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ABSTRACT Constraint-based modeling has proven to be a useful tool in the analysis of biochemical networks. To date, most
studies in this field have focused on the use of linear constraints, resulting frommass balance and capacity constraints, which lead
to the definition of convex solution spaces. One additional constraint arising out of thermodynamics is known as the ‘‘loop law’’ for
reaction fluxes,which states that thenet fluxaroundaclosedbiochemical loopmust be zerobecausenonet thermodynamic driving
force exists. The imposition of the loop-law can lead to nonconvex solution spaces making the analysis of the consequences of its
imposition challenging. A four-step approach is developed here to apply the loop-law to study metabolic network properties: 1),
determine linear equality constraints that are necessary (but not necessarily sufficient) for thermodynamic feasibility; 2), tighten
Vmax and Vmin constraints to enclose the remaining nonconvex space; 3), uniformly sample the convex space that encloses the
nonconvex space using standardMonteCarlo techniques; and 4), eliminate from the resulting set all solutions that violate the loop-
law, leaving a subset of steady-state solutions. This subset of solutions represents a uniform random sample of the space that
is defined by the additional imposition of the loop-law. This approach is used to evaluate the effect of imposing the loop-law
on predicted candidate states of the genome-scale metabolic network of Helicobacter pylori.

INTRODUCTION

Constraint-based modeling has emerged as an important tool

for assessing the properties of reconstructed genome-scale

biochemical networks (1). Central to this modeling philos-

ophy is the imposition of fundamental physico-chemical

constraints on reconstructed networks to define a solution

space that contains all the allowable functional states of

networks that do not violate the constraints. To date, the

constraint-based modeling approach has primarily used lin-

ear constraints to define convex solution spaces, which can

be characterized by constraint-based optimization methods.

Linear programming has been used for such purposes as

predicting the lethality of knockouts (2), optimal growth

rates (3), ranges of achievable fluxes (4), and even the end-

point of in vitro evolution (5). Bilevel optimization methods

have been used to generate strain designs (6,7) and to cal-

culate the minimum gene expression changes after gene

knockout (8). Unbiased methods not requiring the statement

of an objective function have also been used to characterize

these solution spaces. For example, the edges of this space

form a set of convex basis vectors that have led to the de-

velopment of network-based pathways (9,10). The nonneg-

ative combination of these edge vectors can be used to span

the solution space. More recently, uniform random sampling

of these convex solution spaces has been utilized to find a

high-flux backbone in Escherichia coli metabolism (11), the

effect of enzymopathies in human red blood cells (12), and

the effects on mitochondrial metabolism of diabetes, ische-

mia, and diet (13).

Some physico-chemical constraints of importance in

analyzing biochemical network functions, such as thermo-

dynamic constraints, may be stated in the form of bilinear or

nonlinear constraints that led to nonconvex spaces. This

effort has been pioneered recently by the work of D. Beard,

H. Qian, and colleagues (14–18). Systemic thermodynamic

constraints are analogous to Kirchhoff’s second law for elec-

trical circuits (19). It simply states that the net flux around a

closed biochemical loop must be zero because there is no net

thermodynamic driving force (14). It is thus known as the

‘‘loop law’’ for reaction fluxes. Flux balance solutions vi-

olating the loop-law should be eliminated from the set of

allowable network states. The present study will 1), develop

methods to incorporate the loop-law in the procedure for uni-

formly sampling metabolic network states; and 2), demon-

strate the effect of including these constraints on sampling

candidate states ofHelicobacter pylori’s genome-scale meta-

bolic network.

MATERIALS AND METHODS

H. pylori metabolic network
and associated constraints

The metabolic network for H. pylori used herein was recently reconstructed

(13). Briefly, H. pylori iIT341 GSM/GPR is a genome-scale metabolic

model (GSM), where reactions are associated to the protein(s) that catalyze

them, and to the associated gene(s). In total, iIT341 GSM/GPR accounts for

341 metabolic genes, 476 internal reactions, 411 internal metabolites, and 74

external metabolites. iIT341 GSM/GPR is connected with its in silico

environment by 74 exchange reactions. The corresponding S-matrix has 485

Submitted August 16, 2005, and accepted for publication February 13, 2006.

Address reprint requests to B. O. Palsson, Dept. of Bioengineering,

University of California, San Diego, 9500 Gilman Dr., La Jolla, CA

92093-0412. Tel.: 858-534-5668; E-mail: palsson@ucsd.edu.

Nathan D. Price’s present address is Institute for Systems Biology, 1441 N.

34th St., Seattle, WA 98103-8904.

� 2006 by the Biophysical Society

0006-3495/06/06/3919/10 $2.00 doi: 10.1529/biophysj.105.072645

Biophysical Journal Volume 90 June 2006 3919–3928 3919



metabolites and 558 reactions, including a biomass function, and demand

functions for thiamin, menaquinone 6, biotin, and heme (protoheme).

Definition of loop-law thermodynamic constraints
on fluxes

The loop-law thermodynamic constraint for reaction fluxes results from two

basic laws of thermodynamics (14). The first of these is that the sum of

chemical potentials around a loop must equal zero,

+
i e loop

Dmi ¼ 0: (1)

Secondly, that the flux of a reaction proceeds spontaneously in the

direction in which the chemical potential change is negative,

yi 3Dmi # 0 "i: (2)

These two equations can only be satisfied simultaneously if the net flux

around a biochemical loop is equal to zero, resulting in the loop-law for

reaction fluxes. Throughout this article, the term ‘‘loop law’’ will always

refer to the constraint on the reaction fluxes.

Extreme pathway analysis to find all loops

Extreme pathway analysis was used to identify all of the biochemical loops

in H. pylori (19). The identification of loops was accomplished by first

eliminating all the exchange fluxes from the system boundary and then

separating all of the reversible reactions into their two irreversible ele-

mentary reactions. Extreme pathway analysis was then performed on this

matrix that represents the closed system. All the extreme pathways of type

III were computed and they represent closed internal loops to the network

(19). Once all the loops were identified, the reversible reactions were then

made into net reactions again in the pathway matrix. The remaining nonzero

columns in the extreme pathway matrix represented all of the nontrivial

internal loops (more than two reactions) in the network.

Imposition of loop-law for reaction fluxes

The imposition of the loop-law for fluxes was performed in four steps. The

first step was to determine the set of linear equality constraints that were

necessary (but not necessarily sufficient) for thermodynamic feasibility.

These linear constraints were then applied as a preprocessing step to sam-

pling. Second, for the nonlinear constraints, linear constraints that most

tightly form the convex enclosing space were formed. Third, this convex

space was uniformly sampled. Fourth, the constraints that were irreducibly

nonlinear were applied as a simple postprocessing step where solutions that

violated the loop-law were discarded from the sampled set. This four-step

approach will be discussed in detail for applying the loop-law to the genome-

scale metabolic network of H. pylori, as well as to a series of illustrative

example systems (see Supplementary Material).

Step 1: Apply linear constraints

A set of linear constraints that were necessary (but not sufficient) for

thermodynamic feasibility was generated (18). These linear constraints were

then applied as a preprocessing step to the sampling procedure. One com-

mon example of a necessary but not necessarily sufficient linear constraint is

that certain reactions can be forced to be irreversible through application of

the loop-law, if one of the directions can only be used as part of a loop. This

reduction was determined in H. pylori by setting each reaction in a loop to

zero, one at a time, and then using linear programming (LP) to find the

maximum and minimum allowable flux on the remaining reactions. The

highest maximum flux and lowest minimum flux in these sets were

evaluated. If a reversible reaction becomes irreversible upon imposition of

the loop-law (i.e., a negative Vmin becomes zero or a positive Vmax becomes

zero), then the loop-law has reduced to a linear constraint in this case.

Another case where the loop-law reduces to a linear case is when a reaction

can only be used in a loop. This is found if a reaction begins as irreversible

and it is found using the above described procedure that the negative Vmin

becomes zero or the positive Vmax becomes zero. Or, for reversible reactions,

if both of these reductions occur.

Step 2: Maximally tighten constraints on loop reactions

By forcing each reaction in the loop to zero, one at a time, and performing an

LP maximization and minimization of all other reactions in the loop, it was

possible to establish the minimum and maximum value of each reaction

without the loop functioning. These calculated constraints were used as the

new Vmax and Vmin values for reactions that participated in loops, and

resulted in a convex space that tightly encompassed the nonconvex solution

space. Subsequent to finding these values, each of these constraints was

doubled and the sampling results were compared to those with the maxi-

mally tight constraints. The sets of kept points after application of the loop-

law were found to be statistically identical, indicating that no portion of valid

space was lost through the tightening of the Vmax and Vmin constraints on the

loop reactions. This check was performed because there are general cases

where simply zeroing out reactions one at a time will not be sufficient to

identify a tightly fitting enclosing convex space. For the H. pylori network

this was shown to be sufficient, but future implementations of this algorithm

may need to use somewhat more sophisticated techniques.

Step 3: Uniformly sample convex space enclosing
nonconvex solution space

The sampling of H. pylori’s metabolic network states was performed with

a Markov-chain Monte Carlo algorithm, as described in Thiele et al. (20).

Step 4: Eliminate sampled states that violate loop-law

Once a set of points is generated, each point can be evaluated for whether or

not it violates the loop-law. This is done by checking the sign pattern of each

reaction in the sampled point against the sign pattern of each loop. In other

words, a check is performed to see if there is flux going around a closed loop.

If any sample point contains a sign pattern corresponding to any of the

biochemical loops (for mathematical details, see (16)), the sampled point is

found to be infeasible and is excluded from the set (19). The remaining

points satisfy the loop-law.

RESULTS

The four-step procedure to account for the loop-law was ap-

plied to the genome-scale metabolic network for H. pylori.

Biochemical loops in H. pylori

Extreme pathway analysis was used to find the biochemical

loops in the genome-scale metabolic network of H. pylori
(Figs. 1–3). A biochemical loop is defined as a set of

reactions where material traversing around the loop returns

the system back to the exact state at which it started. These

loops are type III extreme pathways (19) and are thermo-

dynamically infeasible (14). These loops differ from those

commonly described for simple linear networks in that the
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reactions contain multiple reactants and products. Because of

this fact, these loops can be complex and are generally very dif-

ficult to locate by merely visually inspecting metabolic maps.

Imposing the loop-law in H. pylori

We applied the loop-law to sample a nonconvex solution

space associated with the genome-scale metabolic network

of H. pylori. Using the defined irreversibility constraints for

the reconstructed network (13), four nontrivial type III

extreme pathways were computed. The loop-law manifested

itself in three different ways when eliminating these four

loops.

The first loop consisted of nine reactions (Fig. 1). Using

LP, it was determined that seven of these reactions

(HSERTA, HSK, THRS, THRD_L, SHSL4r, SHSL1r, and

METB1r) could only operate in one direction based on either

an irreversibility constraint on the reaction itself or because

of a systemic irreversibility constraint resulting from the ir-

reversibility of other coupled reactions in the network.

These reactions are shown as the outer ring in Fig. 1. Com-

parison of the forced direction of activity of each reaction

with the loop demonstrated that whether or not loop 1 would

be active depended solely on the direction of the remaining

two reactions. Through sampling, it was determined that the

direction of these two remaining reactions (PTAr and ACKr)

was perfectly negatively correlated. Thus, only two possi-

bilities for their directions existed, one of which would

always cause the loop-law to be violated. Thus, the loop-law

in this case reduced to a simple linear constraint where the

Vmin of ACKr became zero and the Vmax through PTAr

FIGURE 1 Complex biochemical loop 1 in H. pylori.

FIGURE 2 Complex biochemical loop 2 in H. pylori.

FIGURE 3 Complex biochemical loops 3 and 4 in H. pylori.
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became zero, since this was the only case where the loop

would not be active. Thus, the imposition of the loop-law

required that PTAr and ACKr be used in the opposite direc-

tion than required to complete biochemical loop 1 (Fig. 1).

The second loop in H. pylori metabolism contained four

reactions (Fig. 2). Upon sampling the solution space, it was

found that the thermodynamic constraint was always vio-

lated for this loop, suggesting a reduction in the dimension of

the solution space. The loop-law was never satisfied in the

samples because all of the reactions were under systemic

constraints that forced them to be irreversible in the

directions that formed the loop (though only one of them,

AHSERL2, was defined as such). Thus, the loop-law could

only be satisfied if one or more or these reactions had zero

flux. To determine the possible flux range of each reaction in

the loop with the loop-law satisfied, each of the reactions was

set to zero, one at a time, and the minimum and maximum of

all the other reactions in the loop was computed using linear

programming (4). It was observed that if AHSERL2 was set

to zero, all other fluxes could remain operative (i.e., they had

nonzero flux solutions that did not require the loop to be

active). If METB1r or SHSL1r were set to zero, then all

reactions in the loop were also forced to zero. If SHSL2r was

set to zero, then only AHSERL2 was forced to zero. Thus,

AHSERL2 was shown to be inactive unless all of the re-

actions in the loop were active in a direction that violated the

loop-law. Thus, the loop-law for the second loop reduced to

the simple constraint that AHSERL2 must always be zero

(vi ¼ 0) under the simulated conditions since no valid flux

distributions were able to use this reaction. Therefore, the

loop-law could be applied as a preprocessing step simply by

removing the reaction before further sampling. This resulted

in the new convex enclosing space being in the same di-

mension as the nonconvex inner solution space.

FIGURE 4 Comparison of histograms of flux values through reactions in steady-state flux space of H. pylori’s metabolic network. Results for the first 25

internal reactions (alphabetically) are shown. ACKr is a reaction that participates directly in a loop, while all other reactions shown do not. The dotted lines

shows the outline of the histogram with the original constraints, and the solid line shows the outline of the histogram once the loop-law has been applied. The

x axis has been specifically formatted to end at zero for reactions that can only be used in one direction, and extend in both the positive and negative direction

for reactions that can be used in both directions, since this can otherwise be difficult to see in some of the histograms. The histograms are generated from

20,000 sample points using 20 bins.
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The final two loops (Fig. 3) in H. pylori each consisted of

three reversible reactions and could not be reduced to linear

constraints as was shown to be the case for the first two

loops. Thus, these constraints resulted in a nonconvex space

and had to be addressed using steps 2–4. This nonconvexity

was primarily addressed by eliminating sampled solutions

that violated the loop-law for these two loops. The initial hit

fraction was quite small, slowing down calculations consid-

erably. However, by tightening the Vmax and Vmin constraints

(Step 2) to the extent possible without eliminating valid flux

distributions, it was possible to greatly shrink the size of the

enclosing convex space. This reduction in the size of the

enclosing convex space resulted in the fraction of sampled

points that satisfied the loop-law being increased by more

than two orders of magnitude. After tightening the con-

straints, 99.9% of the sampled points were found to satisfy

the loop-law. Thus, it was shown that imposing the loop-law

inH. pylori resulted in a solution space that was only slightly
nonconvex. The increase in hit fraction from Step 2 led to

calculation speeds that were almost identical with the convex

case before application of the loop-law, but now all the

resulting distributions satisfy the basic laws of thermody-

namics encompassed in the loop-law for reaction fluxes.

Effects of the imposition of the loop-law on
candidate metabolic states in H. pylori

The effects of imposing the loop-law upon the sampling of

candidate metabolic states in H. pylori are reflected in the

distribution of flux levels in each of the reactions in the

steady-state flux space. Histograms of the first 25 reactions

(alphabetically) in H. pylori’s metabolic network are shown

as a representative sample to illustrate the scale of the

networkwide effects (Fig. 4). Results for all reactions active

under simulated conditions can be seen in the Supplementary

Material. The distribution of allowable fluxes for the ma-

jority of reactions was relatively unchanged by the imposi-

tion of the loop-law. A relatively small portion of reactions

FIGURE 5 Comparison of histograms of flux values through loop reactions before and after imposition of loop-law. The dotted lines shows the outline of the

histogram with the original constraints, and the solid line shows the outline of the histogram once the loop-law has been applied. The x axis has been

specifically formatted to end at zero for reactions that can only be used in one direction, and extend in both the positive and negative direction for reactions that

can be used in both directions, since this can otherwise be difficult to see in some of the histograms. The histograms are generated from 20,000 sample points

using 20 bins.
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that do not participate directly in loops were affected by the

imposition of the loop-law.

Imposing the loop-law constraints did greatly effect the

distributions of the reactions that participated in loops (Fig.

5). Before imposing the loop-law all loop reactions could

reach the arbitrarily set Vmax and Vmin constraints of 10
6 and

�106, respectively. Thus, in the calculations, participation in

loops artificially shielded the participating reactions from the

constraints that should have been imposed on them by

limiting Vmax and Vmin values for other reactions throughout

the network. Because most of the loop reactions have a

significantly reduced range of allowable values once the

loop-law is applied, the histograms shown in Fig. 5 after

imposition of the loop-law do not show the shapes of these

distributions well. Therefore, we also show the histograms

within tighter ranges in Fig. 6. The ranges found from LP are

also shown to demonstrate the relationship between the

sampled points and the reduced constraints used to tightly

box-in the states that satisfy the loop-law. Of interest are the

distributions for H2CO3D, H2CO3D2, HCO3E, NAt3_1,

PROt2r, and PROt4r, which are all reversible within the

network, but have the vast majority of their states in one par-

ticular direction once the loop-law was applied. This asym-

metry is partially responsible for the observed near-convexity

of the steady-state flux space of H. pylori under the simulated

conditions.

Uniform random sampling was used to find correlation

coefficients between all fluxes in a reaction network (12). We

compared all pairwise correlation coefficients between

reactions from a set of samples under the original conditions

and compared them to those after imposing the loop-law

(Fig. 7). The results were that the correlations between most

of the reactions that do not participate in loops do not change

very much. Large changes in the correlation coefficient did

occur in pairs where only one of the reactions participated in

a loop. These pairs were generally uncorrelated initially be-

cause the high flux value the loop could artificially obscure

the natural correlation between the reactions under thermo-

dynamically feasible conditions and show up on the y axis in
Fig. 7. The most extreme changes in correlation were seen

among a few pairs involving two loop reactions. In these cases,

a reaction pair was found to have almost perfect correlation

FIGURE 6 Closer view of histograms of flux values through loop reactions after imposition of the loop-law along with LP constraints after imposition of the

loop-law. The dotted lines show the outline of the histogram after the loop-law has been applied. The short vertical solid lines indicate the maximum and

minimum possible values of the enclosing convex space as determined by LP. The x axis has been specifically formatted to end at zero for reactions that can

only be used in one direction, and extend in both the positive and negative directions for reactions that can be used in both directions, since this can otherwise be

difficult to see in some of the histograms. The histograms are generated from 40,000 sample points using 100 bins.
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before imposing the loop-law and nearly zero correlation

afterwards, and for other sets, vice versa (Table 1).

Many of the reactions that participate in the two most

complex loops in H. pylori (loops 1 and 2) participate in me-

thionine and threonine biosynthesis. A comparison between

the calculated correlation coefficients before and after the

imposition of the loop-law is shown on a metabolic map

(Fig. 8). In Fig. 8, eight reaction pairs are shown where the

high correlation between the reactions was revealed through

the imposition of the loop-law. All of these pairs occur be-

tween reactions where one of the reactions appears in a loop

in which the other reaction does not. Their high degree of

correlation was thus previously obscured by the high activity

of the thermodynamically infeasible biochemical loops. Two

reaction pairs have their calculated correlation coefficient

reduced by the imposition of the loop-law. This occurs be-

cause these reactions all occur in biochemical loop 2. Since

this loop was highly active, it falsely showed these reactions

to be highly correlated, when in the context of network

constraints, they are in fact not.

DISCUSSION

A four-step approach was developed to study potentially

nonconvex spaces resulting from the implementation of the

loop-law for reaction fluxes. Application of the loop-law to

sampling metabolic states in H. pylori led to the following

results: 1), the loop-law constraint is commonly violated in

sampling genome-scale metabolic networks if closed loops

are present in the reconstruction; 2), it is feasible to

incorporate the loop-law into genome-scale metabolic net-

works; and 3), the effects of applying the loop-law have a sig-

nificant impact on calculations for reactions participating in

loops, but have only a limited effect on the majority of other

reactions in the network.

The four-step approach outlined herein was used to

uniformly sample H. pylorimetabolic network states that did

not violate the loop-law. Initial attempts to implement the

loop-law completely as a postprocessing step of eliminating

samples that violated this thermodynamic constraint led to a

hit-fraction of zero. That is, all points taken using the

unaltered Markov-chain Monte Carlo sampler violated the

loop-law. However, since the loop-law constraints for the

first two loops in H. pylori could be reduced to linear

constraints and used as a preprocessing step, it was possible

to find a nonzero percentage of sampled points that satisfied

the loop-law. However, this percentage was still very small,

enabling only the sampling of ;10 points satisfying the

loop-law for an overnight calculation on a high-performance

PC. Once the minimum and maximum flux through the

reactions participating in the final two loops was ascertained,

these were then used to bracket the space before sampling.

This best linear approximation was shown to tightly bind the

solution space, leaving only the irreducibly nonlinear por-

tions of the constraints that need to be implemented as a

postprocessing step. This step increased the hit-fraction of

points to;99.9%. Thus, while implementing the loop-law in

H. pylori did result in a nonconvex steady-state flux space, it
could be very closely approximated with all linear con-

straints making its sampling an algorithmically straightfor-

ward problem. The remaining portion of the loop-law was

then simply a matter of excluding the roughly one point in a

FIGURE 7 Changes in correlation coefficients due to implementing the

loop-law. Points are plotted based on a reaction pair’s correlation under

normal conditions (x axis) and with the loops eliminated through imposition

of the loop-law (y axis). Reaction pairs where both reactions participate in

loops are marked with a square, pairs with only one reaction involved in a

loop are marked with a circle, and those pairs where neither reaction

participates in a loop are marked with an asterisk.

TABLE 1 Correlation coefficients for selected reaction

pairs in Fig. 8

First

reaction

Second

reaction

Correlation

with loops

Correlation with

loop-law imposed

Two loop reactions in pair

H2CO3D2 H2CO3D 0.998 0.001

HCO3E H2CO3D 0.998 0.001

METB1r HSERTA ,0.001 1.000

SHSL1r HSERTA ,0.001 1.000

SHSL2r METB1r 1.000 0.043

SHSL4r METB1r ,0.001 0.946

THRD_L METB1r ,0.001 0.946

PROt2r NAt3_1 0.999 0.001

PROt4r PROt2r 0.999 0.001

SHSL2r SHSL1r 1.000 0.043

SHSL4r SHSL1r ,0.001 0.946

THRD_L SHSL1r ,0.001 0.946

One loop reaction in pair

SHSL2r AHCYSNS ,0.001 1

SHSL2r DHPTDC ,0.001 1

PROt2r PROabc ,0.001 0.506

SHSL2r RHCCE ,0.001 1

DM_hmfurn(c) SHSL2r ,0.001 1

sink_ahcys(c) SHSL2r ,0.001 0.526
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FIGURE 8 Portion of metabolic map of H. pylori for L-methionine and L-threonine metabolism. Red dashed lines indicate reaction pairs whose correlation

increased significantly (.0.5) when the loop-law was applied. The green dotted lines represent decrease in correlation when the loop-law was imposed as

biochemical constraint. Note that the flux through AHSERL2 was forced to be zero as a preprocessing step of implementing the loop-law. Reactions HSERTA,

THRD_L, SHSL4r, SHSL1r, METB1r, THRS, and HSK participate in biochemical loop 1, and METB1r, SHSL1r, SHSL2r, and AHSERL2 participate in

biochemical loop 2. The number of points on the graph is 123,753—corresponding to the number of unique reaction pairs between active fluxes in theH. pylori

metabolic network.
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thousand that violated the loop-law after all preprocessing

linear constraints were applied to the H. pylori metabolic

network.

The effect of implementing the loop-law in H. pylori was
reflected in histograms of individual fluxes in the steady-

state flux space and the pairwise correlation coefficients

between all of the reactions. It was observed that the

implementation of the loop-law significantly altered the

histograms for all reactions participating in loops. Before

implementing the loop-law, the loop reactions were able to

reach their arbitrarily set Vmin and Vmax values because the

loops were not bound by the systemic constraints of inter-

acting with other reactions in the network. With the loops

eliminated, the histograms of these loop reactions reflected

their true minimum and maximum possible values within the

confines of the system constraints on the network as a whole.

The implementation of the loop-law also affected reactions

outside of those that directly participated in loops, changing

the histograms for some of these reactions, as well as

correlation coefficients between various pairs of reactions.

The most pronounced effects on the correlation coefficient

calculations were for 1), the correlations between a loop reac-

tion and a nonloop reaction, where the relationship between

these reactions had been obscured by the high fluxes through

the loops; and 2), the reversal of correlated versus non-

correlated predictions for selected reaction pairs where both

reactions participated in a loop. However, these effects were

fairly localized with the majority of histograms for individual

fluxes remaining unchanged. Thus, studying samples from

H. pylori’s candidate metabolic network states without

implementing the loop-law would have resulted in reason-

able calculations for most of the network aside from the

reactions that directly participated in the loops.

Previous sampling studies applied to the steady-state flux

space have not explicitly taken the loop-law into account.

These studies focused on the human red blood cell (12), the

human mitochondria (20), and E. coli (11). The red blood

cell contains no nontrivial loops and so the loop-law was

automatically satisfied. The mitochondria contains one bio-

chemical loop, and thus histogram predictions therein would

change for reactions involved in the loop as well as slightly

for other parts of the network, as was noted in Thiele et al.

(20). The most updated reconstruction of E. coli’s metabolic

network contains ;10 biochemical loops (depends some-

what on simulated media conditions) and thus will have

some degree of differences in predictions when the loop-law

is applied.

The results of this study were based on accepting the

irreversibility constraints of the most recent reconstruction of

the H. pylori metabolic network as true and applying the

loop-law as an additional constraint. However, it would also

be of significant interest to evaluate the effects of the loop-

law thermodynamic constraints in the absence of any a priori

irreversibility constraints on reaction fluxes. As irreversibil-

ity constraints are removed the number of loops in a network

can increase significantly. The main impediment to such

work currently is the efficient calculation of all possible

loops (type III extreme pathways) in such a scenario. Ad-

dressing this challenge and evaluating the consequences

of the continuing explicit incorporation of thermodynamic

constraints to replace the ad hoc irreversibility constraints

commonly used in modeling metabolic networks presents a

significant opportunity for research going forward.

Taken together, the results show that we can apply the

thermodynamic constraints embedded in the loop-law for

reactionfluxesonagenome-scale, even if its imposition results

in a nonconvex solution space. The constraints primarily

affect the candidate values of the reactions that participate in

the loops. The methods developed and applied here can now

be applied to study the properties of the numerous genome-

scale networks that have been reconstructed and are available

for in silico analysis.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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