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We have developed a method that combines the ROSETTA de novo
protein folding and refinement protocol with distance constraints
derived from homologous structures to build homology models
that are frequently more accurate than their templates. We test
this method by building complete-chain models for a benchmark
set of 22 proteins, each with 1 or 2 candidate templates, for a total
of 39 test cases. We use structure-based and sequence-based
alignments for each of the test cases. All atoms, including hydro-
gens, are represented explicitly. The resulting models contain
approximately the same number of atomic overlaps as experimen-
tally determined crystal structures and maintain good stereochem-
istry. The most accurate models can be identified by their energies,
and in 22 of 39 cases a model that is more accurate than the
template over aligned regions is one of the 10 lowest-energy
models.

fragment assembly � structure prediction

Building accurate 3D structural models for protein sequences of
unknown structure is a challenging, unsolved problem in

contemporary biology, and its solution would provide insight into
a broad range of biological systems. Large-scale genomic sequenc-
ing efforts are providing increasing numbers of sequences, but the
number of experimentally determined structures remains small by
comparison. The goal of homology modeling methods is to match
these query sequences with known template structures and con-
struct accurate 3D models of the proteins.

This task involves four steps: identifying suitable templates,
aligning the query sequence to the templates, building the model for
the query sequence by using information from the templates, and
evaluating the models. Several methods are available to perform
these steps and appear to perform similarly when used optimally
(see refs. 1 and 2 for a description of several current methods).
Although these methods have been useful, in most cases the final
model is not more structurally similar to the query structure than
the parent template (3, 4). In addition, many homology-modeling
methods introduce physically unrealistic properties into the models
in efforts to substitute the query sequence onto a nonnative
backbone (2). The fixed backbone of the template is not always able
to accommodate the side chains of the query sequence, particularly
at buried positions, resulting in poor stereochemistry or atomic
overlaps. Although the overall topology of the query structure can
be derived from its homologs assuming a reasonably confident
alignment, the atomic details of a homology model are of equal
interest. Accurate modeling of side-chain and loop conformations
is necessary in modeling and manipulating small molecule interac-
tions, protein–protein and protein–nucleic acid interactions, and
protein function.

A useful homology model is one that can provide more infor-
mation about a protein of interest than any homologous structures.
The positions of the query sequence that are aligned to a template
can be modeled by simply copying coordinates for the backbone
atoms or by using this information to generate spatial restraints, but
modeling unaligned regions requires different tactics. Reliably
modeling loops and unaligned regions is a challenge, and many
current homology-modeling protocols do not build coordinates for
all of the residues in every sequence. To date it has not been

demonstrated that homology models can be built that are consis-
tently more accurate over backbone and side-chain atoms than their
templates, physically realistic according to a structure validating
programs such as PROCHECK (5), WHATCHECK (6), or MOLPROBITY
(7), and model all residues in the query sequence with all atoms
explicitly represented. Our goal in this research was to meet these
challenges.

ROSETTA builds models of protein structures by inserting small
fragments derived from the structures in the Protein Data Bank
(PDB) into an initially unstructured chain (8, 9). We modified the
ROSETTA ab initio folding protocol (8–10) to incorporate inter-
atomic distance information from homologous structures and ap-
plied the revised protocol to a test set of query sequences. We
compared models generated with this method to models generated
with a fixed template method, ROSETTA Structurally Variable
Region (ROSETTASVR) modeling (11, 12). To assess the accuracy of
side-chain modeling, we compared the ROSETTA models folded
with constraints to those generated with MODELLER (13). Our
method preserves chain connectivity throughout the simulation,
strictly enforces the steric properties of experimentally determined
protein structures thereby ensuring physically plausible models, and
unaligned regions of any length or conformation can be modeled by
using the relatively successful ROSETTA fragment insertion method.

Results
It is generally accepted that the most important component of
homology modeling is the choice of the template structure and
initial alignment of the query sequence to that template (4, 14). To
decouple the sequence-alignment task from the coordinate mod-
eling process, we used structure–structure alignments derived from
3DPAIR (15) to first test our methods. We also used standard
sequence-based alignments derived from PSI-BLAST (16) to test the
sensitivity of our method to incomplete coverage and minor
sequence-alignment errors. We chose our test set of query–
template pairs to be in a sequence similarity range detectable with
PSI-BLAST, so the template and query structure adopt the same
topology, and sequence-alignment errors are minor but the struc-
tural differences are still significant.

Near-Native Homology Models Can Be Selected by Energy. The
method we have developed, ROSETTA folding with constraints, uses
a low-resolution search with side chains approximated with cen-
troids followed by a high-resolution search with all atoms, including
hydrogens, represented explicitly. Thousands of trajectories are
required to adequately sample conformational space, and a diverse
population of models is generated that satisfy the constraint set and
energy function to varying degrees. In both the low- and high-
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resolution populations, models with low rms deviation (rmsd) to the
native structure can be selected based on their energies (Fig. 1; for
additional examples, see Fig. 7, which is published as supporting
information on the PNAS web site). In the examples shown in Fig.
1, the low-rmsd models are also low in energy, and the lowest-
energy model in the full-atom refined population (magenta points)
is the most accurate model (1acf-1awi) or one of the most accurate
models (1b07–2sem). In some test cases the lowest-rmsd models
have high energies (discussed below); however, a low-rmsd model
can be found in the lowest 10 energy models selected from the
complete full-atom refined population (referred to as the low-
energy* model).

The population of full-atom refined models (Fig. 1, magenta
points) is shifted toward lower rmsd values than the starting
low-resolution population from which they were derived (Fig. 1,
cyan points). Both populations contain low-energy models that are
more similar to the query structures than the template-based
ROSETTASVR structures (ROSETTASVR template model rmsd de-
noted with the vertical orange line). Although the protocol samples
conformations close to the native conformation, it does not sample
the true native state (black points, idealized minimized native
structures; described in ref. 17). The idealized minimized native
structures are lower in energy than all of the models we folded with
constraints (Fig. 1); this energy gap has been observed previously
in our group (17, 18). This finding indicates that the ROSETTA
energy function is reasonably accurate and suggests that if enough
sampling were performed, the native structure (or the closest
approximation allowed using fixed bond lengths and angles) would
be found.

Folding with Constraints Produces Physically Realistic Complete-Chain
Models. The final all-atom models were analyzed for atomic clashes
by using the program MOLPROBITY (7), and the results were
compared with those obtained for the native query structures, the
template-based model generated by using ROSETTASVR modeling
(12), and the model built with MODELLER (13). Only aligned regions
were included in the calculation. The models folded with con-
straints have considerably fewer numbers of atomic clashes than
models generated by using MODELLER or ROSETTASVR modeling
(�10% of the total MODELLER clashes and �20% of total fixed-
template model clashes) and on average contain approximately the
same number as native crystal structures (Fig. 2). We used MOD-
ELLER as one standard of comparison because it is one of the best
and most widely used comparative modeling programs available.
The models we generate using ROSETTA with constraints are more
accurate in many respects than the models built with MODELLER;
however, the compute time of the method presented here is orders
of magnitude longer. The average time required to produce a

population of 100 homology models using MODELLER is �1 hour on
a single modern processor, compared with 90 days using our
method (�300 h are required to generate the 30,000 low-resolution
starting conformations and �1,875 h are required to refine the
4,500 all-atom models).

Folding with Constraints Produces Homology Models Closer to the
Native Structure than Their Parent Templates. We used structure–
structure alignments generated with the program 3DPAIR for each
query–template pair to examine the success of the protocol in the
absence of alignment errors. This method is a direct test of our
sampling strategy and energy function and provides an upper-limit
estimate of how well the method can perform; decreases in the rmsd
correspond directly to improvements to the model and cannot be
simply due to improving the alignment. We selected the lowest-
energy model and the low-energy* model produced by folding with
constraints and compared their rmsd values with the ROSETTASVR
template-based model over aligned regions as well as over the
complete chain. The low-energy* model was frequently more
accurate than the template-based model over the aligned regions as
well as over the complete chain. For the aligned regions, the rmsd
was lower than the template-based model in 22 cases, unchanged in

Fig. 1. Low-rmsd models have low energies. Representative data from the 1acf–1awi (Left) and 1b07–2sem (Right) query–template pair centroid and full-atom
searches are shown. Each point represents one trajectory. Green points represent the energies and rmsd values of the low-resolution population. Cyan points
are the lowest 15% by energy subset of models that were selected for full-atom refinement. Magenta points represent the energies and rmsd values of the final
models after full-atom refinement. For reference, the results of five trajectories of idealized minimized 1acf and 1b07 native structures (described in ref. 17) are
shown in black. The orange vertical lines represent the rmsd of the template based model; the energy of the template-based model is out of range of this plot.

Fig. 2. Comparison of atomic clashes observed in native structures, models
folded using ROSETTA with constraints, models generated with MODELLER, and
models generated using a fixed template and ROSETTASVR modeling protocol.
The y axis reports the average number of clashes per test case in aligned
regions over the 39 test cases in the benchmark set.
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2 cases, and worse in 15 cases. For the complete chain, the rmsd was
lower than the template-based model in 29 cases, unchanged in 7
cases, and worse in 3 cases (Fig. 3A).

The results for the low-energy model are similar for the complete
chain models, where 22 cases show improvement over the template-
based model, 3 are unchanged, and 14 are worse. However, the
low-energy models are more frequently worse than the template-
based model over the aligned regions; 13 are better, 5 are un-
changed, and 21 are worse. To see whether we could detect more
accurate models, we clustered the full-atom refined populations
and compared the models at the centers of the largest cluster and
largest cluster* (defined as the lowest rmsd cluster center model out
of the largest 5 clusters) to the template-based model. The cluster
center of the largest cluster is more accurate than the template more
frequently than the lowest-energy model, but the cluster center of
the top cluster* is not more accurate than the lowest-energy* model
most of the time (Fig. 3).

The low-rmsd models are significantly more accurate than those
selected by energy; in 29 cases the low-rmsd model had a lower rmsd
value than the template-based model, and in 10 cases the rmsd was
higher. For the complete chain, in 34 cases the low-rmsd model had
a lower rmsd value than the template-based model; in 1 case the
value was unchanged, and in 4 cases the rmsd was higher. We
conclude that folding with constraints can produce more accurate
backbone scaffolds but that increased sampling is required to find
the precise conformation that will allow for native-like side-chain
packing.

We also used alignments generated with PSI-BLAST (16) to
examine the more realistic case where the alignment is often
incomplete or contains errors. As observed for the structure-based
alignments, the final low-energy* model is usually more accurate
than the template over aligned regions (22 better, 2 unchanged, and

8 worse) as well as over the entire chain (29 are better and 3 are
worse) (Fig. 3B). For the low-energy models, 12 are better, 7 are
unchanged, and 13 are worse than the template-based model over
aligned regions, and 20 are better, 4 are unchanged, and 8 are worse
over the complete chain. These results show that folding with
constraints is less sensitive to alignment errors than template-based
methods. The ROSETTA fragment replacement protocol can model
long stretches of unaligned query sequence (such as the 1pva-1ahr
example; see below), which makes folding with constraints less
sensitive to incomplete alignment coverage. It is well suited to
problems where no template can be found with confidence over one
or several regions of the query sequence.

Models Produced by Folding with Constraints Have Reasonably Accu-
rate Side-Chain Conformations. For many applications, accurate
prediction of side-chain conformations is important. In addition,
the success of our method and the reliability of the energy function
to discriminate near-native models depend on accurate side-chain
placement, especially in the hydrophobic core. We compared the
side-chain conformations over aligned regions of the low-energy
and the low-energy* models with the side-chain conformations of
models generated by ROSETTASVR and MODELLER. First, we com-
puted the absolute difference between the �1 angle for each residue
in the models with the corresponding �1 angle in the native
structures. Then, we classified the side-chain positions as either
buried or exposed and grouped the counts into bins of 10°. A side
chain was considered buried if �20 C� atoms were found within a
10-Å radius of its C� atom. The �2 angle differences were measured
and included in the analysis only if the �1 value of the same residue
differed from the native by an absolute value of �15°. For buried
side chains, the models folded with constraints more accurately
describe the native side-chain conformations than the MODELLER

Fig. 3. The rmsd of refined models selected accord-
ing to lowest energy, lowest energy*, lowest rmsd, top
cluster, and top cluster* compared with the initial
fixed template-based model for each protein in the
test set. (A) Data were obtained by using 3DPAIR align-
ments (structure-based). (B) Data were obtained by
using PSI-BLAST alignments (sequence-based). The
height of the bars represents the number of cases
where the rmsd improved (blue bars), became worse
(red bars), or remained unchanged (yellow bars) with
respect to the fixed template-based model over
aligned regions and over the complete chain. Com-
plete chain models were generated by using ROSETTASVR

modeling.

Fig. 4. Comparison of predicted buried side-chain (A)
and exposed side-chain (B) conformations over
aligned regions between the low energy and low en-
ergy* models folded with constraints, models pro-
duced by using MODELLER and models produced with
ROSETTASVR. The height of the bars in bins 1, 2, 3, and 4
represent the average number over the test set of side
chains where the � angle was predicted within 0–10°,
10–20°, 20–30°, and 30–40° of the native value, re-
spectively. Green bars, low-energy models folded with
constraints; blue bars, low-energy* models folded
with constraints; red bars, models built with MODELLER;
yellow bars, models built with ROSETTASVR.
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models in all angle bins for �1 and �2 angles (Fig. 4A). The
differences were less pronounced for �1 angles of exposed side
chains and not significant for �2 angles of exposed positions (Fig.
4B). Surprisingly, the ROSETTASVR side-chain conformations were
the most accurate (Fig. 4). Differences in the energy functions used
in the folding with constraints and ROSETTASVR protocols may
account for this result, and clearly there is room for optimization of
the ROSETTA side-chain packing protocol with our method.

Low-Energy Models Disproportionately Violate Incorrect Constraints.
Homology-modeling programs using spatial restraints such as the
one presented here rely heavily on the accuracy of the constraints.
However, because the query structure is not identical to its ho-
mologs, some of the constraints derived from the homologs may be
violated in the native structure. Therefore, the most accurate
homology models should violate the constraint set to a certain
extent. We analyzed the lowest 10 energy models for each query–
parent pair in our test set and compared the constraint violations
with those found in the native structure. In most cases, the percent
of correct constraints (defined as constraints satisfied in the native
structure) that were violated in the final models was less than the
percent incorrect constraints (defined as constraints violated in the
native structure) that were violated in the final models (average
values of 16.5% of incorrect constraints violated and 2.5% of
correct constraints violated over the test set; see Supporting Text,
which is published as supporting information on the PNAS web
site). Thus, the stiffness of our physical model, with stringent
treatment of sterics, makes it robust to spurious forces arising from
incorrect constraints. The considerable added information from the
energy function makes the method less sensitive to the choice of
template. Although the lowest-energy models are more frequently
worse than their templates over the aligned regions, the energy
function allows the generation of some models that are better than
the starting template.

Successful Examples. The Crk SH3 domain (PDB ID code 1b07)
structure consists of strands and short connecting loops. The
backbones of the template-based model and the low-energy* model
folded with constraints derived from the homologous 2sem struc-
ture overlay closely with the 1b07 structure. However, two aligned
regions show differences (Fig. 5A, boxed regions). The model
folded with constraints more closely resembles the 1b07 native
structure than the template-based model.

For the Pike parvalbumin �-component (PDB ID code 1pva)
example, the most significant difference between the native struc-
ture and the models folded with constraints is the 38-residue

unaligned region at the N terminus of the 1pva sequence. Both the
model folded with constraints and the fixed template model with
loops built with ROSETTA predict two helices and a short loop for
this unaligned region, but the extension closely resembles the native
structure in the model folded with constraints, whereas in the
ROSETTASVR template-based model the orientations and locations
of the helices are incorrect (Fig. 5B). An additional 50 models were
made using ROSETTASVR, and none modeled the correct confor-
mation of the unaligned region.

Effect of Increased Conformational Space Sampling on the 1pva-1ahr
Test Case. As discussed above, we believe that many independent
trajectories are required to finely sample conformational space
around the native structure such that the details of the native
backbone and the native side-chain packing arrangement can be
found. To test this hypothesis, we used the distributed computing
software BOINC (19) on the 1pva example because it showed a
promising correlation of energy with rmsd but was not an easy
target because of the long unaligned region and features in the
aligned region that differed from the 1ahr template. We were
able to run thousands of simulations each day, and the popula-
tion of 54,267 full-atom models contained 43 models with �1.5
Å rmsd (compared with 6 produced using our in-house com-
puting clusters).

Even with thousands of trajectories, the space near the native is
still under-sampled and the lowest energy models do not corre-
spond to the most accurate models (Fig. 6A). However, in clustering
the lowest 30% energy models, we found that the second-largest
cluster was structurally very similar to the native structure (Fig. 6A,
boxed region 2, and Fig. 6C), The region highlighted in green in Fig.
6 A and B is a continuous helix in the 1ahr template structure and
is predicted to be a continuous helix with the secondary structure
prediction programs used by ROSETTA to select fragments. The
helix is broken in the 1pva native structure at Phe-65, and this
unusual feature is rarely incorporated into the models. In the
models belonging to the largest cluster (Fig. 6A, boxed region 1) the
helix is continuous (Fig. 6B) but adopts the correct conformation
in the second-largest cluster (Fig. 6C).

Thus, although the low-rmsd models are not sufficiently similar
to the native structure to have as low energies, they can be detected
based on their close proximity to one another. This finding is
reminiscent of the ability of clustering to select native-like models
out of populations of low-resolution models (20), but here the
selection is based on finer details such as an irregular helix rather
than overall topology. It is at first surprising that several of the
models that incorporate the bent helix are found in a tight cluster,
because only 3.5% of the population used for clustering contained
this feature. However, as shown in Fig. 6A (magenta points), the
lowest-energy models containing the bent helix feature are native-
like, and hence similar to each other. Many low-energy conforma-
tions are possible if Phe-65 and neighboring residues are in a
canonical �-helix conformation, but only the native-like conforma-
tion is low in energy if the backbone torsion angles at this position
are nonhelical.

Discussion
We have developed a method to build homology models of protein
sequences of unknown structure using ROSETTA fragment insertion
combined with distance constraints derived from homologous
structures. Coordinates are built for all residues in the query
sequence, regardless of whether they were aligned to a template or
not, or are in regular secondary-structure elements or flexible
loops. Although the resulting lowest-energy models are frequently
less accurate than their templates over aligned regions, at least 1 of
the 10 lowest-energy models is frequently more accurate than the
template from which they were derived. In addition, the models are
physically reasonable; they contain the same number or fewer
atomic overlaps than native crystal structures and by construction

Fig. 5. Examples of successful test cases. (A) 1b07 query, 2sem template. The
native 1b07 structure is shown in dark gray with the unaligned regions shown in
green, the fixed template model in blue, and the model folded with constraints
is shown in magenta. Backbone superposition of the native structure and the two
models are shown. (B) 1pva query, 1ahr template. The aligned regions of the
native 1pva structure, the fixed template model, and the model folded with
constraints are shown in gray, blue, and magenta, respectively. The 38-residue
unaligned region is shown in gray, green, and red for the native structure, the
template-based model, and the model folded with constraints, respectively. This
figure was made with PYMOL (23).
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have ideal bond lengths and angles. It has been found that models
may sometimes be numerically evaluated incorrectly as being more
native-like by virtue of overlaps (21), an error we wished to avoid
in determining whether our method truly accomplishes structural
improvement. As such, we are encouraged by the lack of atomic
overlaps demonstrated by our low-rmsd models.

In the course of this study, we used distance constraints derived
from a single template applied to a single query sequence. It is
possible that incorporating constraints from multiple templates, as
MODELLER (13) does, will improve the results and extend the
method to more remote sequence–structure pairs. Constraints

derived from experimental information also could be easily incor-
porated. In addition, it may be possible to refine and discriminate
among candidate alignments by generating populations of models
for each alignment and comparing their energies.

The method presented here is an improvement over current
methods in the range of sequence identity, protein size, and
alignment coverage tested here, but it has some limitations. The
computational cost is large, especially when compared with other
homology modeling programs such as MODELLER. The method is
currently less successful for proteins with high contact order, and
the simulations require even more computational time for these
cases. Although the method is comparable with fixed-template-
based methods for the very largest proteins we tested, a 255-residue
TIM barrel (1aw2) and a 245-residue two-domain ATPase (1d2n),
these cases will likely require additional sampling because the
near-native space was not well populated (see Fig. 7).

The size of the conformational space a polypeptide chain can
occupy is vast, even for small proteins when an initial low-resolution
model is structurally similar to the native conformation. In addition
to the increased degrees of freedom, searching this space becomes
more difficult with higher resolution because of increased steric
constraints. Slight differences in the backbone conformation may
accommodate entirely different combinations of side-chain con-
formations, leading to a very rough energy landscape. Irregular
features such as the 1pva broken helix add to the complexity of the
search problem, because they are essential to locating the native
minimum but may be rare in model populations. Distributed
computing resources provide a powerful tool in which to navigate
this space and potentially populate the region near native confor-
mation with enough backbone scaffolds such that the native side-
chain conformations can be accommodated.

Methods
The data set, generation of sequence alignments, and the
full-atom refinement protocol are described in Supporting Text.

Distance Constraint Generation. Interatomic distances between �-car-
bon atoms were calculated for each template structure. For each
pair of atoms whose distance d � 10 Å in the template structure a
constraint was derived with a lower bound (l) of d � 1.5 Å and an
upper bound (u) of d � 2.0 Å. To generate a set of constraints as
consistent as possible with the query structure, the initial set of
constraints was combined with the ROSETTA ab initio protocol by
penalizing pairwise distances that deviated from the bounds and
used to generate 1,000 initial low-resolution models. These initial
models were then analyzed to determine how many times each
distance constraint was violated. The constraints that were violated
more often than (0.5 � max) times, where max equals the maximum
number of times any one constraint was violated, were removed,
and the low-resolution folding protocol was repeated. This proce-
dure reduced the number of violations of the native query structure
with the initial constraint data set by 36.1% on average, compared
with 14.0% if the same number of constraints were randomly
removed from the complete constraint set (see Table 1, which is
published as supporting information on the PNAS web site).

Folding Protocol. Initial models were folded by using the ROSETTA
fragment insertion protocol (8–10) with side chains represented by
centroids. Custom fragment libraries were constructed for each
query–template pair by first generating fragments from structures
of homologous proteins with sequence identities less than or equal
to the test query–template pair. These fragments then were added
to a standard set of fragments from a set of nonredundant PDB
structures, where the sequences of the structures are �60% iden-
tical to any other sequence in the set.

A fragment screening protocol modified from Rohl et al. (8) was
used to maximize the satisfaction of the constraints. After a position
was randomly selected for insertion, the candidate fragments for

Fig. 6. The 1pva–1ahr query–template pair full-atom models generated using
the BOINC distributed computing resource. (A) Cyan points represent the energy
and rmsd values of the full-atom models; 54,267 full-atom models are shown.
Magenta points represent models that contained nonhelical backbone torsion
angles at position 65 and are a subset of the 30% lowest-energy models used for
clustering. For reference, the results of 20 trajectories of idealized minimized
1pva native structures (described in ref. 17) are shown in black. The boxes labeled
1 and 2 denote the locations of the models belonging to the largest and second-
largest cluster, respectively. The orange vertical line represents the rmsd of the
template-based model; the energy of the template-based model is out of range
of this plot. (B and C) Models belonging to the largest cluster (B) and second-
largest cluster (C) correspond to the lowest-energy and most accurate models in
the population, respectively. (B) Average cluster rmsd � 2.5 Å. (C) Average cluster
rmsd � 1.4 Å. Models are shown in gray, the native 1pva structure is shown in
green, and the irregular helix is shown in magenta. Phe-65, which has nonhelical
backbone torsion angles, is shown in blue. The helix in Inset is rotated by 90° to
better show the superposition of the backbones and the Phe-65 side chains.
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that site were evaluated for the effect that they would have on the
constraints violation score after insertion. The net rotation and
offset of each fragment was determined and applied to one of the
atoms for each constrained pair of atoms by using the methods
described for wobble moves in ref. 8. A constraint satisfaction score
was computed for each candidate fragment, cs � ¥max(0, ((dij

2) �
(rij

2))), where dij is the distance between the two atoms defining the
constraint and uij is the upper distance bound, which is taken to be
the distance between the same two atoms in the template structure.
The sum is over the subset of constraints for which the distance
between the constrained atoms would be affected by the insertion
(e.g., pairs in which atoms i and j are on opposite sides of the
insertion point). A fragment was then randomly selected from
among those fragments for which cs � (rs*tolerance), where the
reference score rs was calculated as for cs but for the structure
before the insertion. The value of tolerance alternates between 2.0
or 5.0. If no fragments meeting these criteria were found, a
fragment insertion at the N-terminally adjacent site was tried. If an
insertion site was selected that did not affect the distance between
any constrained atom pairs, 1 of the top 25 fragments for this site
was selected at random from the fragment library, as in the standard
ROSETTA de novo structure prediction protocol (8, 9).

The conformation of the model after each fragment insertion
then was evaluated with the ROSETTA low-resolution energy func-
tion (8) in combination with the distance constraint data. A penalty
was applied to residues with interatomic distances dij that were
outside the allowed range described above. Small and large distance
violations were penalized by using quadratic and linear functional
forms, respectively, according to the following:

�
i, j

�[max(l ij � dij, 0, dij � uij)]2; dij � uij � 0.5 Å
dij � uij � 0.25 Å; dij � uij � 0.5 Å , [1]

where 0.5 Å is the switching distance, dij is the distance between C�

atoms i and j, and l and u are the upper and lower bounds,
respectively, as described above.

The method described above plus two variations designed to
improve and increase the diversity of the low-resolution population
were used to generate low-resolution models. The first variation
used a fragment library that had been enriched with fragments of
high local sequence identity to the query sequence in addition to the
homologous fragments described above. For the second variation,
an initial population of structures was generated by using the
method described above, and the variance in � and � in the
population was computed for each residue in the lowest 10% energy
models. For residues where the mean square deviation was �40°,
the �–� distributions were clustered. The �–� distributions in the
cluster centers observed at high frequencies then were preferen-
tially resampled in a large-scale run. At the beginning of each run,
for each stretch of five or fewer consecutive ‘‘variable’’ positions, a
single residue and a corresponding cluster center were selected at
random, and only fragments with deviation � 40° in � and � of the
selected cluster center were allowed for insertion. In a number of
cases, this procedure produced a population of low-scoring struc-

tures with lower rmsds than in the starting population (data not
shown). A total of 10,000 models using each method were generated
for each query–template pair with 3DPAIR alignments, but because
of limited computer time only 1,000 were made for each query–
template pair with PSI-BLAST alignments. Their energies were
ranked by using the standard ROSETTA centroid energy function
plus the constraint energy, and the lowest 15% of the population
from each of the three methods was subjected to full-atom
refinement.

Final Model Selection. Following the refinement protocol, the re-
fined models from each of the three folding protocols were com-
bined and ranked according to energy. We used the energy function
described in ref. 17 combined with the constraint energy described
above. We selected three types of models for analysis: the lowest-
energy model, the lowest-rmsd model, and the lowest-rmsd model
out of the lowest 10 energy models (referred to as lowest-energy*).
The rmsd was calculated over all C� atoms. Cluster analysis was
carried out as described in ref. 22, by using a clustering threshold of
between 1 and 3 Å.

Generation of Complete Chain Models with MODELLER and Fixed-
Template ROSETTASVR Modeling. We generated one model for each
query sequence by using the ROSETTASVR modeling protocol (12).
The MODELLER model used for analysis was the best-scoring model,
using the MODELLER score, out of 100 models produced initially.
The same alignments were used as for the folding protocol.

Atomic Clash Score Analysis Calculation. Atomic clashes for native
structures, ROSETTA models produced by folding with constraints,
models produced with the ROSETTASVR fixed-template method
(12), or models produced with MODELLER (13) were calculated by
using MOLPROBITY (7). Before calculating clashes, hydrogen atoms
were optimized and added according to suggestions from the
‘‘Reduce’’ utility incorporated with MOLPROBITY. Clashes were
calculated over aligned regions only. An atomic clash was counted
if the distance between atoms 1 and 2 is less than [(r1 � r2)�2] �
0.4 Å where r1 and r2 are the radii in Å of atoms 1 and 2, respectively.

Model Generation Using BOINC Distributed Computing. Each BOINC
(19) client in the Rosetta@Home project (http:��boinc.
bakerlab.org) generated 10 low-resolution models with the
ROSETTA fragment insertion protocol and refined the two lowest-
energy models by using the full-atom refinement protocol. The
community that participated in this project produced 265,000
low-resolution models and 53,000 full-atom models with constraint
information for the 1pva-1ahr test case.
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