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The role of protein flexibility in molecular motor function has
previously been studied by considering a Brownian ratchet motor
that is connected to its cargo by an elastic spring, with the result
that the average velocity of the motor�cargo system is increased by
reducing the stiffness of the linkage. Here, we extend this inves-
tigation to the case of chromosome transport during anaphase A,
in which the relevant flexibility is not primarily in the motor�cargo
linkage but rather in the cargo itself, i.e., in the chromosome. We
model the motor mechanism as an imperfect Brownian ratchet
with a built-in opposing load and the chromosome as a collection
of discrete segments linked by an elastic energy function that
discretizes the potential energy of an elastic rod. Thermal fluctu-
ations are produced in the model by random forces, as in Brownian
dynamics. All of the parameters that characterize the chromosome
are known or can be estimated from experimental data, as can all
but one of the motor parameters, which is adjusted to give the
correct transport velocity of normal-length chromosomes. With the
parameters so determined, we then reproduce the experimental
finding of Nicklas [Nicklas, R. B. (1965) J. Cell Biol. 25, 119–135] that
chromosome speed is essentially independent of chromosome
length, even though our model contains no ‘‘velocity governor.’’
We find instead that this effect is a consequence of chromosome
flexibility, as it disappears when stiffer than normal chromosomes
are considered.

Brownian ratchet � molecular motors � protein elasticity � velocity
governor � thermal fluctuations

The dramatic segregation of chromosomes during the an-
aphase A stage of mitosis has fascinated scientists for

decades. During that time, researchers have discovered that the
sister chromatids are attached via their kinetochores to bundles
of microtubules known as kinetochore microtubules (kMTs).
The kMTs connect the chromosomes to the centrosomes, which
form the poles of the mitotic spindle. The mechanism that
actually moves the chromosomes poleward, however, has re-
mained elusive until relatively recently, and some aspects of that
mechanism are still unexplained.

Whatever the force-generating mechanism, it is clear that the
forces involved are large enough to deform the chromosomes
substantially, as they bend significantly when dragged through
the viscous intracellular millieu. This bending raises the question
of whether chromosome flexibility plays an important role in
chromosome transport. That question is the subject of this
article. Our aim is to answer it by mathematical modeling and
computer simulation. The answer will, of course, be provisional,
in the sense that it will be only as good as the assumptions used
in formulating the model. These assumptions necessarily involve
the motor mechanism and the flexible nature of the chromo-
somes, and the reader should keep in mind that different
hypothetical motor mechanisms might interact with chromo-
some flexibility in different ways. Other motor mechanisms can
be investigated on a case-by-case basis by using methods similar
to those introduced here.

Many basic properties of anaphase chromosome motion
were discovered in a series of elegant experiments by Nicklas
(1–3). By severing the microtubules connecting the kineto-

chore to the pole, Nicklas was able to show that the force was
being produced at or near the kinetochore (3). Interestingly,
he also found that the mean anaphase A velocities of the
various chromosomes in a single cell were roughly the same,
despite many-fold variations in chromosome size (1). These
experimental results led him to suggest the existence of
‘‘velocity governors’’ at the kinetochore to explain the dispar-
ity in forces required to pull large and small chromosomes.

Current evidence seems to show that chromosome motion may
be produced by either or both of two mechanisms: (i) force
produced at the kinetochore as shown by Nicklas, and (ii) force
produced at the centrosome by the pulling of kMTs [‘‘poleward
flux’’ (4)]. Note that both mechanisms are accompanied by
depolymerization of kMTs but from opposite ends. In the first
case the microtubule is depolymerizing at its ‘‘plus’’ end, which
is near the kinetochore, and in the second it is depolymerizing
at its ‘‘minus’’ end near the centrosome. The relative contribu-
tion of these two mechanisms to total force production varies
depending on the organism. In Xenopus egg extracts, poleward
flux appears to dominate the motion (5), whereas kinetochore-
based force production is dominant in vertebrates (reviewed in
ref. 6), and both mechanisms contribute roughly equally in
Drosophila early embryos (7). In this article, we consider only the
first mechanism, in which force is produced by depolymerization
of kMTs at the end of the microtubule that makes contact with
the kinetochore itself.

Despite the progress made in understanding the mechanics of
chromosome motion, the nature of the molecular mechanisms by
which the force is produced have remained controversial. The
natural candidate for force production would be one of the
various microtubule motor proteins. The plus-to-minus direc-
tionality of the chromosome movement along kMTs would
appear to suggest a role for dynein, but efforts to find such a role
have had only limited success (8, 9) and are complicated by the
task of disentangling the multiple roles that dynein plays in
various mitotic mechanisms (nicely discussed in ref. 8). The
directionality of the movement would also seem to preclude the
involvement of a conventional kinesin, although the plus-end-
directed motor CENP-E has been implicated, seemingly para-
doxically, in chromosome movements (10–12). For a theoretical
explanation of the role that a plus-end-directed motor can play
in minus-end-directed transport see ref. 13.

Lately, a consensus has formed around a ‘‘Pac-Man’’ model
whereby depolymerization at the plus end of the associated kMT
provides a net poleward motion of the kinetochore, and hence
of the chromosome of which it is a part (14, 15). A clear
candidate for a type of molecule involved in this process is the
kinesin-13 family of kinesin-related proteins, which have been
shown to be ATP-dependent microtubule depolymerizers (16–
20). Several recent studies have indicated a role for microtubule-
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depolymerizing kinesin-13 kinesins and their relatives in an-
aphase A chromosome motion (7, 21–23), providing a
biochemical basis for the Pac-Man model.

A natural physical interpretation of the Pac-Man mechanism
is the Brownian ratchet, as applied to depolymerization-driven
transport by Peskin and Oster (13). One can fit the problem of
chromosome motion into the Brownian ratchet framework by
considering the kinetochore as an object diffusing along the
length of the microtubule but linked to it in such a manner that
it cannot diffuse off the end of the microtubule. As the kinet-
ochore diffuses poleward, away from the terminal tubulin dimer,
that dimer may be depolymerized, i.e., detached from its pro-
tofilament of the microtubule, thereby ‘‘ratcheting’’ the kineti-
chore poleward. As this process repeats itself, a net poleward
motion is created, thus providing the ‘‘force’’ necessary to move
chromosomes. The Brownian ratchet has many properties that
distinguish it from a simple force generator, however. For
example, in the case of a load attached to a Brownian ratchet
motor by means of a spring, the mean speed of the motor (and
hence the load) depends on the elasticity of the spring joining the
motor to the load (24), and not just on the friction coefficient of
the load as it would if the motor were a pure force generator. This
result suggests (but certainly does not prove) that if a Brownian
ratchet motor were assigned the task of pulling an extended
elastic body like a chromosome, then the flexibility of the
chromosome would influence the mean speed at which the
chromosome would be transported.

In this article, we postulate an especially simple form of a
Brownian ratchet motor for chromosome transport. It is an
imperfect Brownian ratchet, which means that it receives a finite
amount of free energy as it passes each ratchet site in the
‘‘forward’’ (poleward) direction. This free energy may come
from the energy that was stored during microtubule assembly
and is released upon depolymerization, or perhaps it comes more
directly from ATP hydrolysis by the motor protein itself. Be-
tween ratchet sites, the motor works against a built-in internal
load that gives it an activation barrier that must be climbed to
reach the next ratchet site. This load may represent the force
caused by a conventional kinesin located elsewhere in the
kinetochore such as CENP-E or the internal activation energy of
the depolymerizing enzyme itself. Such a bias may serve the
purpose of keeping the kinesin close to the plus end of the
microtubule, where it can best catalyze depolymerization (see
ref. 13). Because of the wealth of biophysial data available for
Drosophila early embryos and the simple nature of the motor
mechanism chosen, we were able to fix or reasonably estimate all
of the chromosome’s physical parameters and all but one of the
motor parameters, allowing for both quantitative and qualitative
comparison to experiment. Interestingly, when the one free
parameter was adjusted to reproduce the experimentally mea-
sured chromosome velocities, the model also produced nearly
equal velocities for both long and short chromosomes. This
independence of velocity on chromosome length strongly de-
pended on the flexibility of the chromosome and was only
apparent within the experimentally measured range of chromo-
some flexibility. Thus, we are able to explain the puzzling load
indepedence that a kinetochore seems to possess without invok-
ing any hypothetical velocity governor of the sort that Nicklas (1)
had originally postulated, or, to put it another way, chromosome
flexibility is the velocity governor.

We conclude that the Brownian ratchet�Pac-Man model is a
physically plausible mechanism for chromosome transport dur-
ing anaphase A and that chromosome flexibility plays an im-
portant role in determining the speed of chromosome transport
as produced by such a motor. In particular, one role of chro-
mosome flexibility is to make the speed of chromosome trans-
port insensitive to the length of the chromosome that is being
transported.

Model
We modeled the chromosome as a series of small segments
subject to viscous and random forces and elastic forces coupling
the segments to each other. The kinetochore, considered to be
rigidly attached to the central segment of the chromosome, was
then allowed to diffuse in a 1D potential along a track repre-
senting the depolymerizing microtubule. The potential that the
kinetochore feels has two parts, one coming from its interaction
with the microtubule, and the other from its elastic interactions
with the nearby segments of the chromosome.

Model for Chromosomal Dynamics. For simplicity, and in particular
to avoid issues related to stochastic partial differential equations,
we modeled the chromosome as a collection of discrete segments
linked by elastic forces and buffeted by thermal fluctuations. We
were careful, however, to construct the model in such a way that
it has a definite continuum limit as the number of computational
segments of the chromosome approaches infinity, and we
checked that our computational results were insensitive to the
number of segments chosen once that number was sufficiently
large.

In this spirit, the chromosome of rest length 2s0 is discretized
by placing 2N � 1 nodes on the chromosome at locations sj � j�s,
where �s � s0�N and j � �N. . . N. Each of these nodes can be
thought of as representing a segment of the chromosome. Each
interior node is centered on the segment that it represents, and
that segment has rest length �s. The nodes at the ends of the
chromosome are at the outer ends of their respective segments,
which have rest length �s�2. Note in particular that the node j �
0 lies at the center of the chromosome and represents the
segment of the chromosome corresponding to ��s�2 � s �
�s�2. It is to this segment that the kinetochore is rigidly attached
in our model.

The spatial configuration of the model chromosome at any
particular time is described by giving the coordinates of the 2N �
1 nodes x� � (x�N, . . . , xN), where xj � �3 is the position of the
jth node of the chromosome. The energies caused by bending and
stretching then take the form

EB�x�� �
1
2

KB �
j��N�1

N�1 � xj�1 � xj�1 � 2xj

��s	2 � 2

�s [1]

ES�x�� �
1
2

KS �
j��N

N�1 � �xj�1 � xj�
�s

� 1� 2

�s . [2]

Here, KB is the bending modulus and KS is the stretching
modulus of the chromosome. Both are proportional to the
Young’s modulus, Y, which is a size- and shape-independent
measure of the elasticity of the chromosomal material. The
formulae for the bending and stretching moduli in terms of the
Young’s modulus are as follows:

KB �
�r4

4
Y [3]

KS � �r2Y , [4]

where r is the cross-sectional radius of the chromosome (25).
Two ways in which the above model might be inaccurate are:

first, the Young’s modulus and�or the radius of the chromosome
might vary along the length of the chromosome, with the result
that the bending and stretching moduli would be functions of
position instead of constants; or second, the elastic properties of
the chromosome may vary over its cross section, thus altering the
relationship between KB, KS, and Y.
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With regard to the first issue, experimental studies have shown
that for chromosomes of both newt lung epithelial cells and
Xenopus A6 cells the bending and stretching moduli are roughly
uniform along the length of the chromosome and are, in
particular, no different in the vicinity of the centromere than
elsewhere on the chromosome (26). Of course, the situation in
Drosophila early embryos may be different, and studies of
chromosome flexibility in Drosophila were unable to rule out this
possibility (27). Given the evidence from other cell types,
however, we are fairly confident that the bending and stretching
moduli do not vary significantly along the length of the chro-
mosome. Experimental data bearing on the second issue are
somewhat contradictory. Simple in vitro bending and stretching
experiments seem to indicate a thin, stiff core at the center of the
chromosome (28), but later in vivo experiments are in good
agreement with the predictions of a homogenous chromosome
(26), like that considered here.

The total elastic energy E is the sum of the bending energy and
the stretching energy introduced above:

E�x�� � EB�x�� � ES�x�] [5]

and the elastic force density (i.e., the force per unit unstressed
length arising from the elastic deformation of the chromosome)
evaluated at node j of the chromosome is given by the principle
of virtual work, which here takes the form

�Fj
elastic	 i�s � �

�E
�xj

i [6]

for 
j
 � N, i.e., for all interior nodes, and

�Fj
elastic	 i

�s
2

� �
�E
�xj

i [7]

for the nodes at the ends of the chromosome, for which 
j
 � N.
Here, (Fj

elastic)i is the ith spatial component of Fj
elastic and xj

i is the
ith spatial component of xj.

An important aspect of chromosomal dynamics is the drag
force exerted by the viscous fluid through which the chromo-
some moves. One possibility would be to use a fluid mechanical
model implemented by a stochastic version of the immersed
boundary method (29). Such a model would automatically take
into account the fluid-mediated interaction between different
parts of the chromosome, and also the orientation-dependent
aspect of the fluid drag, i.e., that the viscous resistance to
transverse motion of a slender cylindrical segment is greater than
the corresponding resistance to axial motion (by about a factor
of 2). Here, however, we include neither of these effects and
adopt the simpler approach of treating each segment of the
chromosome as though it experiences simply a drag force
proportional to its own local velocity and pointing in the opposite
direction to the velocity vector. We further assume that the
constant of proportionality, which we call the friction coefficient,
is completely isotropic, i.e., having the same value for all
orientations of the segment with respect to the direction of
motion.

We remark that in simplifying the problem by ignoring the
orientation-dependent aspect of the fluid drag we are being
conservative with regard to assessing the effects of chromosome
flexibility on chromosome transport. That is, we are leaving out
one obvious source of such an effect: the bending of the flexible
chromosome reduces its drag by partially aligning the distal parts
of the chromosome with the direction of motion through the
fluid. This drag-reduction effect is explicitly excluded from our
present model, because such alignment in our model does not
alter the isotropic friction coefficient. Thus, if chromosome
flexibility has an effect in our model, it must be caused by a more

subtle effect related to the influence of that flexibility on the
thermal fluctuations of the Brownian ratchet motor.

To assign a friction coefficient to each segment of the model
chromosome, we first estimate the friction coefficient f of the
whole chromosome by using the formula for total transverse
friction of a long, needle-like ellipsoid (30):

f � �2s0	� �
8��s0

ln�2s0�r	 � 1�2
, [8]

where � is the dynamic viscosity of the intracellular medium.
Dividing f by the length of the chromosome (2s0), we obtain an
expression for �, the friction coefficient per unit length.

Now we assign to each interior node the friction coefficient
��s, and to each of the nodes at the ends of the model
chromosome we assign the friction coefficient ��s�2, because
each interior node represents a segment of length �s and each
terminal node represents a segment of length �s�2, as described
above.

The above procedure for the assignment of friction coeffi-
cients to nodes has the property that the total friction coefficient
is correct (for transverse motion) under the assumption that the
chromosome can be modeled as a slender ellipsoid with circular
cross section of radius r and total length 2s0. Note, however, that
the friction per unit length � depends on the length of the
chromosome through the logarithmic term in the denominator.
This weak, but still somewhat paradoxical, effect reflects the
long-range character of viscous interaction in Stokes flow and
points to the need for a true hydrodynamic model, which, as
mentioned above, is under development.

To include the kinetochore in the above scheme, we simply
calculate the friction of the central chromosome segment ( f0) as
follows:

f0 � fkinetochore � ���s	 , [9]

where fkinetochore � 6 ��rkinetochore, assuming a spherical shape for
the kinetochore. Here, we assume that the kinetochore is rigidly
attached to the central segment of the chromosome. That the
friction coefficients of two connected bodies should be added
can be derived by considering them as independent bodies
connected by a stiff spring.

Model for the Brownian Ratchet Force-Generating Mechanism. The
motion of the kinetochore must, of course, depend on the
Brownian ratchet-like potential describing the depolymerization
behavior and the elastic forces described above. Here, we
postulate a simple model for this ratchet potential, which will
then be coupled to the chromosome dynamics to obtain equa-
tions of motion for the whole system.

The kMT is modeled as a segmented track, each segment
representing a tubulin heterodimer of length L. We then assume
that the kinetochore is tethered to the kMT in some manner.
Physically, this tether is most likely one of the kinesin-13
kinesins, because inhibition of these molecules results in defects
in chromosome attachment and anaphase A movement (7, 22,
23). These kinesins have been shown to display both a non-ATP-
dependent diffusive mode of attachment to microtubules (in
which the kinesin is able to move passively along the length of
the microtubule) (19) and an ATP-dependent depolymerizing
mode of attachment to microtubule ends (17–19, 21). This
depolymerization occurs in a processive manner (19). Given the
role that the plus-end-directed motor CENP-E may play in
keeping the kinetochore located toward the end of the micro-
tubule (10–12), it seems likely that the depolymerizing enzyme
is most often associated with the terminal subunit of the kMT.
Accordingly, we assume that the kinetochore moves in a tilted
periodic potential landscape with a large, sudden drop repre-
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senting the energy released upon depolymerization, i.e., a ratch-
eting potential. The natural period for such a potential would be
L, the length of a tubulin dimer.

Of course, one could construct many such potentials, and the
exact shape of the potential for kinesin-13 kinesins has not yet
been experimentally determined. Thus, for simplicity, we chose
a tilted sawtooth potential characterized by only two parameters
(in addition to the period L): �V, representing the free energy
released upon depolymerization, and ��, representing the work
done in moving through a distance L against a constant opposing
force. The resulting potential U(x), where x measures distance
along the microtubule with x increasing toward the minus end,
which is the direction in which the chromosome ultimately
moves, is given by

U�x	 � ����L	x, x � �0, L	 [10]

U�x � L	 � U�x	 � �V � ��, [11]

as depicted in Fig. 1. Here, �� � 0 corresponds to the case of
a simple (but imperfect, because �V is finite) Brownian ratchet.
The interpretation of ���L as a constant opposing force may
perhaps represent the action of a plus-end-directed micotubule
motor such as CENP-E. Alternatively, �� may represent the
activation energy for the depolymerization of the terminal
tubulin dimer.

Equations of Motion. Combining the above models for kineto-
chore motion and chromosome dynamics leads to the following
system of stochastic ODEs describing the motion of the system:

dxj

dt
�

Fj
elastic

�
� �2kBT

���s	
wj , 0 	 � j � 	 N [12]

dxj

dt
�

Fj
elastic

�
� � 2kBT

���s�2	
wj , � j � � N [13]

dx0

dt
�

�F0
elastic�s �e1 � Fkinetochore	e1

f0
� �2kBT

f0
�w0�e1	e1 .

[14]

Here, wj � �3 is a 3D temporal white noise with the following
statistical properties: �wj(t)� � 0 and �wj

i(t)wk
m(t
)� � 
(t �

t
)
jk
im, where � � denotes the expected value of the enclosed
quantity. The motion of the kinetochore is represented by the
equation corresponding to j � 0; because the kinetochore is only
allowed to move along the microtubule, all spatial components,
except those along the unit vector e1 (corresponding to the x
axis), are ignored. Fkinetochore is a term that represents the force

produced by the potential in which the kinetochore moves,
corresponding to �dU�dx.

Numerical Method
Our numerical scheme combines a lattice method for the motor
with a standard Euler-Maruyama method (31) for the chromo-
some. The lattice method is needed for the motor because of the
discontinuities in the potential U(x) in which it moves. The
particular lattice method that we use has been described by Wang
et al. (32). It introduces a computational lattice along the
microtubule with a uniform spacing that is considerably smaller
than the period L. The motor does a random walk on this
computational lattice, jumping forward or backward with rate
constants determined by the potential energy difference be-
tween lattice sites. The energy that is used to determine the rate
constants involves not only the potential U(x) of the motor itself,
but also the elastic energy determined by the configuration of the
central part of the chromosome. Once these rates are computed,
a time increment is randomly chosen for a jump to another lattice
point by using the Gillespie method (33). This time increment is
then used as a time step to update the position of the rest of the
chromosome by using the forward Euler method. If the time
increment chosen is above the empirically determined stiffness
threshold of the underlying partial differential equation, then the
time increment is divided equally into p smaller time steps each
below the stiffness threshold, and the chromosome is then
updated p times by using the smaller time step before the next
lattice event is sampled. This method prevents occasional large
time increments from causing numerical instability.

Effectively, the time step is controlled by the distance between
computational lattice sites along the microtubule. The overall
numerical scheme may thus be checked for convergence of mean
computed chromosome velocity as this computational lattice is
refined (Fig. 3, which is published as supporting information on
the PNAS web site). Similarly, we need to check that the
computed results are insensitive to the number of segments into
which the model chromosome has been subdivided, once that
number of segments is sufficiently large (shown in Fig. 4, which
is published as supporting information on the PNAS web site.

The numerical method is more completely described in Ap-
pendix, which is published as supporting information on the
PNAS web site.

Parameters
The parameters used in this study are given in Table 1.

Although drawn from a variety of sources, the parameters in
Table 1 are those of Drosophila melanogaster early embryos. The
dynamic viscosity was computed by estimating the force gener-
ated during anaphase A by the shape of the moving chromosome
(27) with a formula from a previous study (34). This formula is
not strictly correct in that it neglects the drag on a chromosome
segment moving parallel to its axis, but an independent deter-
mination of the viscosity involving microbeads has obtained a
similar result: 0.282 Pa�s (35).

There are no data available for the radius of the kinetochore
in this particular system, but there certainly are reasonable
physical limits one can place on the size of the kinetochore. We
chose a value considerably smaller than the radius of the
chromosome itself, but still large enough to allow the attach-
ment of multiple microtubules, each of which have a diameter
of �25 nm.

The motor potential itself, as modeled, requires the specifi-
cation of three parameters. We set the period L equal to the
known length of a tubulin heterodimer, which is the natural
repeat distance (or ‘‘unit cell’’) along any one protofilament of
a microtubule. The driving ratchet potential �V is set equal to
the amount of free energy released by the hydrolysis of one ATP
molecule. This value is intended merely as an order of magnitude

Fig. 1. Schematic of the potential in which the kinetochore travels. x refers
to the position of the kinetochore along the microtubule track. �V is the
potential drop upon depolymerization, and �� is the total linear increase in
the potential in period L.
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estimate, because the details of the motor mechanism are not
known. As long as �V �� kBT, the precise value of �V will not
matter much, because the ratchet will be essentially irreversible.

The potential of the opposing load �� (which can also be
thought of as an activation energy that must be overcome for the
motor to move from one ratchet site to the next) is the one freely
adjustable parameter of the model. We chose it so that the
computed velocity of an autosomal chromosome of normal
dimensions and normal Young’s modulus moves at the experi-
mentally measured velocity. It is encouraging that the value of
�� chosen in this way turns out to be reasonable: it is 8.0 kBT,
or �2�3 the amount of energy liberated by the hydrolysis of one
ATP molecule. It is important for the qualitative behavior of the
model that this activation energy turns out to be substantially
greater than kBT. Although we do not report those results here,
we found that the presence of such a significant activation barrier
strengthens the influence of chromosome flexibility on the
velocity of chromosome transport.

Results and Discussion
The results of our study are summarized in Fig. 2, which shows
computed chromosome velocity as a function of Young’s mod-
ulus (a measure of stiffness that affects both the stretching and
bending rigidity of the chromosome) for three different length
chromosomes. The lengths chosen are 0.5 �m (Fig. 2, red line),
1.0 �m (Fig. 2, green line), and 3.0 �m (Fig. 2, blue line). These
values were chosen so that the longest length is that of the longest
Drosophila chromosome, the shortest length is that of the
(shortest) fourth chromosome, and the intermediate length is

included in our study for comparison with the other two. Movies
1–4, which are published as supporting information on the PNAS
web site, show simulations corresponding to several of the
individual data points in Fig. 2.

The physiological value of the Young’s modulus is 38 Pa; it is
indicated by the symbols in Fig. 2 that have been plotted on each
of the lines to highlight that case. Despite the 6-fold ratio of their
lengths, the velocities of the longest and shortest chromosomes
in our study differ by only �20% at physiological stiffness.

This approximate load independence is qualitatively consis-
tent with the fundamental discovery of Nicklas (1) that chro-
mosome velocity during anaphase A is essentially independent of
chromosome length, and it is in quantitative agreement with the
observation of D. Sharp (personal communication) made in
Drosophila early embryos that the fourth chromosome moves
�20% faster than the largest chromosome.

A glance at Fig. 2 shows, moreover, that this result is a
consequence of chromosome flexibility. For stiffer chromo-
somes, the velocity is by no means independent of length. Indeed,
the velocity of the shortest chromosome in our study increases
substantially as its stiffness increases from the physiological
value, whereas the velocity of the longest chromosome decreases
as the stiffness is increased. By the time the stiffness has
increased by two orders of magnitude, the velocity of the shortest
chromosome is about three times greater than the velocity of the
longest one (compare Movies 1 and 2).

The increase in velocity with increasing stiffness that is seen
in the case of the shortest chromosome is a surprise for which we
have no intuitive explanation (see Movie 4). A hint that this
trend may not continue indefinitely comes from the chromosome
of intermediate length, which shows a slight rise in velocity as
stiffness increases to the physiological value, but then a more
pronounced decrease in velocity as the stiffness increases fur-
ther. To see what happens at very large stiffness, we computed
the chromosome transport velocity in the limiting case of infinite
stiffness by evaluating a formula derived in ref. 24 (see equation
13 of that reference). The infinite-stiffness results are plotted in
Fig. 2 as dashed horizontal lines. Note, first, how much smaller
these infinite-stiffness velocities are than the corresponding
velocities computed at physiological chromosome stiffness.
Moreover, the velocities of these rigid chromosomes do not show
anything like the length independence of their physiologically
f lexible counterparts. In particular, at infinite stiffness the
shortest rigid chromosome is transported �2.5 times faster than
the longest rigid chromosome.

Summary and Conclusions
To study the possible role of chromosome flexibility in chromo-
some transport, we have introduced a mathematical model of a
flexible chromosome being pulled by an imperfect Brownian
ratchet biomolecular motor with a built-in opposing load. The

Table 1. Parameters used in this study

Parameter Value Source�notes

Young’s modulus 38 � 20 Pa Ref. 27
Dynamic viscosity 0.2 � 0.1 Pa�s (200 cP) Ref. 27
Chromosome length 3.0 � 1.0 �m (long autosomes) David Sharp, personal communication

1.0 �m (hypothetical)
0.5 � 0.25 �m (fourth chromosome)

Chromosome radius 0.19 � 0.10 �m Ref. 27
kBT 4.116 � 10�21 J At 25°C
Ratchet potential, �V 12.5 kBT Amount from ATP hydrolysis
Activation energy barrier, �� 8.0 kBT Chosen to make autosomal velocity physiological
Period of motor potential, L 8.3 nm Length of tubulin dimmer
Radius of kinetochore 30 nm Chosen within physically reasonable limits

Fig. 2. Computed steady chromosome velocities for long (3 �m, blue),
medium (1 �m, green), and short (0.5 �m, red) chromosomes as a function of
Young’s modulus for �� � 8 kBT. The starred data point corresponds to the
physiological Young’s modulus of 38 N�m2. See Movies 1–4 for animations of
simulated chromosome motions comparing a variety of data points.
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postulated motor mechanism is admittedly idealized, but the
focus of this article is not on the motor mechanism but rather on
the flexible nature of its chromosomal cargo. Moreover, the
methods introduced here are applicable to chromosome trans-
port by any of a wide class of motor mechanisms, and so may be
used in the future to reassess the role of chromosome flexibility
as our knowledge of the motor mechanism becomes more
definite.

An important feature of the model studied in this article is that
all of its parameters but one are either known or can reasonably
be estimated a priori, without any comparison of model predic-
tions to experimental measurements. The one parameter that
cannot be determined a priori is the activation energy barrier,
here called ��, that must be overcome for the motor to move
from one ratchet site to the next. We chose this activation energy
by matching the predicted and observed transport velocities of
autosomal chromosomes. With all parameters fixed, we then
proceeded to use the model to predict the transport velocities of
three different length chromosomes over a wide range of stiff-
nesses (Young’s moduli), including the limiting case of infinitely
stiff (i.e., rigid) chromosomes.

At normal chromosome stiffness (Young’s modulus � 38 Pa)
we have reproduced the classical observation of Nicklas (1) that
chromosomes or chromosome fragments of drastically different
lengths are transported at approximately the same speed during
anaphase A. Specifically, in our model study, a chromosome that
is six times shorter moves only 20% faster than its longer
counterpart. By varying the stiffness, moreover, we have been
able to show that this effect is a consequence of chromosome
flexibility, because it disappears (i.e., the transport velocity
becomes much more length-dependent) as the chromosomes
become more rigid.

Experimentally, one might be able to test the theory put forth
here by finding some method of stiffening chromosomes without
affecting the motor mechanism at the kinetochore. One possi-
bility for such a method might be inhibiting or overexpressing
some chromatin remodeling factor, like topoisomerase II or a

condensin; changes in stiffness could be measured by persistence
length methods similar to those developed in ref. 27. We predict
that stiffened chromosomes will move at different rates than
normal chromosomes, as computed by using the methods here.
Moreover, we predict that stiffened chromosomes of different
lengths (for instance, the four chromosomes in Drosophila) will
move at much different rates as compared with the relatively
constant rate at which different chromosomes move in the
unperturbed setting. Such an experiment would determine
whether chromosome flexibility is indeed the velocity governor
postulated by Nicklas (1).

An important limitation of this study is that the stochastic
model of chromosome movement that we have used does not
take into account hydrodynamic effects, i.e., the influence of one
part of a moving chromosome on another through the viscous
incompressible fluid in which the chromosome is immersed.
Instead, we have used a simple isotropic fluid drag model. This
limitation could be remedied in work based on an immersed
boundary method with thermal fluctuations (29).

Another interesting extension of this work would be to include
the effects of poleward flux, which is the dominant mode of
chromosome transport in some organisms (5) and plays a
significant role in Drosophila. Given the fact that kinesin-13
kinesins also play a role in depolymerization at the poles (7), a
Brownian ratchet model might apply for that situation as well,
although in that case the relevant diffusion would be that of the
microtubule rather than the enzyme�kinetochore. Moreover,
such a mechanism could produce an additional tension on the
microtubule at the kinetochore, potentially altering the kineto-
chore dynamics as well.
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