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Rational engineering of complicated metabolic networks involved
in the production of biologically active plant compounds has been
greatly impeded by our poor understanding of the regulatory and
metabolic pathways underlying the biosynthesis of these com-
pounds. Whereas comprehensive genome-wide functional genom-
ics approaches can be successfully applied to analyze a select
number of model plants, these holistic approaches are not yet
available for the study of nonmodel plants that include most, if not
all, medicinal plants. We report here a comprehensive profiling
analysis of the Madagascar periwinkle (Catharanthus roseus), a
source of the anticancer drugs vinblastine and vincristine. Genome-
wide transcript profiling by cDNA-amplified fragment-length poly-
morphism combined with metabolic profiling of elicited C. roseus
cell cultures yielded a collection of known and previously unde-
scribed transcript tags and metabolites associated with terpenoid
indole alkaloids. Previously undescribed gene-to-gene and gene-
to-metabolite networks were drawn up by searching for correla-
tions between the expression profiles of 417 gene tags and the
accumulation profiles of 178 metabolite peaks. These networks
revealed that the different branches of terpenoid indole alkaloid
biosynthesis and various other metabolic pathways are subject to
differing hormonal regulation. These networks also served to
identify a select number of genes and metabolites likely to be
involved in the biosynthesis of terpenoid indole alkaloids. This
study provides the basis for a better understanding of periwinkle
secondary metabolism and increases the practical potential of
metabolic engineering of this important medicinal plant.
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The medicinal plant Catharanthus roseus L. G. Don is of
enormous pharmaceutical interest because it contains �120

terpenoid indole alkaloids (TIAs), some of which exhibit strong
pharmacological activities (1). Ajmalicine, an antihypertensive
alkaloid, and vinblastine and vincristine, antineoplastic bisindole
alkaloids, are already in clinical use. The latter two anticancer
compounds are produced only in very low amounts in C. roseus
plants (2) and, despite significant efforts, cell cultures are not yet
a valid alternative for production. Although undifferentiated
Catharanthus cells can produce fairly high levels of several
monomeric alkaloids (e.g., ajmalicine and serpentine), vindo-
line, the compound that, together with catharanthine, is one of
the building blocks for the in vivo formation of bisindole
alkaloids (Fig. 1), is not synthesized.

All TIAs in C. roseus are derived from the central precursor
strictosidine, which is a fusion product of the shikimate pathway-
derived tryptamine moiety and the plastidic nonmevalonate
pathway-derived secologanin moiety (Fig. 1). Starting from the
amino acid tryptophan and the monoterpenoid geraniol, the
biosynthesis of bisindole alkaloids in C. roseus involves at least
35 intermediates and 30 enzymes (1, 3). At least seven different
(sub)cellular compartments are involved in TIA biosynthesis (1),
and extensive transport of intermediates is required, as evi-
denced from enzyme targeting and the cell type-specific expres-
sion of biosynthetic genes. The TIA biosynthetic pathway is

under strict developmental and environmental control. For
instance, the late steps of vindoline formation are confined to
idioblast and laticifer cells, whereas the epidermal layers of
immature leaves and stems are the only locations in which the
early phases of TIA biosynthesis take place (3). D4H expression
and vindoline accumulation are affected both by light and methyl
jasmonate (MeJA) in C. roseus seedlings (4), whereas TIA
production in C. roseus cell cultures can be induced by various
phytohormones and biotic and abiotic elicitors (1). Ultimately,
transcription factors are responsible for coordinating the expres-
sion of biosynthetic genes in response to these external and
internal signals. Members of the plant-specific AP2�ERF tran-
scription factor family have been identified in C. roseus, namely
ORCA2 and ORCA3, whose expression is induced by MeJA (5,
6). ORCA proteins control the transcription of genes, such as
STR, involved in TIA biosynthesis by binding specifically to a
promoter element involved in jasmonate- and elicitor-responsive
gene expression. Several other C. roseus transcriptional regula-
tors have been identified, all binding to the STR promoter (7–9),
suggesting a considerable degree of complexity in the control of
TIA biosynthesis.

Therefore, a deeper understanding of the regulatory system
governing TIA metabolism is of particular interest and could
eventually make successful metabolic engineering of alkaloid
biosynthesis possible. To gain such knowledge, we used the
cDNA-amplified fragment length polymorphism (AFLP) tech-
nology in combination with targeted and nontargeted liquid
chromatography-mass spectrometry to study secondary metab-
olism in elicited C. roseus cells. By integrating the genome-wide
transcript and metabolite profiles, we were able not only to
visualize most of the known genes involved in TIA biosynthesis
in a single experiment but also to draw previously undescribed
gene-to-gene and gene-to-metabolite networks. This study pro-
vides insights into the complex regulation not only of TIA
metabolism but also of (secondary) metabolism in C. roseus in
general.

Results
Metabolite Analysis. Before initiating functional genomics-driven
gene discovery for TIA metabolism in periwinkle cells, we
needed to identify the conditions in which differential accumu-
lation of the desired metabolites can be observed (10). In the
case of C. roseus, the literature suggests that TIA accumulation
is strongly influenced by the complex interaction of phytohor-
mones such as auxins and jasmonates (11). Therefore, it seemed
most promising to investigate the combined effects of these two
hormones on TIA accumulation in C. roseus cells, applying
growth and elicitation conditions similar to those described in
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ref. 11. TIA-targeted metabolite profiling showed pronounced
accumulation of tabersonine and ajmalicine within 4 h and
catharanthine within 12 h after MeJA elicitation (Fig. 3, which
is published as supporting information on the PNAS web site).

We then performed a large-scale nontargeted liquid chroma-
tography-mass spectrometry analysis on the same samples used
for TIA-targeted analysis. Before normalization and peak fil-
tering, the metabolic profile of this nontargeted analysis revealed
3,891 peaks by using the MZmine LC�MS toolbox (12). Peak
filtering resulted in a final set of 178 peaks. Using an internal
library of masses and retention times, the following TIAs were
identified: ajmalicine, tabersonine, catharanthine, yohimbine,
cathenamine, secologanine, lochnerinine, 16-methoxy-2,3-
dihydro-3-hydroxytabersonine, and desacetoxyvindoline. As an-
ticipated, all of these compounds are synthesized upstream of
D4H in the pathway (Fig. 1). The remaining peaks contained
metabolites most abundantly in the range of 300–400 m�z, the
expected range for monomeric TIA metabolites. Some also
displayed retention times similar to the TIAs identified. More
detailed analytical investigation would be required for conclusive
chemical characterization.

Average linkage hierarchical clustering of the metabolite
accumulation profiles revealed the existence of various subclus-
ters, two of which are particularly important: one consisting of
43 metabolites, of which accumulation is stimulated by auxins,
and the other with 53 metabolites, of which accumulation is
repressed by auxins (Fig. 4, which is published as supporting
information on the PNAS web site). The differential auxin-
mediated regulation of some of these metabolites might be
enforced by or dependent on the presence of MeJA. Most
importantly, however, not all monomeric TIAs identified are
found within the same auxin-modulated subcluster, indicating
divergent regulation of metabolite biosynthesis and accumula-
tion within the TIA pathway. For instance, auxins enhanced the
accumulation of tabersonine and catharanthine, the two building
blocks for bisindole alkaloid biosynthesis, whereas they re-
pressed ajmalicine, a monomeric TIA not involved in the syn-
thesis of bisindole alkaloids. This result corroborates the findings
obtained by TIA-targeted metabolite analysis and underscores
the reliability of our C. roseus metabolome data set. The negative
effect of auxins on ajmalicine levels has also been observed in
ref. 11, but the levels of other monomeric TIAs were not assessed
in that study.

Transcript Profiling. The cDNA-AFLP technique (13) was applied
for genome-wide transcript profiling by using the same samples
as those used for metabolite analysis. Using 128 BstYI � 1�MseI
� 2 primer combinations, the quantitative temporal accumula-
tion patterns of 10,790 transcript tags were determined and
analyzed. In total, 561 differentially expressed transcript tags
were isolated (hereinafter referred to as CR tags). Direct
sequencing of the PCR products gave good-quality sequences for
417 fragments (74%) (Table 1, which is published as supporting

transcription factor; DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DXR,
1-deoxy-D-xylulose-5-phosphate reductoisomerase; CMS, 4-diphosphocytidyl-
2C-methyl-D-erythrol 4-phosphate synthase; CMK, 4-diphosphocytidyl-2C-
methyl-D-erythrol kinase; MECS, 2C-methyl-D-erythrol-2,4-cyclodiphosphate
synthase; HDS, GCPE, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate syn-
thase; HDR, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase; IPPI,
isopentenylpyrophosphate isomerase; G10H, geraniol 10-hydroxylase; CPR,
cytochrome P450 reductase; 10HGO, 10-hydroxygeraniol oxidoreductase; SLS,
secologanin synthase; STR, strictosidine synthase; SGD, strictosidine �-D-
glucosidase; AS, anthranilate synthase; TDC, tryptophan decarboxylase; T16H,
tabersonine 16-hydroxylase; OMT, O-methyltransferase; NMT, N-methyltrans-
ferase; D4H, desacetoxyvindoline 4-hydroxylase; DAT, deacetylvindoline 4-O-
acetyltransferase; MAT, acetyl-CoA:minovincine-O-acetyltransferase.

Fig. 1. Biosynthesis of C. roseus TIAs. Metabolites are given as full names in
lowercase and enzymes as abbreviations in capitals. Full and dashed arrows
mark single and multiple conversion steps between intermediates, respec-
tively. In the upper left corner, transcription factors binding to promoters of
TIA biosynthetic genes are indicated. In addition, a graphical snapshot shows
the relative transcript (boxes) and metabolite (circles) accumulation levels in
samples harvested 12 h after elicitation. The left and right boxes or circles
reflect the influence of jasmonate and auxin, respectively. Red, induced
accumulation compared with control without the phytohormone; green,
repressed accumulation compared with control without the phytohormone;
white, no effect of the phytohormone on accumulation; crossed, no transcript
or metabolite accumulation detected. Enzymes and transcription factors
listed: ORCA, octadecanoid-responsive Catharanthus AP2-domain; BPF, box
P-binding factor; GBF, G-box binding factor; ZCT, zinc finger Catharanthus
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information on the PNAS web site). A unique sequence could
not be attributed unambiguously to the remaining 26%, indicat-
ing that they might not represent unique gene tags. Upon
blasting of the 417 nucleotide sequences of the cDNA-AFLP tags
with the 236 C. roseus European Molecular Biology Laboratory
entries publicly available before this study, �10% gave a (near)
perfect match. Thus, the vast majority of the tags identified here
are previously undescribed C. roseus sequence information.
BLAST searches with the sequences from the C. roseus cDNA-
AFLP tags revealed that 37% of the CR tags displayed no
sequence similarity to any known plant genes.

The CR tags could be divided into different subclusters, based
either on their expression profiles or their annotation. Average
linkage hierarchical clustering analysis of the expression profiles
showed that three main forces steer the formation of clusters
(Fig. 5, which is published as supporting information on the
PNAS web site). Listed in order of impact, these forces are the
addition of MeJA (irrespective of auxin presence), growth
(independent of the exogenous application of hormones or
elicitors), and the presence of auxin (irrespective of MeJA
presence). These factors modulate the expression of 42.8%,
33.8%, and 28.5% of the CR tags, respectively. Only for 5.2% of
the CR tags was the expression affected both by MeJA and auxin.
According to the Functional Catalog of the Munich Information
Center for Protein Sequences (http:��mips.gsf.de�projects�
funcat), the CR tags can be classified into eight broadly defined
functional groups. The functional category ‘‘Metabolism and
Energy’’ in particular is one of the major groups (Fig. 5) and
includes, as anticipated, a large number of TIA genes. The tags
that corresponded to genes reported to be associated with TIA
biosynthesis, and isolated as differentially expressed by cDNA-
AFLP, include tags for genes associated with biosynthesis of the
terpenoid moiety, biosynthesis of the indole moiety, biosynthesis
of monomer TIAs, and transcription factors regulating TIA
biosynthesis (Fig. 6A, which is published as supporting informa-
tion on the PNAS web site). In all these cases, the tags showed
a (near) perfect match with the gene sequences encoding the
isoforms reported to catalyze (or regulate) the known enzymatic
reactions. Moreover, the cDNA-AFLP set also includes tags with
close similarity (�70%) to 10HGO, STR, T16H, and DAT but
whose sequence does not perfectly match that of the isoenzyme
reported to catalyze the corresponding enzymatic reactions.
Because in plant secondary metabolism even close sequence
similarity is not sufficient to indicate a correct functional anno-
tation, further analysis will be required to ascertain whether the
gene products corresponding to these tags catalyze identical
reactions or whether they possibly generate structurally related
alkaloids or other types of secondary metabolites. As can be seen
in Fig. 6A, the expression of all these genes can be induced by
elicitation with MeJA and either stimulated or repressed by
auxin. RT-PCR was performed for all of the remaining known
but undetected TIA biosynthesis genes and showed that all but
two (T16H and TDC) were either not differentially expressed or
not transcribed at all (Fig. 6B).

Integrated Transcriptome and Metabolome Analysis. The accumu-
lation profiles of the 178 metabolite peaks retained were com-
bined with the expression profiles of the 417 transcripts for
integrated analysis. A principal component analysis with mean
scaling was performed first to explore the variability structure of
the data (14). The first two principal components (PCs), ac-
counting for 64% of the total variability, revealed clear separa-
tions: the auxin-treated cells from the nontreated cells by the
first PC and each group across the time domain by the second
PC (Fig. 7 and Table 2, which are published as supporting
information on the PNAS web site). Correlation network anal-
ysis was used to establish gene-to-gene and gene-to-metabolite
coregulation patterns (15). The Pearson correlation coefficient

between each pair of variables (either gene or metabolite) across
the profiles, including all time points and conditions, was cal-
culated. To best visualize the complex networks of secondary
metabolism in C. roseus cells, two different subsets of the profiles
were analyzed. The correlation network analysis was first per-
formed for a select subset of identified metabolites and genes
(Fig. 2A) chosen to include the 9 TIA metabolite peaks identified
and the 34 gene tags identical to or with close sequence similarity
to genes that encode proteins catalyzing either jasmonate or TIA
biosynthesis. Given their importance in TIA biosynthesis, all
putative cytochrome P450 (CYP450) and AP2 transcription
factors also were included. Variable correlation coefficient
cutoff values were applied to draw the edges as part of the
exploratory study of correlation structure within the subset. Fig.
2A presents one example with a cutoff of 0.55. With the
exception of three tags corresponding to an AP2 factor
(CRG20), a lipoxygenase possibly involved in jasmonate biosyn-
thesis (CRG48), and a CYP450 (CRG96), all of the CR tags
belonging to the gene classes used in this subset could be
integrated into the network. The most striking observations were
(i) the presence of a strongly correlated gene-to-gene network
that includes practically all of the known early pathway TIA
genes and the ORCA transcription factors, (ii) the presence of
a gene-to-metabolite cluster comprising a part of the TIA
metabolites and a set of CYP450 genes with as-yet-unspecified
function, and (iii) some smaller correlation groups (i.e., only
gene or metabolite pairs or triplets) containing, for instance,
ajmalicine, thus confirming the differential regulation of this
particular biosynthetic branch.

An unbiased subset was then visualized, subtracted from the
complete network across all transcript and metabolite profiles,
and centered on the tabersonine node by using the cutoff for
absolute value of correlation coefficient C � 0.8 (Fig. 2B). The
gene-to-metabolite network around the tabersonine node con-
sisted of 11 metabolites and 13 genes (with a BLAST hit)
representing the nearest neighbors. Many of the unassigned
metabolites included in this cluster displayed masses in the range
of 300–400 m�z, the expected range for monomeric TIA me-
tabolites and, thus, might constitute yet-unknown intermediates
or side products of TIA metabolism. Accordingly, this network
centered on tabersonine includes numerous tags corresponding
to enzymes with currently unidentified activity and substrate
specificity that are, thus, likely to code for some of the missing
links in the biosynthesis of tabersonine or other monomeric
TIAs.

Discussion
Generation of C. roseus ESTs by cDNA-AFLP-Based Transcript Profiling.
Large-scale gene discovery programs in medicinal plants such as
C. roseus are hampered enormously by the fact that standard
transcript profiling methods, such as serial analysis of gene
expression or microarray analysis, are not applicable because of
the lack of large sequence repertoires. In contrast, the cDNA-
AFLP technology can be used to identify genes in nonmodel
plant species and acquire quantitative expression profiles at the
same time (16). Indeed, in this study of jasmonate-elicited C.
roseus cell suspensions, genome-wide cDNA-AFLP transcript
profiling allowed us to build a substantial collection of known
and previously undescribed genes from this medicinally impor-
tant plant.

The number of 37% ‘‘no-hit’’ tags in BLAST searches is higher
than the 26% reported in a similar tobacco BY-2 profiling
analysis (16). This finding was not unexpected considering the
scarcity of gene sequences from either C. roseus or other species
belonging to the Apocynaceae family, which can be used for tag
sequence extension in BLAST searches, compared to the abun-
dant EST collections for tobacco, tomato, and other Solanaceae
species.

5616 � www.pnas.org�cgi�doi�10.1073�pnas.0601027103 Rischer et al.



Importantly, using the cDNA-AFLP technique, we were able
to monitor in one single experiment all but two of the known
genes involved in TIA biosynthesis that were differentially
expressed under our experimental conditions. Furthermore,
their expression profile was linked to that of multiple previously
undescribed genes with unknown activities, some of which could
code for missing links in TIA biosynthesis. In comparison, a
recently performed systematic 2D PAGE proteomic analysis of
TIA-producing C. roseus cell suspension cultures identified 58
proteins, among which only two are known to be involved in TIA
biosynthesis (17), thus underscoring the current value of the
cDNA-AFLP technology. In addition, based on public European
Molecular Biology Laboratory sequences, the size of a tag of a
particular gene of interest can be predicted precisely with
cDNA-AFLP profiling, provided no small genotype-specific
nuclear polymorphisms alter the presence of restriction enzyme
sites or the sequence important for AFLP primer specificity
around these sites. We used this feature to assess the quality and
utility of a larger number of samples of elicited C. roseus cells
harvested for a pilot cDNA-AFLP experiment (data not shown)
and subsequently selected the most appropriate set of samples
for the complete genome-wide cDNA-AFLP analysis (Fig. 5).
Based on released gene sequences, we were able to precisely
locate, in addition to the differentially regulated TIA biosyn-
thesis tags, tags corresponding to genes encoding enzymes
involved in the cytosolic mevalonate pathway or transcription
factors (BPF 1, ref. 18; GBF 2, ref. 9) whose corresponding
transcript steady-state levels remained constant throughout the
different hormone or elicitor treatments (Fig. 6C).

Upon overlay of the TIA gene expression profiles with the TIA
metabolite accumulation profiles on the pathway presented in
Fig. 1, our findings clearly extend earlier observations concern-
ing the coordinated regulation of TDC and STR by MeJA in
Catharanthus cells (3) to the entire TIA pathway (up to 16-
hydroxytabersonine). In agreement with ref. 19, later pathway
genes such as D4H and DAT were not expressed under our
experimental conditions, justifying the fact that vindoline does
not accumulate in cell cultures despite the availability of pre-
cursor metabolites.

In addition to tags corresponding to TIA genes, cDNA-AFLP
analysis also revealed clusters of CR tags involved in other
metabolic pathways such as the S-adenosyl methionine (SAM)
cycle (Fig. 8, which is published as supporting information on the
PNAS web site) and phenolic compound synthesis (Table 1).
SAM is an important biological compound involved in many
essential biochemical processes, above all acting as the major
methyl donor in reactions catalyzed by methyltransferases (20).
An example of a specific SAM-dependent enzyme in TIA
biosynthesis is the OMT that catalyzes the formation of 16-
methoxytabersonine (21). Interestingly, a corresponding gene
tag was found in the cDNA-AFLP analysis for all of the enzymes
involved in the SAM cycle (Fig. 8), some of which cluster around
the tabersonine node (Fig. 2B).

Depicting Gene-to-Gene and Gene-to-Metabolite Networks for TIA
Biosynthesis. Integration of transcriptomics and metabolomics
data will be crucial for the study of gene-to-metabolite networks
for (secondary) metabolism in plants, both at the regulatory and
catalytic levels. We have performed a linear correlation network
analysis of transcripts and nontargeted metabolites from elicited
periwinkle cells to create previously undescribed gene-to-gene
and gene-to-metabolite networks and, thereby, discover previ-
ously undescribed genes involved in TIA biosynthesis. In contrast
to previous studies, in which long-term effects on metabolism
(days after application of nutritional stress; ref. 22) or steady-
state situations (transgenic plants; ref. 23) were evaluated, we
focused on inducible short-term effects (gene expression and
metabolite accumulation within hours after MeJA application).

Fig. 2. Gene-to-metabolite networks in elicited C. roseus cells. Metabolites
are represented by circles and transcripts by squares. (A) Correlation network
for a select subset of identified metabolites and genes consisting of nine TIA
metabolite peaks and gene tags identical to or with close sequence similarity
to genes, encoding for proteins catalyzing jasmonate and TIA biosynthesis,
respectively, and all putative cytochrome P450 and AP2 transcription factors.
Correlations between the variables are calculated from the complete profiles
across all conditions and time points, and edges are drawn when the linear
correlation coefficient is �0.55. Tags corresponding to AP2TF (CRG20), CYP450
(CRG96), and LOX (CRG48) also were included in the gene subset, but these
data points have been removed from the figure because no correlation was
observed. (B) Correlation network for the complete set of metabolites and
genes (Upper), with a zoom-in on the tabersonine node and 24 of its nearest
neighbors (Lower). Red lines represent positive correlations (C � 0.8).
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Accordingly, all of the known TIA genes visualized in our
cDNA-AFLP analysis are induced early by adding MeJA. It
should be noted that the transcripts corresponding to previously
released TIA genes are all involved in the early part of the TIA
pathway (upstream of cathenamine). With the exception of T16H
and D4H, late pathway genes (from cathenamine to deacetyl-
vindoline) have not yet been isolated. In contrast, the TIA
metabolites detected all derive from the late part of the pathway
(see Fig. 1). Early pathway intermediates (upstream of cathe-
namine) were not detected in C. roseus cells by using ethanol as
an extraction solvent (except for secologanine). This finding
could have been due to the use of unspecific extraction condi-
tions (here optimized for monomeric TIA alkaloids), a high
turnover rate, or the absence of differential accumulation pat-
terns.

Nevertheless the correlation networks constructed allowed us
to identify those genes most likely to be involved in TIA
metabolism and, therefore, locate possible candidates coding for
some of the missing links in the biosynthesis of monomeric TIAs.
Out of the complex set of all metabolites and transcripts
identified, a short list can be made of those whose accumulation
or expression is closely correlated with the accumulation of
specific metabolites, such as tabersonine. For instance, like any
plant species, Catharanthus synthesizes a large number of
CYP450 enzymes, most of which have unknown activity. Several
of these enzymes now have been picked up in our transcriptome
study. In our correlation network, the tag CRG329 is directly
linked with the metabolite tabersonine (Fig. 2). Furthermore,
lochnerinine, a TIA with an epoxy function at positions 6 and 7
similar to lochnericine (24), is linked with tabersonine and two
other as-yet-uncharacterized CYP450 transcripts (CRG432 and
CRL13) (Fig. 2), suggesting that their respective gene products
could encode for proteins similar in function to tabersonine-
6,7-epoxidase (25). This hypothesis seems also to be reinforced
by phylogenetic analysis of the previously undescribed CR
CYP450 genes (Table 3, which is published as supporting
information on the PNAS web site). Although the corresponding
cDNA-AFLP tags were too short to perform statistically signif-
icant phylogenetic tree analysis, we were able to tentatively place
them in CYP450 subclasses based on the first BLAST hits of the
tag sequences. This in silico analysis clearly added further weight
to the putative function of these enzymes in TIA metabolism;
two of the highlighted tags (CRG329 and CRG432) seem to
belong to the same CYP450 subclass as one of the CYP450s
known to be involved in TIA biosynthesis, i.e., T16H. Likewise,
at the regulatory level, the ORCA and two other as-yet-
uncharacterized AP2-domain transcription factor-encoding
genes (CRG358 and CRG144) are clearly linked with early
pathway structural genes, whereas other transcription factor-
encoding genes (such as CRG101) did not correlate with any of
the TIA genes or metabolites selected (Fig. 2). Members of the
AP2�ERF-domain transcription factor family play a central role
in the regulation of plant stress responses, and the two previously
undescribed members that cluster with the TIA structural genes
may control, for instance, a distinct set of target genes as
described for ORCA3 (6).

Furthermore, the correlation network analysis could help
elucidate the function and pathways of previously undescribed
and known compounds. For example, the unknown compounds
with m�z values 409 and 305 cluster together with catharanthine,
lochnerinine, and tabersonine (Fig. 2), whereas the compounds
with m�z value of 321 and 349 (most likely serpentine) cluster
with ajmalicine (data not shown), suggesting differential regu-
lation of biosynthesis or accumulation.

In conclusion, we believe that the comprehensive profiling
approach described here is an excellent example of the enormous
potential of a gene discovery platform based on an open
transcript profiling method such as cDNA-AFLP to dissect

(secondary) metabolism in nonmodel plant systems. The power
of this approach was also successfully demonstrated by Croteau
and coworkers (26) in their studies of taxol biosynthesis and by
our own study of tobacco nicotine biosynthesis (16, 27). There-
fore, the large quantity of previously undescribed Catharanthus
ESTs that have been generated will undoubtedly provide us with
exciting opportunities to map both biosynthetic pathways and
signaling cascades, ultimately leading to the creation of previ-
ously undescribed genetic tools to stimulate production of
pharmaceutical compounds of high importance.

Materials and Methods
Plant Cell Cultures and Elicitation. C. roseus cell suspensions were
grown as described in ref. 28. MeJA elicitations started on day
6 after inoculating 2 g fresh weight of cells in 25 ml of medium
(with or without NAA) in 100-ml Erlenmeyer flasks. MeJA at a
final concentration of 50 �M, or an equivalent of DMSO (the
MeJA solvent) as a control, was added to the culture. Samples
were harvested for metabolite and transcript profiling by vacuum
filtration 0, 1, 4, 8, and 12 h after elicitation or 0, 4, and 12 h after
the addition of DMSO. The samples were lyophilized and stored
at �20°C until extraction.

Extraction and Sample Preparation. The modified TIA extraction
protocol of Whitmer et al. (29) was followed. Briefly, 100 mg of
lyophilized cells were spiked with an internal standard (vincam-
ine from Sigma-Aldrich) and extracted with 15 ml of ethanol in
an ultrasonic bath for 10 min. After centrifugation at 2,711 � g
for 10 min, the solvent was decanted and evaporated to dryness.
The dry samples were stored at �20°C until analysis. The
samples were redissolved in a 1:1 mixture of acetonitrile (Rath-
burn Chemicals, Walkerburn, U.K.) and 10 mM ammonium
acetate (Merck, Darmstadt, Germany) and adjusted to pH 10.

Liquid Chromatography-Mass Spectrometry Analysis. After centrif-
ugation, a 25-�l aliquot was loaded onto a reverse-phase C18
column (Xterra MS C18, 4.6 � 150 mm, 5 �m; Waters) at 35°C
and eluted after 30 min under isocratic conditions of 10 mM
ammonium acetate at pH 10 and acetonitrile (55:45) by applying
a flow of 1 ml�min and a split of 0.2 ml�min reaching the mass
spectrometer. The separation was performed with an HT-
Alliance 2795 system (Waters) and was monitored with a 996
photodiode array detector (200–270 nm; Waters) and a Micro-
mass (Manchester, U.K.) Quattro micro triple quadrupole mass
spectrometer (Waters) equipped with an electrospray source.
The ion source was operated at 3.20 kV capillary voltage and 45
V cone voltage. Source and desolvation temperatures were
130°C and 290°C, respectively. Desolvation gas flow was 900
liters�h and cone gas flow 30 liters�h. The full-scan mode
function was applied to record the protonated molecular ions.
Targeted liquid chromatography-mass spectrometry was per-
formed as described in detail in Supporting Materials and Meth-
ods, which is published as supporting information on the PNAS
web site. The data processing methods for peak detection,
alignment, and normalization were the same as those described
in ref. 30.

cDNA-AFLP Analysis and Data Processing. RNA from C. roseus cells
was prepared with Concert Plant RNA Reagent (Invitrogen).
Sample preparation and cDNA-AFLP-based transcript profiling
were performed as described in ref. 13. For transcript profiling,
all 128 possible BstYI � 1�MseI � 2 primer combinations were
used. The data were processed essentially as described in ref. 31.
For normalization within each primer combination, 25% of the
genes with the lowest coefficient of variation value were marked
as constitutively expressed. Gene tags displaying expression
values with a coefficient of variation �0.6 were considered as
differentially expressed and, after visual inspection, were taken
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for further analysis. To characterize the isolated cDNA-AFLP
fragments, the sequences, directly obtained from the reamplified
PCR product, were compared against nucleotide and protein
sequences in publicly available databases by BLAST sequence
alignments (32). Tag sequences were replaced with longer EST
or isolated cDNA sequences, when available, to increase the
chance of finding significant homology (see Table 1). The
similarity threshold for BLAST searches was defined at 1 � 10�3.
However, because of the small size of some tags, in some cases
a lower value was accepted when unambiguous matches were
observed (see Table 1).

RT-PCR. RNA and single-stranded cDNA for RT-PCR analysis
were prepared as described for cDNA-AFLP analysis. Expres-
sion of gene products reported to be involved in TIA biosynthesis
was verified by RT-PCR with gene-specific primer pairs (data
not shown). PCR products were visualized on ethidium bromide-
stained agarose gels.

Data Analysis of Transcriptional and Metabolic Profiles. Both meta-
bolic and gene expression data sets were normalized separately
with the method based on maximum likelihood estimate of
scaling parameters (33) by using the complete data set in

parameter estimation calculations (15). To better match the size
of the transcriptional data set, the peaks from the metabolic
profile data set were filtered based on coefficient of variation
and retention time. Peaks eluting within the first 3 min were
excluded, because retention is unstable within this period.
Furthermore, peaks with too low signal-to-noise ratio, low
intensity, low variability, and natural isotope peaks were re-
moved. Only peaks with coefficient of variation �0.7 across all
conditions were retained. The principal component analysis (14)
was performed by using PLS Toolbox package (Eigenvector
Research, Wenatchee, WA) and MATLAB (Mathworks, Gouda,
The Netherlands). TOM SAWYER VISUALIZATION 6.0 (Tom Sawyer
Software, Oakland, CA) was used for the generation of corre-
lation networks.
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Karimi, M., Inzé, D., Goossens, A. & Hilson, P. (2005) Plant J. 44, 1065–1076.
28. El-Sayed, M., Choi, Y. H., Frederich, M., Roytrakul, S. & Verpoorte, R. (2004)

Biotechnol. Lett. 26, 793–798.
29. Whitmer, S., van der Heijden, R. & Verpoorte, R. (2002) Plant Cell Tissue

Organ Cult. 69, 85–93.
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