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In this paper I will briefly review some theoretical results that have
been obtained in recent years for spin glasses and fragile glasses.
I will concentrate my attention on the predictions coming from the
so called broken replica symmetry approach and on their experi-
mental verifications. I will also mention the relevance or these
results for other fields, and in general for complex systems.

broken replica symmetry � complex systems � nonequilibrium � taxonomy

Spin glasses have been intensively studied in the last 30 years.
They are very interesting for many reasons:

Y Spin glasses are the simplest example of glassy systems. There
is a highly nontrivial mean field approximation that can be
used to derive some of the main properties of glassy systems,
e.g., history-dependent response (1–3); this property, in the
context of mean field approximation, is related to the exis-
tence of many equilibrium states. (Much ink has been used to
discuss the precise mathematical meaning of this last sentence;
for a careful discussion see refs. 4 and 5.)

Y The study of spin glasses opens an important window for
studying off-equilibrium behavior. Aging (6) and the related
violations of the equilibrium fluctuation dissipation relations
emerge in a natural way and they can be studied in a simple
setting (7–10). Many of the ideas developed in this context can
be used in other physical fields such as fragile glasses, colloids,
granular materials and combinatorial optimization problems
(and also for other complex systems).

Y The theoretical concepts and the tools developed in the study
of spin glasses are based on two logically equivalent, but very
different methods: the algebraic broken replica symmetry
method and the probabilistic cavity approach. They have a
wide domain of applications. Some of the properties that
appear in the mean field approximation, such as ultrametric-
ity, are unexpected and counterintuitive.

Y Spin glasses also provide a testing ground for a more math-
ematically inclined probabilistic approach: the rigorous proof
of the correctness of the solution of the mean field model came
out after 20 years of efforts where new ideas [e.g., stochastic
stability (11–13)], and new variational principles (14, 15) were
at the basis of a recent rigorous proof (16).

In this paper I will present a short review of some of the results
that have been obtained by using this approach.

General Results
The simplest spin glass Hamiltonian is of the form:

H � �
i,k�1,N

Ji,k�i�k , [1]

where the Js are quenched (i.e., time independent) random
variables located on the links connecting two points of the lattice
and the �s are Ising variables (i.e., �1). The total number of

points is denoted with N and it goes to infinity in the thermo-
dynamic limit.

We can consider four models of increasing complexity:

Y The Sherrington–Kirkpatrick (SK) model (17): All Js are
random and different from zero, with a Gaussian or a bimodal
distribution with variance N�1/2. The coordination number is
N � 1 and it goes to infinity with N. In this case a simple mean
field theory is valid in the infinite N limit (2, 3).

Y The Bethe lattice model (18–20): The spins live on a random
lattice and only Nz�2 Js are different from zero: they have
variance z�1/2. The average coordination number is finite (i.e.,
z). In this case a modified mean field theory is valid.

Y The large-range Edwards–Anderson (EA) model (21): The
spins belong to a finite-dimensional lattice of dimension D.
Only nearest spins at a distance less than R interact and the
variance of the Js is proportional to 1�RD/2. If R is large, the
corrections to mean field theory are small for thermodynamic
quantities, although they may change the large-distance be-
havior of the correlations functions and the nature of the
phase transition.

Y The EA model (22): The spins belong to a finite-dimensional
lattice of dimensions D: Only nearest-neighbor interactions
are different from zero and their variance is D�1/2. In this case
finite corrections to mean field theory are present that are
certainly very large in one or two dimensions.

As far as the free energy is concerned, one can prove the
following rigorous results:

lim
z3�

Bethe�z� � SK

lim
D3�

Edwards–Anderson�D� � SK [2]

lim
R3�

finite-range Edwards–Anderson�R� � SK.

The SK model is thus a good starting point for studying also
the finite-dimensional case with short-range interaction, which is
the most realistic and difficult case. This starting point becomes
worse and worse when the dimension decreases, e.g., it is not any
more useful in the limiting case where D � 1.

Equilibrium Properties
Let us describe some of the equilibrium properties that can be
computed in the mean field approximation.
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At low temperature at equilibrium a large, but finite, spin glass
system remains for an exponentially large time in a small region
of phase space, but it may jump occasionally in a relatively short
time to another region of phase space (it is like the theory of
punctuated equilibria: long periods of stasis, punctuated by fast
changes).

In each region � of phase space, i.e., an equilibrium state or
quasi-equilibrium state, we can define a local magnetization:

m�i�� � ��i�� . [3]

When the mean field theory is valid, this magnetization satisfies
the mean field equations that, neglecting the Bethe-TAP reac-
tion-cavity term (23), can be written (in the SK limit) as

m�i� � th��h� i�� , h� i� � �
k

J i,km�k� . [4]

The Js are random variables. It is nontrivial to compute how
many solutions this equation has and what are the properties of
the solutions. The number of solutions (24) is exponential large
and the precise computation of its value is a complex task (refs.
25–33; for a review, see ref. 34). The �th solution is present in
the dynamics at equilibrium for a time proportional to

w� 	 exp���f�� , [5]

where f� is the total free energy that can be computed from the
magnetizations by using an explicit formula.

In general one finds that

P� f � � exp�N
� f�N�� , [6]

where 
 is a nontrivial function called the complexity (35). Near
the ground state the previous formula simplifies to

P� f � 	 exp� y� f � f0� , [7]

where f0 � NF0, 
( f0) � 0, and d
(x)�dx�x�f0
� y � �.

Although the number of states exponentially increases with
the free energy, this increase is slower than exp(�f), and
statistical sums are dominated by the lowest free energy states:
a small number of states carries most of the statistical weight.

The states are macroscopically different: it is convenient to
define the macroscopic distance d and the overlap q:

d��, ��2 �
i �m�i�� � m�i���2

N
[8]

q��, �� �
i m�i��m�i��

N
.

The states are equivalent (2): intensive observables (that depend
only on a single state) have the same value in all the states, e.g.,
the self-overlap does not depend on the state:

q��, �� � qEA @�. [9]

Obviously, distance and overlap are related; d(�, �)2 � 2qEA �
2q(�, �). For historical reasons this picture is called replica
symmetry breaking.

It is convenient to introduce for a given system the function
PJ(q), i.e., the probability distribution of the overlap among two
equilibrium configurations; see Fig. 1. Using the metaphor of
having many equilibrium states, we can also write for large
systems

PJ�q� � �
�,�

w�w���q�,� � q�. [10]

We define P(q) � PJ�q� , where the average is done over the
different choices of the couplings J; see Fig. 2. This average is
needed because the theory predicts (and numerical simulations
also in three dimensions do confirm) that the function PJ(q)
changes dramatically from system to system.

In the mean field approximation the function P(q) (and its
f luctuations from system to system) can be computed analyti-
cally together with the free energy: at zero magnetic field P(q)
has two delta functions at �qEA, with a flat part in between.

Very interesting phenomena happen when we add a very small
magnetic field. The order of the states in free energy is scram-
bled: their free energies differ by a factor O(1) and the pertur-
bation is of order N. Different results are obtained if we use
different experimental protocols:

Y If we add the field at low temperature, the system remains in
the same state for a very large time, only asymptotically it
jumps to one of the lower equilibrium states of the new
Hamiltonian.

Y If we cool the system from high temperature in a field, we
likely go directly to one of the good lowest free energy states.

Correspondingly there are two susceptibilities that can be
measured also experimentally:

Y The so-called linear response susceptibility �LR, i.e., the
response within a state, that is observable when we change the
magnetic field at fixed temperature and we do not wait too

Fig. 1. The function PJ(q) for two samples (i.e., two choices of J) for D � 3,
L � 16 (163 spins) from ref. 36.
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much. This susceptibility is related to the fluctuations of the
magnetization inside a given state.

Y The true equilibrium susceptibility, �eq, which is related to the
fluctuation of the magnetization when we consider also the
contributions that arise from the fact that the total magneti-
zation is slightly different (of a quantity proportional to �N)
in different states. This susceptibility is very near to �FC, the
field cooled susceptibility, where one cools the system in
presence of a field.

The difference of the two susceptibilities is the hallmark of
replica symmetry breaking. In Fig. 3 we have both the analytic
results for the SK model (2) and the experimental data on
metallic spin glasses (38). The similarities among the two panels
are striking.

Which are the differences of this phenomenon with a well
known effect; i.e., hysteresis?

Y Hysteresis is due to defects that are localized in space and
produce a finite barrier in free energy. The mean life of the
metastable states is finite and it is roughly exp(��F), where
�F is a number of order 1 in natural units.

Y In the mean field theory of spin glasses the system must cross
barriers that correspond to rearrangements of arbitrary large
regions of the system. The largest value of the barriers diverge
in the thermodynamic limit.

Y In hysteresis, if we wait enough time the two susceptibilities
coincide, while they remain always different in this new
framework if the applied magnetic field is small enough
(nonlinear susceptibilities are divergent).

We shall see in the next section the difference between hysteresis
and the new picture (replica symmetry breaking) becoming
clearer as we consider fluctuation dissipation relations during
aging.

Slightly Off-Equilibrium Behavior
Standard thermodynamics is very useful to understand the
dynamics at equilibrium, but serious complications are present
when the systems are not at equilibrium. However, some detailed
results can be obtained if the system is slightly off-equilibrium.
A neat theory may be formulated in the case where the time scale
related to nonequilibrium phenomena is much longer than the
microscopic time scales (e.g., seconds versus picoseconds). The
simplest way to put a system out of equilibrium is to perturb it
by changing the external parameters (temperature, magnetic
field) and producing a transient behavior. In the case of a fluid

we could also add a constant stirring force and produce a
stationary off-equilibrium system.

The most studied case is aging. The system is cooled from a
high temperature to a low temperature at time 0. In many
systems the response at a time scale that is of the order of the age
of the system is notably different from the equilibrium one.

When we cool the system below the critical temperature, the
system has the tendency to order itself, i.e., to go to one
equilibrium state. However, this process must happen locally
(there is no direct long-range exchange of information), and the
degrees of freedom must arrange themselves in some configu-
rations that locally minimize the free energy. In this process we
have the formation of domains where the free energy is well
minimized, separated by walls with high free energy. Therefore
at finite time we have the formation of a mosaic state (39–42),
characterized by a dynamical length 	(t). The function 	(t) is an
increasing function of time that eventually goes to infinity.

Whereas in the case of spinoidal decomposition there are only
two equilibrium states, and the mosaic has only two colors, in the
case in which there are many locally different equilibrium states,
as there should be in spin glasses, each cell of the mosaic is likely
to belong to a different ground state and the picture is much
more complex.

In the case of the spinoidal decomposition the function 	(t)
increases relatively fast (e.g., as t1/3). In spin glasses, the increase
of the function 	(t) is rather slow and there are indications that
also in the most favorable experimental situations 	(t) arrives to
100 (in microscopic units): the domains are rather small from the

Fig. 2. The function P(q) � PJ�q� after average over many samples (L �

3, . . . , 10) from ref. 37.

Fig. 3. The two susceptibilities (�eq 
 �LR). (A) The analytic results in the mean
field approximation (2). (B) The experimental results for a metallic spin
glass (38).
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macroscopic point of view, but microscopically they may contain
a large number of magnetic atoms (e.g., 106). The precise form
of the increase of the function 	(t) is not very important (some
authors have suggested t�, with � of the order 0.13 in the
experimentally accessible region (43, 44). An important point is
that the excess of energy is proportional to a high negative power
of 	(t) [e.g., as 	(t)�4], so that during aging energy relaxation is
very small, consistent with the fact that it has never been
observed experimentally, being seen only in simulations.

In this situation the system moves microscopically much more
than at equilibrium, because when 	 increases different domains
are rearranged and this produces an excess of thermal fluctua-
tions. In the same way the systems may choose among different
possibilities when the domains change and this may lead to an
additional response to external perturbations that may influence
these choices. During aging the relations between fluctuation
and response are modified. The fluctuation dissipation theorem,
which is at the basis of the thermodynamics and is a consequence
of the so-called zeroth law of the thermodynamics, is no longer
valid: a new definition of temperature is needed.

Let us show how these ideas are implemented for the aging of
spin glasses. Our aim is to define a correlation function and a
response function in a consistent way such that the new off-
equilibrium fluctuation dissipation relations can be found.

The correlation function of total magnetization is defined as

C�t, tw� � �m� tw�m� tw � t�� . [11]

In spin glasses at zero external magnetic field it is possible to
prove that the off-diagonal terms average to zero and the only
surviving term is

C�t, tw� �
1
N �

i�1

N

�� i� tw�� i� tw � t�� � q� tw , tw � t� , [12]

i.e., the overlap q(tw, tw � t) between a configuration at time tw
and one at time tw � t (for an example taken from simulations
see Fig. 4).

The relaxation function S(t, tw) is given by

S�t, tw� � ��1 lim
�h30

��m� t � tw��

�h
, [13]

where �m is the variation of the magnetization when we add a
magnetic field �h starting from time tw.

The dependence on t and tw of the previously defined functions
is rather complex and cannot be computed from general prin-
ciples. It is convenient to examine directly the relation between
S and C, by eliminating the time. At this end we plot paramet-
rically S(t, tw) versus C(t, tw) � q(t, tw) at fixed tw, as shown in
Fig. 5.

The theory predicts that such a plot goes to a finite limit when
tw 3 � and we can extract from it information on the phase
structure of equilibrium configurations. Using general argu-
ments (7, 9, 10), one finds that when tw 3 �,

dS
dC

� X�C� � �
0

C

dqP�q�. [14]

The behavior of the system at equilibrium and the modifica-
tion of the fluctuation dissipation theorem off-equilibrium are
strongly related. The deep reasons that are at the origin of this
unexpected behavior have been discussed at length in the
literature. Essentially they are based on two physical steps:

Y Stochastic stability implies that the free energy distribution of
the metastable states can be reconstructed from the knowl-
edge of P(q) (10).

Y The energy distribution of the metastable states is character-
ized by one (or more) effective temperatures (47, 48). During
equilibration the extra noise comes from the jumping from
one to another equilibrium state, and this explains why the
value of the effective temperature enters in the off-equilib-
rium fluctuation dissipation relations.

In Fig. 6 we compare the static (Left) and the dynamic (Right)
behavior. On the Left we display the function P(q), and on the right,
relaxation versus correlation during aging. In all the right panels the
time decrease from right to left (at short times the correlation is
higher). At short times, i.e., at equilibrium, the function is a straight
line (with slope �1), according to the fluctuation dissipation
theorem. The interesting part is the one at left, where at large times,
in the aging regime, the curve deviates from the previous straight
line. The value of the relaxation at the point where the equilibrium
regime ends is the linear response susceptibility �LR, whereas the
value of the relaxation on the left-most point is the equilibrium
susceptibility �eq. We have essentially three different situations
summarized in Fig. 6:

Fig. 4. The correlation function for spin glasses as a function of time t at
different tw [from simulations (45)].

Fig. 5. Relaxation function versus correlation in the EA model in D � 3, T �

0.7 � (3�4)Tc and theoretical prediction (Ising case) (ref. 45).
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Y A: Old-fashioned hysteresis. During aging there is an excess of
noise with respect to equilibrium, as an effect of the micro-
scopic movements, but these movements do not affect the
response function. The presence of noise without a corre-
sponding response is typical of a system at infinite tempera-
ture. Indeed, the effective temperature �X(C) is infinite in the
aging region.

Y B: A new and nontrivial phenomenon, that should be present
in structural fragile glasses and in some kinds of spin glasses.
The system has two temperatures, and both are finite (47–50).
Often the higher temperature is near to the critical temper-
ature.

Y C: A more complex phenomenon that is present in the mean
field theory of some spin glasses (e.g., in the original SK
model). It corresponds to the presence of a continuous range
of temperatures in the aging region.

The presence of anomalies in the off-equilibrium regime in the
plot of the response versus correlations (i.e., cases B and C)
marks in a clear way the difference from the old picture
(hysteresis). The experimental fact that in real spin glasses �LR �
�eq excludes case A.

In the case of Ising spin glasses with two body interaction in
the mean field approximation we stay in case C. What happens
in three dimensions is not clear. Numerical simulations (5, 36, 37,
45) on Ising model indicates that we stay in case C, whereas the
experiments (51) (shown in Fig. 7) show a clear effect of
deviations from case A that may indicate more case B. From the
theoretical viewpoint there are no firm commitments: although
in infinite dimensions with a two-spin interaction we are in case
C, the corrections due to the interaction among the fluctuations
could bring the system in three dimensions in case B.

This difference between the simulations and the experiment
may have two different origins:

Y The experiment and the numerical simulations do correspond
to two different regimes: the time scales are quite different.
Moreover, if experimentally we cool a high-temperature sys-
tem, thermalized domains grow with time and the maximum
experimental reachable side is about 100. In simulations a
compact system can be thermalized up to size 20.

Y The numerical simulations are mostly done on Ising systems,
whereas the experiments have been mostly done on more
Heisenberg systems with anisotropy and a long-range tail of
interactions (other systems are more complex); there are
indications from other properties that the two systems behave
in a different manner.

More extended numerical simulations and experimental re-
sults on other systems are needed to decide which picture is
correct. One should also consider the possibility that the cor-
relation length in the equilibrium limit remains fine, but very
large (e.g., 1,000 lattice units). In such a case one should see the
effects of broken replica symmetries for times of human scale
and only for astronomical times should the anomaly disappear.
The possibility of this phenomenon is difficult to dismiss, but it
would not jeopardize the interpretation of the experimental data
using spontaneously broken replica theory.

Structural fragile glasses will be discussed later. Here we
notice that numerical simulations and strong theoretical argu-
ments point to the fact that they should belong to case B.
Unfortunately, although deviations from the equilibrium fluc-
tuation dissipation relations have been observed in structural
glasses, the situation is not so clear as for spin glasses.

Other impressive phenomena that happen mainly in spin glass
are memory and rejuvenation (52). Unfortunately I cannot
discuss them for lack of space.

Structural Fragile Glasses
Some of the physical ideas that have been developed for spin
glasses have also been developed independently by people
working in the study of structural glasses. However, in the fields
of structural glasses there were no soluble models that displayed
interesting behavior, so most of the analytic tools and of the
corresponding physical insight were first developed for spin
glasses.

Fig. 6. Three different forms (A, B, and C) of the function P(q) (Left) and the
related function S(q) (Right). Delta functions are represented as a vertical
arrow (taken from ref. 46).

Fig. 7. Experimental raw results (filled symbols) and ageing part (open
symbols) deduced from the scaling analysis. The different curves span the
waiting times studied: tw � 100 s, tw � 200 s, tw � 500 s, tw � 1000 s, tw � 2000 s
(from ref. 51).
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The two fields remained quite separate from one another also
because there was a widespread belief that the presence of
quenched disorder (absent in structural glasses) was a crucial
ingredient of the theory developed for spin glasses. Only in the
middle of the 1990s did it become clear that this was a miscon-
ception (53, 54) and it was realized that the spin glass theory may
be applied also to systems where nonintrinsic disorder is present
(e.g., hard spheres).

This became manifest after the discovery of models where
there is a transition from a high-temperature liquid phase to a
low-temperature glassy phase (some of these models at low
temperature have two phases, a disorder phase and an ordered,
crystal phase). Spin glass theory was able to predict the correct
behavior both at high and at low temperature.

The simplest model is the so-called sin model (53), which
differs form the SK in the choice of the coupling by having

Ji,k � N�1/2sin� 2� ik
N 	 . [15]

The crystal state apparently exists only for some values of N: e.g.,
for N prime of the form 4k � 1, where the ground state is given
by �i �mod N i2k. It is an interesting and unsolved mathematical
problem (55) to find all the values of N where crystal states exist;
however, this is not relevant for the behavior of the system in the
glassy phase, where the system is cooled fast enough to avoid
crystallization.

This discovery led to a better understanding of the replica
method that was applied also to study the properties of fragile
glasses. By using this method it was possible to solve a large
number of models where some of the ideas and tools (e.g.,
configurational entropy, entropy crisis, mode coupling equa-
tions) can be treated in an explicit and unified way (56). The
method also allows analytic computations of properties of glasses
at low temperature for hard and soft spheres, where the whole
low-temperature phase diagram can be obtained by using simple
integral equations such as generalized hypernetted chain (HNC)
equations (57–61).

One finds, in agreement with experiments, that there is a
dynamical phase transition (more precisely a crossover point)
below which the relaxation becomes very slow (on a microscopic
scale) and it is dominated by tunnel events: this is the so-called
mode-coupling transition (56, 62). The physical interpretation of
this transition is rather simple: above the phase transition the
system is near a saddle point of the Hamiltonian, whereas below
it the system is near a local minimum of the Hamiltonian
(63–67). This picture is very interesting, also because it gives a
clear explanation of the origin and of the properties of the
celebrated boson peak (68). There is also a true phase transition
where the relaxation time becomes infinitely large [it diverges as
exp(A�(T � TK)�)] where the specific heat is discontinuous.

Just as an example we show in Fig. 8 the result of recent
analytic computation of the inverse of the pressure for a
(noncrystallizing) liquid of hard spheres, where one finds a
maximal amorphous packing of  � 0.64 (if we use a better
approximation we find a similar value, i.e.,  � 0.68).

Other Applications
There are many problems for which these ideas have been used.
In the past there has been a great interest in applying them to
problems with a biological f lavor, like the computation of the
optimal performance of associative memories based on neural
networks (see, for example, ref. 71). In addition, learning
abilities of simpler objects such as the perceptrons can be
computed.

In recent years these ideas have been widely used in the field
of combinatorial optimization problems and constraint satisfac-
tion. The first example of optimization problems that has been

studied with these techniques is the random assignment problem.
We have N cities and N wells; the distance among the cities and
the wells is an N � N matrix whose entries are random numbers
with a flat distribution in the interval [0–1]. We want to assign
each city to each well in such way to minimize the total distance.
In these case one can show that the average length of the optimal
assignment is given by (72, 73)

��2� �
2��3� � 1

N
� O�N�2�. [16]

The correctness of the leading term has been proved by
mathematicians in a remarkable paper (74). The leading term
does not depend on the instance, while the subleading term
depends on the instances and the value quoted is the average of
the different instances, and a rigorous proof of its correctness is
missing.

More recently, random satisfaction models were intensively
studied, also because the techniques developed in refs. (75 and
76) for studying spin glasses on Bethe lattices allowed us to tackle
these models. The simplest example of a nontrivial random
satisfaction model is coloring of a graph. We consider the
ensemble of all the graphs with N nodes and M edges. We would
like to find out (with probability 1) when N goes to infinity,
keeping fixed the ratio M�N � �, if a generic graph of this
ensemble can be colored with q colors with the constraint that
nodes that are connected by an edge have a different color.

For each given value of q there is a critical value of �, i.e., �c(q)
such that for � � �c(q) the graph can be colored with q colors,
whereas for � � �c(q) the graph cannot be colored. From the
physical point of view this model is an antiferromagnetic Potts
model with q states (the energy has a positive nonzero contri-
bution if two spins connected by an edge are in same state) and
we are asking if the ground state energy density is zero or
nonzero. The computation (although a rigorous proof is lacking)
of �c(q) has been obtained in recent times (77): for example, one
finds �c(3) � 4.69 and �c(4) � 8.90.

The techniques used were introduced to study spin glasses on
the Bethe lattice and have been applied to the study of the
transition from satisfiability to unsatisfiability in the case of
K-satisfiability (from the physical point of view an Ising spin
system with a peculiar K-body quenched interaction). In the case
of the celebrated 3-Sat problem (78) it was found that �c � 4.267.

Fig. 8. Inverse of the reduced pressure of the hard sphere liquid as a function
of packing fraction  (69). The filled circles are from the simulation of Rintoul
and Torquato (70). The dot–dashed line is obtained by using the HNC equation
of state, and the orange line is obtained by using the Carnahan–Sterling
equation of state (70).
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Similar ideas have been applied to error correcting codes starting
from the seminal work of Sourlas (79).

Complex Systems: A Surprise
Spin glasses have many interesting properties (at least in the
mean field approximation) that were completely unexpected.

We have already remarked that a given finite but very large
system has many equilibrium states; a schematic description of
these states is the set of all the values of the weights ws and of
the overlaps qs. Let us denote it by DJ � {w�, q�,�}. In usual
systems the set is nontrivial only at a first-order phase transition
point and we have to tune K parameters to have the coexistence
of K � 1 states (Gibbs rule). In spin glasses there is a large
number of equilibrium states in variance with the Gibbs rule:
spin glasses can be thought to stay always at a critical point and
they can be considered as an equilibrium version of self-
organized criticality (78).

Moreover, the number of equilibrium states is diverging when
the volume goes to infinity: of course most of the states carry a
very small weight (i.e., they are high free energy states). In the
infinite volume limit the number of states that carry a weight
higher than � diverges as

N��� � ���1�y�, [17]

where y is a number that depends on the parameter of the system.
In some sense the system is unstable. If we change a large but

finite number of the coupling Js, the free energies of the states
change by an amount that is much bigger than the distance
among levels and the states that have higher weight are different:
ground state becomes metastable states (the same phenomenon
is present if we change global parameters of the systems such as
the magnetic field (78). The function PJ(q) also becomes quite
different after a perturbation. The schematic description of the
states system DJ, which we have previously introduced, has a
chaotic dependence on the parameters of the systems and for all
practical purposes is incomputable (for a large system). For given
N, if we average over the J, we have a probability distribution of
the descriptors P(D). The function P(q) [i.e., the average over
an ensemble of systems of the various PJ(q) functions] can be
reconstructed from the knowledge of the functional P(D) (I use
the word functional because D belongs to an infinite-dimensional
space). Although the structure of the lowest free energy states
depend on the system, this dependence becomes weaker when
we consider higher free energy states.

This instability is balanced by the property of stochastic
stability that asserts that the distribution P(D) is stable with
respect to perturbations (11–13). This property has far-reaching
consequences (it is far from being trivial, because the individual
weights ws change of a large amount under a perturbation). For
example, stochastic stability implies that it is possible, by ana-
lyzing the properties of a single large system, to reconstruct the
properties of the whole P(D) averaged over the ensemble of
systems to which the individual system naturally belong (49, 50):
in a similar way the fluctuation dissipation relations tell us that
we can reconstruct the P(q) function from the analysis of the
response and the correlations during aging.

The last surprise was ultrametricity. If we use the distance
defined in Eq. 9 the following inequality holds (2):

d�,� � max�d�,� , d�,��@�. [18]

Under the previous conditions, P(q) � �,� w�w���q�,� � q�
determines analytically the full P(D) (ref. 80).

The inequality 18 implies that the most relevant states form an
ultrametric tree, i.e. they can be put on a tree in such a way that
the states are on the branches of the tree and the distance among
the states is the maximum level one has to cross for going from

one state to another. In other words the states of a system can
be classified in a taxonomic way. The most studied possibilities
are the following:

Y All different states are at given distance d from one another
and the taxonomy is rather trivial (one-step replica symmetry
breaking: case B).

Y The states have a continuous distribution and branching points
exist at any level (continuous replica symmetry breaking: case
C). A suggestive drawing of how the tree may look, if we draw
only the finite number of branches that have weight larger than
�, is shown in Fig. 9. A careful analysis of the properties of the
tree can be found in refs. 81 and 82.

Other distributions are possible, but they are less common or at
least less studied.

It is remarkable that, if ultrametricity and stochastic stability
are true, the function P(q) completely determines the functional
P(D). Moreover, in the SK model, the functional P(D) deter-
mines the value of the equilibrium free energy: one can define
a free energy functional F[P] such that

Feq � max
P

F�P� . [19]

In the case of an ultrametric and stochastic stable P(D), using an
auxiliary differential equation, we can write an explicit expres-
sion for a free energy functional F[P], and in this way it is
possible to find the value of the free energy with accurate
precision. It has been mathematically proved that the ultrametric
functional P(D) gives the correct maximum (16). We miss only
the information about the unicity (or not) of the maximum.

Summarizing, the system may stay in an infinite number of
different equilibrium states, and an appropriate perturbation
forces the system to switch from one state to another one. The
precise form of the lower-lying states has a chaotic dependence
on the space of parameters and it is practically incomputable for
large systems (these states physically are never reached because
the time would be too long). The different equilibrium states
have a hierarchical structure that leads to a taxonomic classifi-
cation of the states.

All these feature are typical of what is called a complex system
(83, 84): the existence of many states, the practical impossibility
of finding the most stable state among all the metastable states
and the hierarchical structure of states are features that spin
glasses share with many other natural complex system, so that
spin glasses are the prototype of complex systems. Many ideas
that have been developed in this context by physicists have a
much wider range of applications to natural complex systems
that are present in other sciences. The study of complex systems
is now a fascinating growing discipline.

Fig. 9. An example of a taxonomic tree of states in the case of a hierarchical
breaking of the replica symmetry.
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Conclusions
From the retrospective point of view, the amount of new ideas
that have been necessary to understand in depth the basic
properties of spin glasses and other glassy systems seems ex-
traordinary. A strong effort should be made to have better
quantitative predictions and a more precise comparison between
theory and experiments. There are open problems where I would
like to see a progress:

Y A systematic and careful experimental study of the fluctua-
tion–dissipation relations is needed to extend our knowledge
on this very interesting and fundamental phenomenon.

Y It would be important to obtain more precise understanding
of the glass transition in structural fragile glass; in particular,
it would be very useful to get quantitative predictions on the
behavior of the dynamics in the region where it is dominated
by escapes from barriers.

Y New results should be obtained of the form of time behavior
in nonequilibrium state, where only partial results are known.

Y To arrive at a precise assessment of the behavior of three-
dimensional spin glasses it would be very important to develop
further the renormalization group approach and�or other
theoretical or experimental techniques.

Y It also may be worthwhile to study again some of the problems
on automatic machine learning, as the comparison among
different architecture (85), that were started 20 years ago, but
never arrived at a clear analytic conclusion.

Y Last, but not least, I would like to see a clear discussion of the
relevance of the approach to the behavior of glasses in the low
temperature phase region, where quantum phenomena dom-
inate the scene.

It is also possible that the most exciting result will come from an
area I am not able to indicate. I am very curious to see the future
of the field.

It is a pleasure for me to thank all the many people who have worked with
me on this project or obtained new results that have been crucial for the
development of the field.
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76. Mézard, M. & Parisi, G. (2003) J. Stat. Phys. 111, 1–23.
77. Mulet, R., Pagnani, A., Weigt, M. & Zecchina, R. (2002) Phys. Rev. Lett. 89,

268701.
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