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There are a variety of reasons to reconstruct the sequences of
ancient proteins, but whatever the reason, the value of the
reconstructed protein depends on the accuracy with which the
ancient sequence is inferred. This study uses sequences simulated
by a sequence-evolution simulation program that compares par-
simony, maximum likelihood, and the Bayesian methods of infer-
ring ancestral sequences and concludes that the Bayesian method,
as implemented by MRBAYES 3.11, is preferred. Estimated ancestral
sequences are of necessity the same length as the alignment on
which the underlying phylogeny is based. A highly accurate
method for correcting the estimated sequences is introduced, and
it is shown that the correction permits inferring the sequences of
ancient protein sequences with a very high degree of accuracy.

ancestral state � Bayesian � phylogenetics

Over the last 15 years, reconstruction of ancestral protein
sequences has become an important way to infer informa-

tion about the past. Reconstruction of the ancestor of the �- and
�-chymases showed that the narrow substrate specificity of the
�-chymases was the ancestral state (1). Reconstruction also
demonstrated that the ancestor of the eosinophil-derived neu-
rotoxin�eosinophil cationic protein RNase possessed weak an-
tiviral activity that was enhanced 13-fold by amino acid substi-
tutions at two interacting sites to produce the eosinophil-derived
neurotoxin RNase (2). Because neither substitution alone en-
hanced RNase activity, Zhang and Rosenberg were able to
conclude that the individually neutral substitutions were critical
to the complementary advantageous double substitution. Gold-
ing and Dean (3) have elegantly reviewed several studies in which
ancestral reconstruction, protein structure, and phylogenetics
have jointly contributed to understanding the properties of
ancestral proteins. Ancestral protein reconstruction has also
been used to draw inferences about the physical environment of
ancient organisms. Reconstruction of the ancestral Eubacterial
elongation factor EF-Tu showed that it had a temperature
optimum of 55–65°C, indicating that the eubacterial ancestor
was a thermophile not a mesophile or hyperthermophile (4).
Similarly, reconstruction of an ancestral archosaur visual pig-
ment indicated that that the archosaur ancestral pigment sup-
ported dim-light vision, suggesting that the ancestor may have
been nocturnal not diurnal (5).

There are two distinctly different approaches to reconstruct-
ing ancestral sequences. The first approach involves identifying
sites that are likely to be important to the activity of interest,
inferring the ancestral states of those sites, then replacing the
corresponding residues of a modern protein with the ancestral
residues by site-directed mutagenesis of an existing gene. That
approach has the advantage that the investigator needs to infer
the ancestral states of only a few residues, but the approach is
limited to proteins in which structure–function relationships are
well understood. Another disadvantage is that the ancestral
residues must function within the context of a protein that is
largely modern, and it must be assumed that the modern residues
do not significantly affect the function conferred by the ancestral
residues. Examples of the site-directed mutagenesis approach
can be found in refs. 2 and 6. The alternative involves inferring

the entire ancestral sequence then assembling the corresponding
gene de novo. That approach has the advantages that structure–
function relationships need not be well understood and that not
only the critical residues, but all residues, are ancient. Examples
of the de novo construction approach are found in refs. 7 and 1.

Benner and his colleagues (8) have combined the best features
of the two approaches into an approach that they describe as the
‘‘paleobiochemical experiment.’’ Although they use site-directed
mutagenesis to construct the sequences of ancient enzymes, they
construct the complete inferred ancient sequences. In studying
ancient ribonucleases (9–11), they used parsimony to infer the
sequences of ancient RNases of the artiodactyls superfamily and
found that most amino acids could be inferred unambiguously.
In several cases where amino acid assignments were ambiguous,
they reconstructed multiple sequences. By comparing the prop-
erties, including substrate specificity and thermal stability, of the
ancient enzymes, they were able to identify the key amino acid
substitution that was responsible for the changes in catalytic
activity and to relate those changes to probable roles of the
RNase during artiodactyls evolution. In a recent study of yeast
alcohol dehydrogenases (8), they used a maximum likelihood
approach to infer the most probable sequences of AdhA, the
ancestor of Adh1 and Adh2. Again, where ancient amino acids
could not be assigned with posterior probabilities �80%, they
reconstructed multiple sequences. Measurement of the kinetic
properties of the reconstructed AdhA proteins showed that the
ancient protein resembled modern Adh1 from which they in-
ferred that ‘‘the ancient yeast cell did not have an Adh special-
ized for the consumption of ethanol, similar to modern Adh2, but
rather had an Adh specialized for making ethanol, similar to
Adh1.’’ In both studies, the behaviors of ancient proteins that
differed at ambiguous amino acids were sufficiently similar so
that the interpretations of that behavior, and the resulting
inferences, were quite robust. Those studies were facilitated by
the fact that internal gaps were absent from the alignments of the
relevant modern proteins.

Whatever the means of physically reconstructing the ancestral
protein, the first step is to estimate a robust phylogeny, and the
second step is to estimate the sequence of the protein at the node
of interest within that phylogeny. The most widely used methods
of ancestral state reconstruction have been parsimony (12–14)
and maximum likelihood (15–18), although distance-based
methods have also been described (19). MRBAYES (20) imple-
ments the Bayesian method of phylogenetic tree reconstruction,
and the most recent version, version 3.1, now implements the
reconstruction of ancestral states by the Bayesian method.

The cost, in both money and time, of constructing ancestral
proteins is considerable, and the inferences drawn from char-
acterizing such ancient proteins are only as accurate as the
sequences of the proteins. It is therefore essential to estimate the
sequences of ancestral proteins by the most accurate means
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available. Several studies have used computer simulations to
compare the accuracies with which different methods recon-
struct ancestral sequences (17–19); however, the simulated se-
quences in those studies were not very realistic in that they did
not include insertions and deletions. A recently described se-
quence-evolution simulation program, EVOLVEAGENE (21), is
biologically realistic in that it separates mutation and selection
and in that the mutations not only include base substitutions but
also insertions and deletions. That program was used to compare
the accuracies of several phylogenetic methods (21). This study
uses EVOLVEAGENE to compare the accuracies with which three
methods reconstruct ancestral sequences.

Most of the programs that reconstruct ancestral sequences
are quite sophisticated, suitable for use only by those with
considerable experience in phylogenetics and systematics, and
are available only for UNIX or WINDOWS platforms. The widely
used programs PAUP* (14) and MRBAYES (20) are available for
MACINTOSH, WINDOWS, and UNIX platforms, are relatively easy
to use, and their use has been described in detail in a book
specifically intended for those with little experience in phylo-
genetics (22) and in a very well written user manual for
MRBAYES 3.1. This study therefore focuses on comparing the
accuracies of weighted parsimony and maximum likelihood as
implemented by PAUP* 4.0b10 and the Bayesian method as
implemented by MRBAYES 3.1.

Results
Seven data sets were simulated by using EVOLVEAGENE as
described in Materials and Methods. Mean branch lengths ranged
from 0.0058 to 0.189. As branch lengths increased, the percent-
age of the alignment occupied by gap characters increased, and
the Q scores decreased (Table 1). The lowest Q scores were
similar to those of an alignment of the class D �-lactamases (23)
in which the root of the tree is more than a billion years old.

Correction of Estimated Ancestral Sequences by Elimination of An-
cestral Gaps. When ancestral sequences are reconstructed by any
method, the reconstructed sequence is, of necessity, exactly as
long as the alignment. When gaps are present in the alignment
as the result of insertions and deletions (indels) that occurred
during the evolution of the terminal sequence, it is likely that the
ancestral sequence was actually shorter than the alignment. Fig.
1 shows an alignment of the node B ancestral DNA sequence
from data set D5 as estimated by the Bayesian method with the
true DNA sequence of node B. The true sequence is 858 bases,
whereas the estimated sequence is 915 characters. As a result,
there are numerous gaps in the true sequence when it is aligned
to the estimated sequence. When sequence evolution is simu-
lated and the true sequence is known, the estimated sequence
can be corrected by deletion of those characters corresponding
to the gaps in the true sequences. In reality, of course, the true
sequence is unknown and that correction is not possible. It is

possible, however, to estimate the positions of the ancestral gaps
by treating the gaps as characters.

To estimate ancestral gaps by parsimony, the nucleotide
characters in the DNA alignments were converted to 0 and the
gap characters to 1, parsimony trees were estimated from the
binary data, as described in Materials and Methods except that
there was no transversion penalty, and the ancestral binary
sequences were estimated. To estimate ancestral gaps by the
Bayesian method, the nucleotide characters in the DNA align-
ment were converted to ‘‘A’’ and the gap characters to ‘‘G.’’
Bayesian trees were estimated as described in Materials and
Methods except that the data were not partitioned according to

Table 1. Details of simulated sequences

Data
set

Root
gene Length

Alignment
length

Average
mutations
per branch

Mean branch length in
mutations per site (range)

Percent gap
characters, %

Protein
Q score

D1 Tem1 858 867 5.7 0.0058 (0.00115–0.00153) 0.97 91.71
D2 Tem1 858 858 10.0 0.01167 (0.00117–0.02331) 0 87.61
D3 Tem1 858 858 21.2 0.02466 (0.00233–0.04662) 0.35 77.71
D4 Tem1 858 861 39.7 0.04608 (0.00116–0.09059) 2.0 60.11
D5 Tem1 858 915 87.6 0.09570 (0.00437–0.17486) 8.2 39.82
D6 Tem1 858 900 170.3 0.18918 (0.01667–0.35333) 7.8 24.48
D7 XisC 1554 1593 215.9 0.13555 (0.00126–0.25047) 8.3 26.27

Fig. 1. Alignment of a true ancestral sequence with the estimated ancestral
sequence. The sequence is that of node B from data set D5.
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codon position: nst was set to 1, ratepr was set to fixed, and
statefreqpr was set to dirichlet (1), and the ancestral sequences
were estimated. The program EXTRACTANCESTRALGAPS was
used to extract the ancestral sequences from the ‘‘.p’’ files in
much the same manner as described for EXTRACTANCESTRAL-
GAPS, except that the ‘‘A’’ characters were converted to ‘‘�’’ and
the ‘‘G’’ characters to ‘‘�.’’

To correct the estimated ancestral DNA sequences, the an-
cestral gap sequences (consisting of ‘‘�’’ and ‘‘�’’) were written
below the corresponding ancestral DNA and protein sequences,
and characters corresponding to the ‘‘�’’ were deleted from the
ancestral DNA and protein sequences. The maximum likelihood
method as implemented by PAUP* 4.0b10 is not applicable to
binary data. Therefore, ancestral gap sequences estimated by
parsimony were used to correct ancestral sequences estimated by
maximum likelihood.

Accuracies of Ancestral Sequences. Tables 2 and 3 show the
accuracies of corrected reconstructed DNA and protein se-
quences respectively for nodes B, D, H, and P and for data set
D7 for node FF as reconstructed by weighted parsimony and by
maximum likelihood as implemented by PAUP* 4.0b10. Some
general patterns are seen. As branch lengths increase and Q
scores decrease, the accuracies of the reconstructed node se-
quences decrease. Paired t tests show, for both reconstructed
DNA sequences and reconstructed protein sequences, that
sequences reconstructed by maximum likelihood are more ac-
curate than those reconstructed by weighted parsimony and
reconstructed protein sequences are more accurate than recon-

structed DNA sequences (in each case P � 0.0001). The higher
accuracy of reconstructed protein sequences is because the
degeneracy of the genetic code means that often an erroneous
base does not result in an erroneous amino acid.

Tables 4 and 5 show the accuracies of corrected reconstructed
DNA and protein sequences respectively for nodes B, D, H, and
P and for data set D7 for node FF as reconstructed by the
Bayesian method. Again, accuracy decreases as branch lengths
increase and Q scores decrease. Paired t tests show that the
Bayesian method is more accurate than weighted parsimony
(P � 0.0001) and that reconstructed protein sequences are more
accurate than reconstructed DNA sequences (P � 0.0001). For
DNA sequences, the Bayesian method is better (P � 0.016), but
for protein sequences maximum likelihood is better (P � 0.029).

Aside from accuracy, the Bayesian method as implemented by
MRBAYES 3.1 offers a significant advantage over maximum like-
lihood as implemented by PAUP* 4.0b10: MRBAYES provides an
estimate of the probability of the most probable base or amino
acid at each site. The average of those probabilities over all of
the sites in the corrected ancestral sequence is an estimate of the
accuracy of that sequence. Tables 4 and 5 show both the
estimated accuracies and the actual accuracies of the sequences.
Paired t tests show that for the DNA sequences MRBAYES
overestimates the accuracy by �1.3% (P � 0.03), but for protein
sequences MRBAYES underestimates accuracy by �0.4% (P �
0.001).

Discussion
Both maximum likelihood and the Bayesian method provide
very accurate estimates of ancestral sequences, particularly

Table 2. Accuracies of corrected ancestral DNA sequences estimated by weighted parsimony (Pars) and maximum likelihood (ML)

Data
set

Node accuracies

Node B Node D Node H Node P Node FF

Pars ML Pars ML Pars ML Pars ML Pars ML

D1 0.991 0.992 0.987 0.991 0.985 0.992 0.991 0.991
D2 0.986 0.999 0.979 0.999 0.993 1.0 0.987 0.994
D3 0.941 0.999 0.987 0.999 0.980 0.995 0.941 0.956
D4 0.900 0.948 0.833 0.981 0.938 0.990 0.920 0.970
D5 0.830 0.894 0.807 0.911 0.805 0.921 0.765 0.934
D6 0.781 0.833 0.692 0.838 0.730 0.840 0.486* 0.814*
D7 0.776† 0.881† 0.747‡ 0.866‡ 0.729§ 0.880§ 0.738§ 0.895§ 0.873* 0.968*

*Corrected sequence is six codons longer than the true sequence.
†Corrected sequence is seven codons shorter than the true sequence.
‡Corrected sequence is eight codons shorter than the true sequence.
§Corrected sequence is three codons longer than the true sequence.

Table 3. Accuracies of corrected ancestral protein sequences estimated by weighted parsimony (Pars) and maximum likelihood (ML)

Data
set

Node accuracies

Node B Node D Node H Node P Node FF

Pars ML Pars ML Pars ML Pars ML Pars ML

D1 0.997 1.0 0.996 1.0 0.993 1.0 1.0 1.0
D2 0.990 1.0 0.997 0.997 0.993 1.0 0.993 1.0
D3 0.951 1.0 1.0 1.0 0.982 0.996 0.943 0.958
D4 0.955 0.997 0.936 1.0 0.986 1.0 0.971 0.986
D5 0.895 0.965 0.886 0.989 0.864 0.982 0.817 0.950
D6 0.790 0.948 0.753 0.947 0.771 0.937 0.693* 0.866*
D7 0.807† 0.934† 0.800‡ 0.931‡ 0.827§ 0.971§ 0.778§ 0.937§ 0.895* 0.994*

*Corrected sequence is six amino acids longer than the true sequence.
†Corrected sequence is seven amino acids shorter than the true sequence.
‡Corrected sequence is eight amino acids shorter than the true sequence.
§Corrected sequence is three amino acids longer than the true sequence.
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ancestral protein sequences, even for very deep nodes of trees
with long branches. By estimating the positions of gaps in the
estimated ancestral sequences, it is possible to correct those
sequences very accurately. By using the Bayesian method, the
correction was perfect in 25 of the 29 reconstructed sequences.

Because of the uncertainty associated with reconstructing
entire ancient proteins, many studies instead use site-directed
mutagenesis to introduce ancient amino acids into positions that
are believed to be critical for function and specificity. Although
valuable, that approach depends not only on the accuracy and
completeness with which those critical sites are identified but
also on the assumption that ancient amino acids function in the
context of a modern protein background identically to the way
they functioned in the context of an entire ancient protein. The
present study suggests that correcting the estimated sequences of
ancient proteins by using the estimated ancient gaps makes it
possible, by using the Bayesian method as implemented by
MRBAYES 3.1, to estimate entire ancient proteins with a high
degree of accuracy and, at the same time, to estimate correctly
that accuracy. Indeed, because the probability of each individual
residue being correct is reported, it is possible to know the
accuracies with which the critical amino acids are estimated as
well as knowing the overall estimate of the accuracy of the
ancient protein.

How well does this approach perform with real data? Barlow
and Hall (23) constructed a phylogeny of the highly divergent
OXA �-lactamases and estimated the ages of two nodes at which
the ancient genes had been mobilized to plasmids. Reconstruc-
tion of the protein sequence at node B, estimated to have

occurred 43 million years ago, gave an estimated accuracy of
0.964, and that of node C, estimated to have occurred 116 million
years ago, gave an estimated accuracy of 0.914. This finding is not
to suggest that those accuracies are typical or representative of
accuracies associated with nodes that old; it simply illustrates
that an investigator can use those estimates to decide whether or
not to reconstruct an entire protein.

As pointed out by one reviewer, the uncertainty involved in
deciding which phylogenetic method to use is generally small
relative to the uncertainty arising from factors such as rapid
sequence evolution and other features of the natural history.
Whatever methods are used, robust interpretations of recon-
structed ancient proteins requires identification of ambiguous
amino acid assignments and construction and explorations of
multiple sequences to accommodate those ambiguities.

Materials and Methods
Computer Simulations. EVOLVEAGENE (21) simulates evolution by
introducing random base substitutions, insertions, and deletions
into a starting DNA sequence (the root) according to the
Escherichia coli mutational spectrum. The EVOLVEAGENE sim-
ulation program is described in detail in ref. 21. Briefly, a
bifurcating tree such as that shown in Fig. 2 is constructed. The
user specifies the number of terminal taxa, the probability of
base substitutions (which is the dN�dS ratio), the probabilities
of accepting insertions and deletions, and the average number of
mutations per branch. The actual number of mutations on each
branch is drawn at random from a uniform distribution from
zero to twice the average number of mutations. Given that tree

Table 4. Accuracies of corrected reconstructed ancestral DNA sequences estimated by the Bayesian method

Node accuracies

Data
set

Node B Node D Node H Node P Node FF

Est Accuracy Est Accuracy Est Accuracy Est Accuracy Est Accuracy

D1 1.0 1.0 0.999 0.999 1.0 1.0 1.0 0.999
D2 0.997 1.0 0.999 0.999 0.999 1.0 0.999 1.0
D3 0.998 0.997 0.996 0.995 0.992 0.995 0.997 0.999
D4 0.963 0.945 0.985 0.980 0.989 0.993 0.994 0.992
D5 0.922 0.876 0.919 0.908* 0.938 0.922† 0.970 0.974
D6 0.902 0.826 0.877 0.825 0.884 0.835 0.904 0.884
D7 0.916 0.868‡ 0.910 0.884* 0.947 0.932 0.983 0.986 0.976 0.967

Est is the mean probability of the most probable base at each site, i.e., the estimated accuracy.
*Corrected sequence was one codon shorter than the true sequence.
†Corrected sequence was one codon longer than the true sequence.
‡Corrected sequence was five codons shorter than the true sequence.

Table 5. Accuracies of corrected reconstructed ancestral protein sequences estimated by the Bayesian method

Data
set

Node accuracies

Node B Node D Node H Node P Node FF

Est Accuracy Est Accuracy Est Accuracy Est Accuracy Est Accuracy

D1 0.999 1.0 0.999 1.0 0.999 1.0 0.999 1.0
D2 1.0 1.0 0.999 0.997 1.0 1.0 1.0 1.0
D3 0.999 1.0 0.997 1.0 0.996 0.996 0.999 1.0
D4 0.989 0.993 0.997 1.0 0.998 1.0 0.998 1.0
D5 0.965 0.972 0.972 0.989* 0.973 0.986† 0.994 0.996
D6 0.929 0.923 0.926 0.937 0.923 0.940 0.941 0.960
D7 0.958 0.960‡ 0.946 0.962* 0.975 0.980 0.995 0.996 0.990 0.994

Est is the mean probability of the most probable amino acid at each site, i.e., the estimated accuracy.
*Corrected sequence was one amino acid shorter than the true sequence.
†Corrected sequence was one amino acid longer than the true sequence.
‡Corrected sequence was five amino acids shorter than the true sequence.
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and the sequence of the root node, mutations are introduced at
random sites according to the mutational spectrum of E. coli.
Base substitutions that result in nonsense mutations and indels
that result in frame shifts are not accepted on the grounds that
they result in loss of function and would be eliminated by
purifying selection. The probabilities of accepting other muta-
tions are those set by the user. The process of random mutagen-
esis is continued until the number of mutations that have been
accepted corresponds to the previously determined length for
that branch. The resulting sequence constitutes the sequence at
the node that is the immediate descendant of the starting
sequence. That process is reiterated to generate the sequences of
all internal and external nodes. The sequences of all nodes are
saved to a file. The simulation program is unusual in that it does
not rely on any formal model of evolution, substitution rates, etc.
The evolutionary model is simply that of mutation (according to
the spontaneous mutation spectrum of E. coli) and selection
according to the probabilities set by the user.

The root sequence for data sets D1–D6 was TEM1 (GenBank
accession no. AF309824), an 858-bp sequence that encodes the
TEM-1 �-lactamase. The root sequences for data set D7 was XisC
(GenBank accession no. U08014), a sequence that encodes the
HupL site-specific recombinase from an Anabena species (Table 1).
For all simulations, the probability of accepting a base substitution
was 0.1, the probability of accepting an insertion or deletion was
0.025, and the average number of mutations per branch is shown in
Table 1. For data sets D1–D6, there were 32 terminal taxa, and for
data set D7, there were 64 terminal taxa. Fig. 2 shows the naming
convention for terminal and internal nodes.

Alignment. An earlier study (21) showed that the most accurate
phylogenetic reconstructions of coding sequences were obtained
by aligning the corresponding proteins, then by using the pro-
gram CODONALIGN (24) to introduce triplet gaps into the coding
sequences at positions corresponding to the gaps in the protein
alignment. Proteins corresponding to the simulated sequences
were aligned with CLUSTALX (25) by using pairwise gap penalties
of 10.0 and 0.1 for gap opening and gap extension and multiple
alignment gap penalties of 3.0 and 1.8. CLUSTALX calculates a
quality score for each site in the alignment. The Q score (Table
1), the average quality score over all sites, is a measure of the
overall quality of the alignment, and the higher the Q score, the
better the alignment (21). CODONALIGN 2.0 (24) was used to align
the simulated sequences on the basis of the alignment of the
corresponding protein sequences.

Phylogenetic Tree Reconstructions. Phylogenetic trees were esti-
mated by the weighted parsimony method (26) and maximum
likelihood method (27) by using PAUP* 4.0b10 (14) and by the
Bayesian method (28) by using MRBAYES 3.1 (20). For weighted
parsimony, the transversion weight penalty was set at 2. For
maximum likelihood, the data were partitioned by codon posi-
tion, the number of substitution types was set to 6, and the ratepr
was set to variable so that rates were site-specific according to
codon position. For the Bayesian method, the data were parti-
tioned by codon position, the number of substitution types was
set to 6, the rate matrix and the base frequencies were estimated,
and the rates were site-specific according to codon position. Four
chains were run for one million generations, trees were estimated
every 100 generations, and a consensus tree was estimated by
using a burnin of 2,000 trees.

Estimation of Ancestral Sequences. PAUP* estimates the sequences
of all internal nodes by the command DescribeTrees with the
XOut parameter set to internal. The results are printed to a log
file. PAUP* does not print the ancestral sequences in a format that
permits them to easily be copied for the purpose of alignment
with the true sequences of the internal nodes. A simple text
manipulation program, PAUPEXTRACTANCSEQ, was written to
extract the sequences from the log file, to translate each se-
quence to a corresponding protein sequence, and to write each
DNA and corresponding protein sequence to a new file in a
suitable format.

MRBAYES requires that for each internal node a constraint is
set to keep all of the descendants of that node together in a clade,
and the report command parameter is set to ancstates � yes.
MRBAYES does not print the ancestral sequences in a format the
permits them to easily be copied for the purpose of alignment
with the true sequences of the internal nodes. A text manipu-
lation program, EXTRACTANCSEQ, extracts the probabilities of
each base at each site from the .p file that MRBAYES writes,
calculates the mean probabilities from the postburnin trees, and
writes those probabilities, the most probable base at each site and
its probability, and the most probable DNA sequence in a
suitable format to an output file. It then translates the most
probable DNA sequence, calculates the probability of the most
probable amino acid at each site, and writes those probabilities
and the most probable protein sequence to the output file.
EXTRACTANCSEQ for MACINTOSH and WINDOWS platforms is
available from the author upon request.

Calculation of Ancestral Sequence Accuracy. The estimated ancestral
DNA and protein sequences were aligned with the true ancestral
sequences by the BLAST 2 SEQUENCES program (29) as imple-
mented by the National Center for Biotechnology Information
BLAST web site (www.ncbi.nlm.nih.gov�BLAST�). The accuracy
score is the number of identical sequences divided by the length
of the true sequence.

Fig. 2. Node naming convention for simulated trees. [Reproduced with
permission from ref. 21 (Copyright 2005, Oxford Univ. Press).]
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