either the
C-SC or A-SC categories. This process was repeated for the 10,000
trials, and the CI then was calculated by using all of the noise
sequences following the above procedure. At the end of 10,000
trials, two 32-frame CIs were obtained: one containing the noise
images associated with a correct response (Fig. 1a Left) and one
containing the noise sequences leading to incorrect responses (Fig.
1a Center). Because the noise was dynamic, we were able to analyze
individual frames of the CIs (Fig. 1a Right) to examine the discrim-
ination template at any given interval or average groups of the
individual frames to examine the mean discrimination template for
a given epoch. In the example presented in Fig. 1a, the target was§Benucci, A., Frazor, R. & Carandini, M. (2005) J. Vision 5, abstr. 84.
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presented for 32 frames, and the 32 frames of the CI have been
summed to generate a mean CI. For consistency, all CIs were
normalized relative to the ‘‘anticlockwise oriented correct’’ CI (i.e.,
clockwise correct CIs are the same but flipped about the vertical
axis of symmetry). The pixel intensities of all CIs were normalized
to span the range �1 to �1 for template fitting.

Given the large parameter space, and the limited amount of data,
constraints were imposed on the SF, orientation, and two SD
parameters of the fitted templates. For SF, the fits were constrained
to be within half an octave on either side of the SF of the stimulus;
for orientation the fits were allowed to vary from 90 to 135°; the
envelope SDs were limited to be within 2 and 16 pixels (i.e., from
1�3 to 2.66 times the actual values associated with the target).

Parameter Fitting Procedure. Fig. 1b shows the best fitting templates
(using the constrained nonlinear function minimization procedure
‘‘fmincon’’ in MATLAB) to the average CI across all frames, for the
four observers, in two different SF conditions. The top row shows
four mean CIs that have undergone two-dimensional spatial blur-
ring (Gaussian SD � 1.5 pixels); below each is their corresponding
best-fitting component template (termed Anti-CW template for an
anticlockwise-oriented stimulus). The following row is the flipped
version of the best fitting template (termed CW template), and the
bottom row is the decision template formed by taking a weighted
difference between the Anti-CW and CW templates (in the ratio
given by the value r in the lowest row). A ratio of 1 would be a pure
Gabor, and a ratio of 0.5 (“ideal observer”; see Supporting Text and
Fig. 4) would be an equal contribution of the two component
templates and would have a checkerboard appearance (see ob-
server MST’s decision template CI for an approximation of this
statement).

This fitting procedure was applied to the mean and individual
frames of the CIs. Because we sought to examine the changes of the
template with exposure duration, we initially fit individual frames
of the CI sequence but found that few (�1�3) frames produced a
significant fit, given the large number of free parameters on the fit.
To increase the number of frames for analysis, we temporally
Gaussian-weighted the CI sequence before summing over all
frames (SD of 1.5 frames � 24.9 ms). A Gaussian weighting

function was centered over a given frame in the CI sequence and
then multiplied with the entire sequence. This method assigns
weights to all of the frames before their addition, although in effect
the influence from frames beyond �2 frames of the one being
calculated is minimal given the function’s SD. The center of the
Gaussian is shifted by one frame, and the procedure is repeated to
yield 32 weighted-average frames. Under this procedure the first
and last frames of the sequence have less contribution from
neighboring frames because of the asymmetrical nature of the
temporal Gaussian at the extremities. We consider limitations of
this procedure in Results and Discussion sections.

We used a bootstrapping procedure to estimate confidence
intervals on the fit parameters so derived. First, for a given
subject�condition combination, we computed the gray-level vari-
ance across trials of every pixel in the CI. We then took the
best-fitting decision template as our estimate of the true local mean
of the CI and added random variability equal to the estimated
gray-level variance to generate a series of noisy templates. Next, we
added this value to a noise mask in a proportion similar to the ratio
of signal to noise for the at-threshold performance of the subject in
the psychophysical experiment. Finally, we fit the resulting noisy
template image using the same procedure as described above. By
running this procedure repeatedly with 512 independent noise
samples, we made a series of pseudo-CIs that then were fit with the
six-parameter functions as before. Estimates of the six parameters
were stored, and 95% confidence intervals on each parameter were
calculated as �1.96 SDs of the distribution of the bootstrap fits.
Frames were rejected from analysis if any one of the four param-
eters (SF, orientation, and the two envelope SDs) derived using the
least-squares fitting procedure fell outside of the 95% confidence
intervals of the distributions of corresponding bootstrapped pa-
rameters. In addition, a small number of degenerate frames were
rejected if the least-squares parameter estimates fell within 2.5%
(on either side) of the limits over which the above parameters were
allowed to vary.

We thank Joshua Solomon for advice and Miguel Eckstein and
Albert Ahumada for helpful reviews. This work was supported by
Biotechnology and Biological Sciences Research Council Grant 31�
S17766 (to S.C.D. and P.J.B.).

1. Ringach, D. L., Hawken, M. J. & Shapley, R. (1997) Nature 387, 281–284.
2. Bredfeldt, C. E. & Ringach, D. L. (2002) J. Neurosci. 22, 1876–1984.
3. Mazer, J. A., Vinje, W. E., McDermott, J., Schiller, P. H. & Gallant, J. L. (2002)

Proc. Natl. Acad. Sci. USA. 99, 1645–1650.
4. Ringach, D. L., Hawken, M. J. & Shapley, R. (2003) J. Neurophysiol. 90,

342–352.
5. Menz, M. D. & Freeman, R. D. (2004) J. Neurophysiol. 91, 1782, 1793.
6. Volgushev, M., Vidyasagar, T. R. & Pei, X. (1995) Visual Neurosci. 12, 621–628.
7. Gillespie, D. C., Lampl, I., Anderson, J. S. & Ferster, D. (2001) Nat. Neurosci.

4, 1014–1019.
8. Celebrini, S., Thorpe, S., Trotter, Y. & Imbert, M. (1993) Visual Neurosci. 10,

811–825.
9. Hood, D. (1973) Vision Res. 13, 759–766.

10. Westheimer, G. (1991) J. Opt. Soc. Am. A 52, 1040–1045.
11. Burr, D. C. & Morgan, M. J. (1997) Proc. R. Soc. London 264, 431–436.
12. Harwerth, R. S., Fredenburg, P. M. & Smith, E. L., III (2003) Vision Res. 43,

505–517.
13. Burr, D. C. & Santoro, L. (2001) Vision Res. 43, 1891–1899.
14. Arend, L. E., Jr., & Lange, R. V. (1977) Vision Res. 19, 195–199.
15. Emerson, R. C., Bergen, J. R. & Adelson, E. H. (1992) Vision Res. 32, 203–218.
16. DeAngelis, G. C., Ohzawa, I. & Freeman, R. D. (1993) J. Neurophysiol. 69,

1118–1135.
17. Ohzawa, I., DeAngelis, G. C. & Freeman, R. D. (1997) J. Neurophysiol. 77,

2879–2909.
18. Sharpee, T. & Rust, N. C. (2004) Neural Comp. 16, 223–250.
19. Simoncelli, E. P., Paninski, L., Pillow, J. & Schwartz, O. (2004) in The New

Cognitive Neurosciences, ed. Gazzaniga, M. (MIT Press, Cambridge, MA), pp.
1–20.

20. Beard, B. L. & Ahumada, A. J. (1998) Proc. SPIE Int. Soc. Opt. Eng. 3299,
79–85.

21. Neri, P., Parker, A. J. & Blakemore, C. (1999) Nature 401, 695–698.
22. Abbey, C. K. & Eckstein, M. P. (2002) J. Vision 2, 66–78.
23. Ahumada, A. J. (2002) J. Vision 2, 121–131.
24. Neri, P. & Heeger, D. J. (2002) Nat. Neurosci. 8, 812–816.
25. Solomon, J. A. (2002) J. Vision 2, 105–120.
26. Murray, R. F., Bennet, P. J. & Sekuler, A. B. (2002) J. Vision 2, 79–104.
27. Levi, D. M. & Klein, S.A. (2002) J. Vision 2, 46–65.
28. Dakin, S. C. & Bex, P. J. (2003) Proc. R. Soc. London 270, 2341–2348.
29. Gold, J. M., Murray, R. F., Bennett, P. J. & Sekuler, A. B. (2000) Curr. Biol.

10, 663–666.
30. Legge, G. E. (1978) Vision Res. 18, 69–81.
31. Xing, D., Shapley, R. M., Hawken, M. J. & Ringach, D. L. (2005) J. Neuro-

physiol. 94, 799–812.
32. Patterson, R. D. (1976)). J. Acoust. Soc. Am. 59, 640–654.
33. Itti, L., Koch, C. & Braun, J. (2000) J. Opt. Soc. Am. 17, 1899–1917.
34. Georgeson, M. A. (1987) Vision Res. 27, 765–780.
35. Watt, R. J. (1987) J. Opt. Soc. Am. A 4, 2006–2021.
36. Tolhurst, D. L. (1975) Vision Res. 15, 1143–1149.
37. Mihaylova, M., Stomonyakov, V. & Vassilev, A. (1999) Vision Res. 39, 699–705.
38. Vassilev, A., Mihaylova, M. & Bonnet, C. (2002) Vision Res. 42, 851–864.
39. Waugh, S. J. & Levi, D. M. (2000) Vision Res. 40, 163–171.
40. McSorley, E. & Findlay, J. M. (2002) Perception 31, 955–967.
41. Lu, Z.-L., Jeon, S.-T. & Dosher, B. A. (2004) Vision Res. 44, 1333–1350.
42. Foley, J. M. & Chen, C. C. (1999) Vision Res. 39, 3855–3872.
43. Brainard, D. H. (1997) Spatial Vis. 10, 433–436.
44. Wetherill, G. B. & Levitt, H. (1965) Math. Stat. Psychol. 18, 1–10.

5136 � www.pnas.org�cgi�doi�10.1073�pnas.0507259103 Mareschal et al.


