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We observe a relationship among three independently derived
power laws in ecology: (i) total number of species versus area, (ii)
species frequency versus species length, and (iii) maximal body size
versus area. Aside from showing how these historically disparate
phenomena are connected, we show how recent empirical results
relating the maximal body size of top terrestrial vertebrates to the
square root of land area conform to a prior theoretical expectation
given by two of the above power laws. Of particular interest is the
observation that the exponent relating species length to species
frequency suggests a dimension for niche space for terrestrial
vertebrate assemblages of D � 3�2. This value, along with power
law for maximal body size, versus area, gives rise to the canonical
species area exponent z � 1�4.

scaling � power law � dimensionality � species-area � canonical hypothesis

More often than not in the natural sciences, one variable
(e.g., force) is related to another variable (e.g., accelera-

tion) only when it is raised to some power (e.g., 2 in this case).
Indeed, the recent proliferation and interest in power laws,
allometric scaling relationships, and so-called ‘‘scale-free net-
work’’ phenomena suggest the possibility of some common
principles operating in distant theaters of science (1–10).

However enticing this idea may be, the ubiquity of power laws
(particularly empirical ones) must certainly be due in large part
to the human tendency to seek parsimonious and ready fits to
data, with power laws being perhaps the simplest and most
forgiving approximation. Additionally, power laws arise natu-
rally when there is explicit reference to the dimension or
covering measure of a quantity, such as when one is seeking to
normalize, or make comparable, measurements of length and
volume. Thus, it is not surprising to find scaling relationships in
diverse fields such as astrophysics, particle physics, turbulence
theory, computer science, physiology, ecology, geography, ety-
mology, and terrorist networks, to name a few.

On a more concrete level, the diversity of these power laws
within a given field suggests that there may be interchangeability
among some of them that can be usefully exploited.

Our aim here is to show how three common power laws in
ecology are related and to show further how this relationship can
lead to an independent verification of a recent and very inter-
esting empirical result that relates the body size of the largest
resident terrestrial vertebrates (from the Late Pleistocene to
present) to modern Holocene land areas (11). On a more
ambitious note, we show that the observed exponent relating
species length to species frequency suggests a dimension for
niche space for terrestrial vertebrate assemblages between D �
3�2 and D � 2.

The Species-Area Exponent
One of the earliest and most ubiquitous scaling relationships in
ecology came from the observation that larger areas contain
more species in a surprisingly orderly way. This so-called species-
area relationship emerged in the early 20th century as a sampling
phenomenon and describes empirically how the number of new
species (ST � total number of species) accumulates as increas-
ingly larger areas (A) are sampled (12–16): ST � cAz. Here c is
a fitted constant related to the density of species on the
landscape.

An interesting fact that is not well appreciated is that the
commonly observed value of the exponent, z � 1�4, can be
related to the specific form of the underlying canonical lognor-
mal species abundance distribution (14, 15, 17–19). A lower
value of z corresponds to more disequitability in the ensemble or
a larger variance in log-transformed abundances.

There has been much discussion concerning the underlying
reasons for the exponent z and the range of values it can take (e.g.,
refs. 20–22; for a review of these and other proposed mechanisms,
see ref. 23). Values of z for continents are often closer to 1�3,
whereas those for islands are typically slightly lower (1�8 to 1�4)
(24). This difference in z follows from the fact that equitability in
species abundances on islands is often lower than on mainlands
(16). For a given number of species (ST), an underlying lognormal
distribution on islands will have a larger variance than the compa-
rable distribution of abundances on mainlands. A recent global
estimate of z reported by Smith et al. (25) for phytoplankton
spanning 15 orders of magnitude from microcosms to oceans
resembles the pattern of small islands and suggests higher disequi-
tability in these assemblages.

What is interesting is that the values for z appear to be
constrained in a nonrandom way so that typical values have a
relatively narrow range clustered around 1�4 (21). Among many
possible ultimate factors [e.g., concerning the distribution of
home range sizes, H (26), and dispersal dynamics (27)], this value
of the species area exponent (z � 1�4) reflects the proximate
constraints that the canonical lognormal distribution places on
how the equitability of species abundances varies with species
richness. Equitability declines with species richness in the ca-
nonical lognormal because it is inversely related to the variance
of log abundances, and the variance increases canonically with
species richness. Because of this functional connection, it is not
surprising that the species-area power law

ST � cA1�4 [1]

and the canonical lognormal distribution share in their ubiquity
and generality. Both have been observed for more than a
half-century and across many different kinds of ecological
systems.

The Species-Frequency Versus Species-Length Exponent
Another seemingly unrelated ecological scaling relationship was
proposed in the only paper that G. E. Hutchinson and his student
Robert MacArthur published together (28). It was based on a
theoretical argument about niche dimensionality and species
packing and attempts to explain the important but surprisingly
undersubscribed question of why there are so many more species
of small vertebrates than big ones (at the large end of the
length–size spectrum). It is a difficult and rather abstract piece
of work, but it presaged later interest in the importance of fractal
scaling and home range size (H) for this question in ecology (29).
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In a constructed example of their theory as applied to
mammals, they suggest that within a given biotope there would
be a rapid increase in numbers of species up to modal size, then
a slow decline in numbers at the larger sizes, converging asymp-
totically ‘‘to unity.’’ At the large end, Hutchinson and MacArthur
hypothesize that the frequency of species as a function of length
S(L) would decline roughly as L�2 (30). Hutchinson and
MacArthur (28) essentially combine the observation that L2 � H
(their figure 4) with the hypothesis that S(L) � 1�H(L) to derive
their prediction that S(L) � L�2. A 10-fold increase in body size
should result in a 100-fold decrease in species numbers.

This seemingly off-the-cuff example matches data remarkably
well. May (30) constructed a synoptic species-size distribution
for terrestrial animals (his figure 12.2) and found a reasonably
good qualitative match (drawn by eye), which was surprising
considering the inchoate state of the field. If the regression line
through the large end of the spectrum is actually computed from
this figure, a slope of around �3�2 emerges (Fig. 1), which is not
too far off from Hutchinson and MacArthur’s (28) theoretical
reckoning. Note that the slope does not change significantly
when the leftmost and rightmost points that fall below the line
of fit are eliminated. This robustness in slope is confirmed by an
analysis of covariance test for the heterogeneity of slopes (P �
0.853).

Taking May’s empirical figure for the larger species (essen-
tially vertebrates) in terrestrial animal assemblages, we obtain
the power law

S�L� � c1L�3�2 [2]

for the decline in species frequency as a function of length, L.
Thus, at the large end of the body size spectrum, there is an
approximate 3�2 power law decline in the number of species of
a given body length as a function of body length in vertebrate
assemblages. The number of species of size class L (S(L)) falls
as L�3/2.

Body Size Versus Area Exponent
More recently, Burness et al. (11) investigated variation in the
maximum body size of top terrestrial herbivores and carnivores,
and in particular how the size of the largest animals varies as a
function of land area. From data over the past 65,000 years from
oceanic islands and continents, they find convincing empirical

evidence that the body mass of top species (Mmax) increases
approximately as the square root of land area (A),

Mmax � c2A1�2. [3]

This is a robust approximation for ectothermic herbivores,
endothermic herbivores, ectothermic carnivores, and endother-
mic carnivores. Although the intercept (c2) for the log–log plots
of each of these groups was different, they all had similar slope
(�1�2). A similar relationship was found when body masses of
mid- to large-sized mammals are plotted against home range
sizes (H), thus replacing A with H and Mmax with M in Eq. 3 (31).
The substitutability of A and H is suggestive evidence that
maximum body size may be constrained by the home ranges that
can fit into a given land area.

Interrelationships Among Exponents
Although these three scaling laws are historically unrelated, it is
instructive to show that they are functionally related. For exam-
ple, it is possible to derive relation 3 from relations 1 and 2 simply
by observing that 2 implies that the total number of species in the
assemblage will vary proportionately with the maximal length of
a species in the assemblage (x intercept of Fig. 1) raised to the
3�2 power. This relationship follows because an assemblage with
more species corresponds to the line of Fig. 1 (or humped curve
in the full distribution) being shifted upward in parallel fashion
with the same slope. Thus, ST � Lmax

3/2.
This means that the total number of species will scale as the

square root of the maximal body mass found in the assemblage
ST � Mmax

1/2. When combined with Eq. 1, this yields relation 3,
Mmax � A1/2. Thus, in principle, one could have foreseen the more
recent result of Burness et al. (11) from relations suggested 20
years earlier.

Equivalently, Eq. 2 can be shown to follow from 1 and 3. By
substituting Mmax � c2A1/2 into ST � cA1/4, we get back ST �
Mmax

1/2, which in turn becomes ST � Lmax
3/2. From the argument

above this implies S(L) � L�3/2 and so on.
Thus, we have a case of three related exponents where, with

any two, one can derive the third. In particular, note that
relations 2 and 3 can be used to explain why z � 1�4 and, as such,
forms a partial explanation for Preston’s canonical hypothesis
(14, 15, 19). We believe that searching for such relations among
existing scaling laws is an enlightening exercise and is an

Fig. 1. Log length [log(L)] versus log number of species in each length class [log (S(L))] for terrestrial vertebrates. Data are from Fig. 12.7 in ref. 29. The regression
line has a slope of approximately �3�2 (y � �1.6121x � 7.803; r2 � 0.9267), consistent with scaling implied in Eqs. 1 and 3.
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accounting that should be done to look for consistencies or, more
interestingly, to detect inconsistencies among such exponents.

In this vein, we note that a larger value of the species-area
exponent z might have been expected when relations 2 and 3
were invoked to calculate it. This result follows because the data
used to estimate relations 2 and 3 were derived from large
continental landmasses. Thus, we might have expected to obtain
a higher continental value of z to reflect this. For example,
holding 3 fixed, a continental value of z � 1�3 implies a
length-species exponent of 2. Thus, all else equal, a larger
length-species exponent corresponds to a higher value for z, and
higher equitability in relative species abundance. Clearly an
accounting of interrelationships among scaling laws is an exer-
cise worth doing (8, 9, 10).

The Species-Length Exponent and the Dimensionality
of the Niche
Finally, we make a comment about the interpretation of the
length-species scaling exponent as a particular dimension of
ecological niche space. The motivation for this interpretation
comes from fractals, where the dimension of a fractal curve is
computed from the slope of a log–log plot of apparent length
against the ruler length (sides of a polygonal approximation to
the curve): Apparent length decreases as the ruler lengths used
are increased (32). Similarly, in Fig. 1, we see that the number
of species decreases as body length is increased according to a
scaling exponent. The exponent 3�2 can be thought of as the
length–species dimension of niche space. It is the dimension that
arises from a measure and covering that maps body length into
the numbers of species realized in an environment. Number of

species is the measure, and body length is the covering element.
That is, the length–species dimension is an abstract niche
measure that describes how species at the large end of the body
size spectrum can be rendered into an environment as a function
of body length. It is complementary to other possible measures
of niche space, such as the dimension of resource overlaps (33,
34), which, coincidentally, is also between 1 and 2.

Obviously, niche space can be rendered in many ways, with
alternative measures and coverings, and each of these may be
informative (or not) and have a characteristic dimensionality
associated with it. A length–species dimension between 3�2 and
2 conveys a sense of the increasing density or resistance of
evolutionary–ecological niche space to being populated by large
species. A larger exponent would indicate relatively greater
evolutionary potential for successful small-species solutions and
relatively greater resistance for multiple large-species solutions.
A higher length-species dimension suggests the importance that
body size has in structuring the assemblage and implies higher
equitability in abundances. A lower exponent would signify a
circumstance where body size appears to be less important in
structuring the assemblage and where equitability in abundances
is lower. The range of values that this exponent can take in
different taxa and in different environments should be a topic of
future interest.
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