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ABSTRACT We show that the standard theoretical framework in single-molecule force spectroscopy has to be extended to
consistently describe the experimental findings. The basic amendment is to take into account heterogeneity of the chemical bonds
via random variations of the force-dependent dissociation rates. This results in a very good agreement between theory and rupture
data from several different experiments.

INTRODUCTION

Dynamic force spectroscopy is a widely used tool for

investigating binding properties of biomolecular complexes

at the atomic scale by means of the dissociation of single

chemical bonds under an external force (1,2). Since the first

reported ligand-receptor experiments (3–5) the technique has

rapidly evolved into a quantitative single molecule binding

assay technology giving access to binding forces, molecular

elasticities, reaction off-rates, and binding energy landscapes

with a sensitivity of single point mutations for single mol-

ecule affinity ranking. Essentially, the molecular complex of

interest is connected via suitable linkers (spacer molecules)

to an atomic force microscope (AFM) (see Fig. 1), or a

micropipette-based force probe and pulled apart at a constant

speed v while monitoring the acting forces until the chemical

bond ruptures.

Since the molecular dissociation process is of stochastic

nature, the theoretical interpretation of the observed rupture

forces is a nontrivial task: upon repeating the same exper-

iment at the same pulling velocity y several times, the rupture

forces are found to be distributed over a wide range (see Fig.

2). Furthermore, for different pulling velocities y different

such distributions are obtained. Hence, neither a single rup-

ture event nor the average rupture force at any fixed pulling

velocity can serve as a meaningful characteristic quantity of

a given chemical bond strength.

On the other hand, direct molecular dynamics simulations

of the forced dissociation process are still very far from

reaching experimentally realistic conditions due to the

limited accessible timescale (6–9). Hence, nontrivial theo-

retical modeling steps are unavoidable.

The main breakthrough in solving the puzzle came with

the hallmark articles by Bell in 1978 (10) and by Evans and

Ritchie in 1997 (11), recognizing that a forced bond rupture

event is a thermally activated decay of a metastable state that

can be described within the general framework of reaction

rate theory (12).

While Evans and Ritchie’s original theoretical approach

has been extended and refined in several important directions

(1,2,13–19), the essential physical picture—henceforth

called ‘‘standard theory’’—has remained unchanged and

has been the basis for evaluating the observed rupture data of

all experimental investigations ever since (1,2). In the next

section, we present this so-called standard theory and its

underlying assumptions in more detail. Then we evaluate

rupture data from several different experiments and we show

that all of them are incompatible with the basic assumptions

of the standard theory. In the central section, we propose an

extension of the standard theory which leads to a very good

agreement with the experiments. The basic new idea is to

take into account heterogeneity of the chemical bonds by

means of a simple and natural phenomenological ansatz to

quantify the proposed randomness of the dissociation rates.

We show that our theory is largely independent of the details

of this phenomenological ansatz. Next, the previously estab-

lished standard data analysis procedure is reconsidered from

the viewpoint of the new theory. The final section contains

our Summary and Conclusions.

THE STANDARD THEORY

Assumptions

The standard theory, which is at the heart of all recent

experimental and theoretical studies in the field of single-

molecule force spectroscopy (1,2), is mainly due to Evans

and Ritchie (11). Adopting the common concepts and

notions of equilibrium (static) reaction rate theory (12), a

rupture event is viewed as a thermally activated decay of

a metastable state, governed by a reaction kinetics

_ppðtÞ ¼ �kðf ðtÞÞ pðtÞ; (1)

where p(t) is the probability of bond survival up to time t and
k(f) the dissociation rate in the presence of a pulling force f.
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A first assumption implicit in Eq. 1 is that the applied force

f(t) changes slowly compared to the molecular relaxation into

the accompanying equilibrium of the metastable bound state

and also compared to the typical duration of thermally

activated transition and decay processes. Second, rebinding

after dissociation is neglected because of an immediate

separation of the two molecules after their dissociation (see

section Unsuccessful Explanations).

Another main ingredient of the standard theory regards the

dependence of the force f(t) in Eq. 1 on the pulling velocity y.
Namely, it is assumed that

f ðtÞ ¼ FðytÞ; (2)

where the function F(s) is independent of y. In other words,

the instantaneous force f(t) only depends on the externally

imposed total extension s ¼ yt of all elastic components of

the setup (molecules, linkers, AFM-cantilever, etc.), but not

on the velocity y at which this extension increases. The

theoretical justification is that under realistic conditions all

elastic components remain close to their accompanying/

instantaneous equilibrium states and hence their previous

history does not matter. An experimental verification is

provided by Fig. 2; see also Raible et al. (20).

Supplementing the standard theory—consisting in the

basic assumptions Eq. 1 and Eq. 2—by certain additional

approximations gives rise to the so-called standard method

for analyzing rupture force distributions. A more detailed

discussion of this method is given in the section Comparison

with the Standard Method.

Implications

Combining Eqs. 1 and 2, a straightforward calculation yields

for the probability py(f) of bond survival up to a force f
(defined via py(f(t)) ¼ p(t)) the result

pyðf Þ ¼ exp �1

y

Z f

fmin

df 9
kðf 9Þ

F9ðF�1ðf 9ÞÞ

� �
; (3)

where fmin denotes the threshold below which rupture events

cannot be distinguished from fluctuations in the experiment

(e.g., fmin � 20 pN in Fig. 2). Accordingly, f $ fmin is

henceforth tacitly understood in relations like Eqs. 1 and 3.

Furthermore, we assumed F(s) to be monotonically increas-

ing so that its inverse F�1 exists. (If F(s) were decreasing

within a certain interval of s-values, this would imply a

mechanical instability and hence the coexistence of yet at

least two further stable branches of F(s). These two stable

branches would furthermore imply hysteresis and hence an

incompatibility with the assumption discussed below Eq. 2.)

For the rest, the force-extension characteristic F(s) may be

completely arbitrary and the rate k(f) may describe a com-

pletely general activated decay of a metastable state in a

high-dimensional potential energy landscape (19,21). The

only prerequisite for Eq. 3 is the validity of Eqs. 1 and 2. The

latter, in turn, is basically tantamount to the requirement of

quasi-equilibrium of the entire setup in Fig. 1 (bound com-

plex, linkers, AFM) for all times before bond dissociation.

Eq. 3 implies that the function �y ln py(f) is independent
of the pulling velocity v, resulting in a single master curve,

FIGURE 1 Schematic illustration of dynamic AFM force spectroscopy: a

single chemical bond, e.g., in a ligand-receptor complex, is connected via

two flexible linker molecules with the tip of an AFM cantilever and a

piezoelectric element. The latter pulls down the attached linker molecule at

some constant velocity y. The resulting elastic reaction force of the

cantilever can be determined from the deflection of a laser beam. The main

quantity of interest is the force value at the moment when the bond

dissociates.

FIGURE 2 Force-extension curves of four representative single-molecule

pulling experiments, two with pulling velocity y ¼ 100 nm/s (solid) and two

with y ¼ 5000 nm/s (dashed), obtained by dynamic AFM force spectroscopy

for the DNA fragment expE1/E5 and the regulatory protein ExpG (23). The

abrupt drop of f(t) indicates dissociation of the chemical bond between

expE1/E5 and ExpG. Apart from noise effects, the forces f(t) before

dissociation (relevant in Eq. 1) collapse quite well to a single force-extension

master-curve F(s); see Eq. 2. It can be noted that for a given pulling velocity,

the rupture forces are distributed over a considerable range and that larger

pulling velocities result in larger average dissociation forces.
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onto which the data points should collapse for all pulling

velocities (22). Next, this conclusion will be used to check

the consistency of the standard theory Eqs. 1 and 2 with the

experimental data.

INCONSISTENCY WITH
EXPERIMENTAL FINDINGS

Evaluation of experimental data

Given a set of Ny experimentally observed rupture forces fn at
a fixed pulling velocity y (n ¼ 1, . . ., Ny, fn . fmin for all n),
we can infer the following estimate p̃yðf Þ for the true bond

survival probability py(f):

p̃yðf Þ ¼
1

Ny

+
Ny

n¼1

Qðfn � f Þ: (4)

Here, QðxÞ :¼
R x

�N dðyÞdy is the Heaviside step function

with the convention

Qð0Þ ¼ 1=2: (5)

By definition, p̃yðf Þ/pyðf Þ for Ny / N (with probability

1), and for any finite Nv, Eq. 4 is in fact the best estimate for

py(f) that can be inferred from the given data without

additional a priori assumptions about the system.

In Fig. 3 we have evaluated �ylnðp̃vðf ÞÞ for different

pulling velocities y according to Eq. 4 for the same

experimental system as in Fig. 2 (rupture data obtained by

dynamic AFM force spectroscopy for the DNA fragment

expE1/E5 and the regulatory protein ExpG (23)).

In contrast to Eq. 3, the functions �vlnðp̃vðf ÞÞ evaluated
from the experimental data using Eq. 4 at different values of

y do not collapse onto a single master curve. Rather, in-

creasing the velocity results in an increased value of this

function for sufficiently high forces. In view of the very

strong dependence of the experimental curves �ylnðp̃vðf ÞÞ
on the pulling velocities y, we conclude that the experimental

findings are incompatible with Eq. 3 and hence with the basic

assumptions from Eqs. 1 and 2 of the standard theory (20).

To check if this finding depends on the chosen experimen-

tal system, we have also evaluated dynamic AFM force

spectroscopy data for the dissociation of another DNA

fragment from the regulatory protein ExpG (see Fig. 4), a

PhoB peptide (wild-type) from the correspondingDNA target

sequence (see Fig. 5), and a cationic guest molecule from a

supramolecular calixaren host molecule (see Fig. 6). Since

essentially the same linkers have been used in all those AFM-

experiments, the force-extension curves always look similar

to those in Fig. 2. For more experimental details we refer to

Bartels et al. (23), Eckel et al. (24), and Eckel et al. (25).

Furthermore, we have evaluated in Fig. 7 rupture data

observed by means of a micropipette-based force probe for

the dissociation of a rabbit immunoglobulin of type G from

protein A (see (19) for the experimental details). In doing so,

we have employed as an additional assumption a linear force-

extension characteristic

FðsÞ ¼ ks; (6)

FIGURE 3 (Symbols) The functions �y lnðp̃yðf ÞÞ for different pulling

velocities y, obtained according to Eq. 4 from the same experiment (23) as in

Fig. 2. Each depicted point corresponds to one rupture event at f ¼ fn and

hence a step of the piecewise constant function Eq. 4. Only fn above fmin ¼
20 pN have been taken into account; see discussion below Eq. 3. The

number Ny of experimental data points for the six different velocities y

in Eq. 4 are N50nm/s ¼ 20; N100nm/s ¼ 44; N500nm/s ¼ 179; N1000nm/s ¼ 208;

N2000nm/s ¼ 108; and N5000nm/s ¼ 253. A few very small or large fn are

omitted in this plot for the sake of better visibility of the remaining symbols.

(Solid lines) Theoretical functions �y lnð�ppyðf ÞÞ for the same pulling

velocities y as the symbols, using Eqs. 9, 11–16, and 21. For more details,

see section Heterogeneity of Chemical Bonds.

FIGURE 4 Same symbols as in Fig. 3 but for dynamic AFM force

spectroscopy data by Bartels et al. (23) for the dissociation of the DNA

fragment expG1/G4 from the regulatory protein ExpG. (Symbols) The

functions �y lnðp̃yðf ÞÞ for different pulling velocities y, obtained according

to Eq. 4 and taking into account only fn above fmin ¼ 10 pN. (Solid lines)
Theoretical functions �y lnð�ppyðf ÞÞ for the same pulling velocities y as the

symbols, using Eqs. 9, 11–16, and 20.
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where k is the effective elastic spring constant of the entire

setup (bound complex, red blood cell, microbeads, etc.).

Moreover, instead of different pulling velocities y, we

considered different loading rates

r :¼ _ff ðtÞ ¼ ky (7)

of the force f(t) in Eq. 2. The reason for this modification is

that in the experiment from Nguyen-Duong (19), rupture

data both for different y and different k are available and

can be simultaneously evaluated in this way. Namely, by

exploiting that F9(s) [ k (independent of s) and renaming

py(f) as pr(f) we can again conclude from Eq. 3 that

�rlnðp̃rðf ÞÞ should be independent of r.
In all the different experimental systems in Figs. 3–7 we

thus recover the same kind of incompatibility with Eq. 3 and

hence with the basic assumptions Eq. 1 and Eq. 2 of the

standard theory.

Unsuccessful explanations

Since the incompatibility between experimental findings and

the standard theory is essentially of the same character in all

the different cases evaluated in Figs. 3–7, we concentrate on

one of them, namely, the system from Fig. 3. Moreover,

since Eq. 2 is verified experimentally by Fig. 2, we can focus

on Eq. 1 to pinpoint the leakage of the standard theory and

possibly repair it.

We first note that only f(t)-curves surpassing fmin ¼ 20 pN

in Fig. 2 have been taken into account in Fig. 3. Hence,

rebinding after dissociation would require a huge and hence

extremely unlikely random fluctuation (1,2) and has indeed

never been observed in the experiment at hand. Moreover,

upon increasing fmin we did not observe any clear tendency

toward a better data collapse than in Fig. 3 (see Fig. 8). In

other words, rebinding events are indeed negligible.

Concerning the accompanying equilibrium assumption

implicit in Eq. 1, the most convincing possibility leading to

its failure is the existence of several metastable (sub-) states

FIGURE 5 Same as in Fig. 3 but for dynamic AFM force spectroscopy

data by Eckel et al. (24) for the dissociation of the PhoB peptide (wild-type)

of E. coli from the DNA target sequence. (Symbols) The functions

�y lnðp̃yðf ÞÞ for different pulling velocities y, obtained according to Eq. 4

and taking into account only fn above fmin ¼ 20 pN. (Solid lines) Theoretical
functions �y lnð�ppyðf ÞÞ for the same pulling velocities y as the symbols,

using Eqs. 9, 11–16, and 21.

FIGURE 6 Same as in Fig. 3 but for dynamic AFM force spectroscopy

data by Eckel et al. (25) for the dissociation of a calixaren host molecule

(resorc[4]arene) from a cationic guest (ammonium). (Symbols) The func-

tions �y lnðp̃yðf ÞÞ for different pulling velocities y, obtained according to

Eq. 4 and taking into account only fn above fmin ¼ 25 pN. (Solid lines)
Theoretical functions �y lnð�ppyðf ÞÞ for the same pulling velocities y as the

symbols, using Eqs. 9, 11–16, and 22.

FIGURE 7 Same as in Fig. 3 but for micropipette-based force probe data

by Nguyen-Duong et al. (19) for the dissociation of immunoglobulin of type

G from protein A. (Symbols) The functions�rlnðp̃rðf ÞÞ for different loading
rates r; see below Eq. 6, taking into account only fn above fmin ¼ 15 pN.

(Solid lines) Theoretical functions �rlnð�pprðf ÞÞ for the same loading rates r
as the symbols, using Eqs. 7, 9, 11–16, and 23.

3854 Raible et al.

Biophysical Journal 90(11) 3851–3864



of the bound complex with relatively slow transitions

between them (11,15,16,26) and possibly several different

dissociation pathways (27); this possibility will be consid-

ered below. As discussed in detail in Raible et al. (20), one

indeed gets a spreading of �y ln(py(f)) for different y in this

way. This spreading is, however, qualitatively quite different

from that in Fig. 3 for a generic model with a few internal

states. With more complex networks of internal states—and

a concomitant flurry of fit parameters in the form of transition

rates between them—a satisfactory fit to the data in Figs. 3–7

may well be possible, but their actual existence in all the

different experimental systems seems quite difficult to

justify.

For further unsuccessful attempts to quantitatively explain

the noncollapse of the data to a single master curve in Figs.

3–7, see Raible et al. (20).

HETEROGENEITY OF CHEMICAL BONDS

Basic idea

We now come to the central point of our article. Namely, we

propose heterogeneity of the chemical bonds as an explana-

tion of the experimental findings in Figs. 3–7. Basically, this

means that Eqs. 1 and 2 remain valid except that the force-

dependent dissociation rate k(f) is subjected to random

variations upon repeating the pulling experiment. As a

consequence, the experimentally determined p̃vðf Þ from Eq.

4 should not be compared with the function py(f) from Eq. 3,

but instead, with its average with respect to the probability

distribution of the rates k(f), henceforth denoted as �ppyðf Þ:
At a first glance, such an intrinsic randomness of the

dissociation rate k(f) might appear unlikely in view of the fact

that, after all, it is always the same species of molecules

dissociating. Yet, possible physical reasons for such random

variations of the dissociation rate k(f) might be:

1. Random variations and fluctuations of the local molec-

ular environment by ions, water, and solvent molecules

locally modulating ionic strength, pH, and electric fields,

which may influence the dissociation process of the

molecular complex (28).

2. Structural fluctuations due to thermal activation may lead

to different conformations of a (macro-) molecule.

3. Orientational fluctuations of the molecular complex

relative to the direction of the applied pulling force

may amount to different dependences of the rate k on f. In
addition, the linker molecules may be attached to the

complex at different positions, but also many other ran-

dom geometrical variations may be possible (see Fig. 1 and

(29,30)).

4. Even more importantly, in a number of dissociation events

one is actually not pulling apart the specific molecular

complex of interest but rather some different, unspecific

chemical bond. In a small but not necessarily negligible

number of such unspecific events, the force-extension-

curve may still look exactly like in Fig. 2 and hence it is

impossible to eliminate those events from the experimental

data set.

We remark that not all those general reasons may be

pertinent to the specific experimental data in Figs. 3–7 and

that there may well exist additional sources of randomness

that we overlooked so far. Their detailed quantitative mod-

eling is a daunting task beyond the scope of our present work

and also beyond the present possibilities of experimental

verification. Rather, we will resort to the ad hoc ansatz that all

those different sources of randomness approximately sum up

FIGURE 8 Same as in Fig. 3 except that in panel a, only fn above fmin ¼
50 pN and in panel b, only fn above fmin ¼ 100 pN have been taken into

account. The solid lines are the corresponding theoretical functions

�y lnð�ppyðf ÞÞ using Eqs. 9, and 11–19. (Dashed lines) Same as solid lines

but after refitting the parameters k0, am, and s to the given data subset,

resulting in k0 ¼ 0.000020 s�1, am ¼ 0.19 pN�1, s ¼ 0.095 pN�1 for panel

a, and in k0 ¼ 0.017 s�1, am ¼ 0.091 pN�1, s ¼ 0.040 pN�1 for panel b.
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to an effective Gaussian distribution with two fit parameters

(see Eq. 16 below). Furthermore, we will verify that moderate

variations of this Gaussian ansatz indeed leave our main

conclusions practically unchanged (see the next section).

Formalization

To quantify the basic qualitative ideas from the discussion

above, the usual starting point will be some parametric

ansatz for the functional form of the rate, kðf Þ ¼ kðf ;~llÞ;
with a set of parameters ~ll: These parameters are randomly

distributed according to a certain (conditional) probability

density rð~ll;~mmÞ; which itself depends on some fit parameters

~mm: In such a case, the parametric ~ll-dependence of

kðf Þ ¼ kðf ;~llÞ is inherited by pyðf Þ ¼ pvðf ;~llÞ via Eq. 3,

yielding

pyðf ;~mmÞ ¼ exp �1

y

Z f

0

df 9
kðf 9;~llÞ

F9ðF�1ðf 9ÞÞ

( )
: (8)

The relevant �ppyðf Þ; to which the experimentally deter-

mined p̃yðf Þ from Eq. 4 should be compared (see beginning

of this section), follows by averaging with respect to the

probability distribution of the rates, i.e.,

�ppyðf ;~mmÞ ¼
R
d~llrð~ll;~mmÞpyðf ;~llÞR
d~llrð~ll;~mmÞpyðfmin;~llÞ

: (9)

The denominator accounts for the fact that rupture forces

below fmin cannot be distinguished from thermal fluctuations

and other artifacts (see Fig. 2) and therefore are missing in

the experimental data set. Hence �ppyðf ;~mmÞ is restricted to

f $ fmin and must be normalized to unity for f ¼ fmin. (Note

that rupture events at f , fmin, though not detectable by

the specific experiment at hand, do occur in actual reality

and hence fmin does not play any role regarding the validity

range or functional form of Eq. 8 (in contrast to Eq. 3).)

Finally, the fit parameters ~mm are determined so that

�ppyðf ;~mmÞ reproduces the experimentally observed p̃yðf Þ as

closely as possible. The resulting optimal parameters ~mm yield

an estimate for the heterogeneity of the chemical bonds in the

form of the probability distribution rð~ll;~mmÞ of the rates

kðf ;~llÞ:
In practice, one has to choose a cost function to quantify

the fitness or quality of a given �ppyðf ;~mmÞ with respect to

the experimental data p̃yðf Þ: A natural choice, which we will

use in the following, is

Qð~mmÞ :¼ +
n;y

½p̃yðfnÞ � �ppyðfn;~mmÞ�
2
; (10)

where the sum runs over all experimentally observed rupture

forces fn and all pulling velocities y. The main argument in

favor of the cost function Eq. 10 is that it attributes the same

importance to each rupture event, independent of the velocity

y at which it has been observed. Its main shortcoming is that

if one artificially partitions the data for one pulling velocity y

into two subsets, then the resulting minimizing parameters ~mm
will not remain the same for these subsets in general. A more

detailed discussion of this issue will be given elsewhere.

Model functions

To further substantiate these ideas, assumptions about the

functional form of the force-extension characteristic F(s), the
dissociation rate kðf ;~llÞ; and the probability density rð~ll;~mmÞ
are unavoidable.

According to Fig. 2, the force-extension characteristic is

approximately linear,

FðsÞ ¼ ks; k ’ 3 pN=nm; (11)

see Eq. 6.

Further, we adopt the standard approximation (Eqs. 1, 2,

10, and 11) of

kðf Þ ¼ k0 e
af
; (12)

where k0 is the force-free dissociation rate and e
af is supposed

to capture the dominating Arrhenius-type dependence of the

decay rate on the applied force (12). In doing so, the parameter

a can be identified with the dissociation length, that is, the

distance Dx between the potential minimum and the (unsta-

ble) transition state, projected along the force direction and

measured in units of the thermal energy,

a ¼ Dx=kBT (13)

(see also section Intermediate Energy Barriers below).

Introducing Eq. 11 and Eq. 12 into Eq. 8 yields the

simplified expression

pyðf ;~llÞ ¼ exp �k0
yk

e
af � 1

a

� �
: (14)

The above proposed heterogeneity of the chemical bonds in

general amounts to a randomization of the two parameters k0
and a in Eq. 12, i.e.,~ll ¼ ðk0;aÞ: In view of the exponential

function in Eq. 12 we can expect that the randomness of a

has a much stronger effect than that of k0. Hence, we first

consider k0 as fixed and only a as random parameter, i.e.,

~ll ¼ a: (15)

The corresponding probability distribution is thus of the

form rða;~mmÞ: A particularly simple and natural choice is the

truncated Gaussian

rða;~mmÞ ¼ N expf�ða� amÞ2=2s2gQðaÞ; (16)

with ~mm ¼ ðam;sÞ: Negative a-values in Eq. 12 appear quite

unphysical and hence are suppressed by the factor Q(a),

while N is a normalization constant, whose explicit value is

actually not needed in Eq. 9. The remaining truncated

Gaussian may be viewed as a poor man’s guess to effectively

take into account the many different possible sources of bond
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randomness mentioned above. The parameters am and s

approximate the mean and the dispersion of a, provided the

relative dispersion s/am is sufficiently small. Otherwise, the

actual mean value

�aa ¼ �aað~mmÞ :¼
Z
daarða;~mmÞ (17)

may exceed the most probable value am of the density in

Eq. 16 quite notably.

Since k0 is considered fixed (see Eq. 15), this parameter

effectively moves from the set ~ll into the set ~mm; i.e., we are

left with three fit parameters

~mm ¼ ðk0; am; sÞ: (18)

The standard theory Eqs. 1 and 2 with Eqs. 11 and 12 are

recovered from Eq. 16 for s / 0, thus leaving only two

fit parameters ~mm ¼ ðk0;aÞ; and hence �ppyðf Þ/pyðf Þ with

a ¼ am.

Application to experimental data

The fit to the five experimental data sets in Figs. 3–7 along

the lines described in the previous section is very good in the

first three cases and still satisfactory in the two remaining

cases.

For the corresponding fit parameters in Eq. 18 we have

obtained the following results.

For expE1/E5 and ExpG (Figs. 2 and 3):

k0 ’ 0:0033 s
�1
;am ’ 0:13 pN

�1
;s ’ 0:07 pN

�1
: (19)

For expG1/G4 and ExpG (Fig. 4):

k0 ’ 0:0026 s
�1
;am ’ 0:13 pN

�1
;s ’ 0:17 pN

�1
: (20)

For PhoB peptide and DNA (Fig. 5):

k0 ’ 0:00038 s
�1
;am ’ 0:14pN

�1
;s ’ 0:10 pN

�1
: (21)

For resorc[4]arene and ammonium (Fig. 6):

k0 ’ 0:092 s
�1
;am ’ 0:057 pN

�1
;s ’ 0:031 pN

�1
: (22)

For immunoglobulin G and protein A (Fig. 7):

k0 ’ 0:014 s
�1
;am ’ 0:22 pN

�1
;s ’ 0:14 pN

�1
: (23)

As already mentioned, essentially the same linkers have been

used for all the AFM experiments in Figs. 3–6, hence the

force-extension curves always look similar to those in Fig. 2.

Accordingly, Eq. 11 has been employed throughout Eqs.

19–22.

In all cases, the relative dispersion s/am is comparable to

or smaller than unity. Hence the mean a-value, given by �aa
in Eq. 17, is always close to the most probable a-value, given

by am in Eq. 16.

Since the experiments are conducted at room temperature,

the typical dissociation lengths Dx :¼ �aakBT (see Eq. 13)

resulting from Eqs. 19–23 with �aa ’ am are:

Dx ¼ 0:54 nm for expE1=E5 and ExpG:

Dx ¼ 0:54 nm for expG1=G4 and ExpG:

Dx ¼ 0:58 nm for PhoB andDNA:

Dx ¼ 0:24 nm for resorc½4�arene and ammonium:

Dx ¼ 0:92 nm for immunoglobulinG and proteinA:

Synthetic data, fluctuations,
systematic deviations

By means of a random number generator, synthetic rupture

data can be easily produced numerically, which satisfy Eqs.

1, 2, and 11–19 exactly. The resulting Fig. 9 is indeed

strikingly similar to Fig. 3.

Fig. 9 also provides a feeling for the typical statistical

fluctuations due to the finite numbers Ny of rupture events

at a given pulling speed y.

It seems plausible that all deviations between experiment

and theory in Fig. 3 can be attributed to such purely statistical

uncertainties with the exception of the small but systematic

deviations at large forces f. Note that the same type of

systematic deviations at large f are also apparent in Figs. 4–7.
We come back to those systematic deviations in section

Generalized Dissociation Rates, while the statistical fluctu-

ations will be addressed in more detail elsewhere.

OTHER RATE DISTRIBUTIONS

In this section, we discuss variations and generalizations of

our model function ansatz Eq. 16 for the probability density

quantifying the bond heterogeneity, while modifications of

the ansatz for the dissociation rate Eq. 12 itself are postponed

to the subsequent section. We focus on one experimental

FIGURE 9 Same symbols as in Fig. 3 but for synthetic rupture data,

sampled numerically according to Eqs. 9, and 11–19. The velocities y and

the number of rupture events Ny for each y are identical to those in Fig. 3.
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system, namely the data for expE1/E5 and ExpG from Fig. 3.

Throughout this section, N denotes normalization constants.

Distribution of a

In the following, we discuss modifications of the probability

distribution Eq. 16 for a in several paradigmatic ways, while

keeping k0 fixed and the ansatz for the dissociation rate Eq.

12 unchanged.

Gaussian distribution

Gaussian distribution, but in contrast to Eq. 16 without

suppressing negative a-values, has the form

rða;~mmÞ ¼ N expf�ða� amÞ2=2s2g: (24)

The fit to the experimental data (not shown) is practically

identical to that in Fig. 3, and also the corresponding fit

parameters,

k0 ’ 0:0038 s
�1
;am ’ 0:13 pN

�1
;s ’ 0:07 pN

�1
; (25)

are essentially the same as in Eq. 19. The obvious reason for

the good agreement is the smallness of the Gaussian tail with

negative a-values. In other words, the suppression of

negative a-values in Eq. 16 is not an essential point for

small-to-moderate relative dispersions s/am.

Parabolic distribution

Parabolic distribution of a between the limiting values al

and ar has the form

rða;~mmÞ ¼ N ða� alÞðar � aÞQða� alÞQðar � aÞ: (26)

The resulting fit to the experimental data (not shown) is of

the same quality as in Fig. 3, except for small forces;40 pN,

where the numerically predicted functions �vlnð�ppvðf ÞÞ are

closer to each other than in Fig. 3. For the corresponding fit

parameters ~mm ¼ ðk0;al;arÞ; we obtained

k0 ’ 0:0042 s
�1
;al ’ �0:002 pN

�1
;ar ’ 0:26 pN

�1
: (27)

Thus, k0 is comparable to the result in Eq. 19 and also mean

and dispersion of the parabolic distribution Eq. 26 are close

to those of the truncated Gaussian Eq. 16.

Box distribution

Box distribution of a has the form

rða;~mmÞ ¼ NQða� alÞQðar � aÞ: (28)

The fit to the experimental data (not shown) is slightly

worse than in Fig. 3, due to a steeper increase of the functions

�ylnð�ppyðf ÞÞ for y # 100 nm/s and f $ 200 pN. For the

corresponding fit parameters ~mm ¼ ðk0;al;arÞ we obtained

k0 ’ 0:0048 s
�1
;al ’ 0:033 pN

�1
;ar ’ 0:23 pN

�1
: (29)

Again, k0 is comparable to the result in Eq. 19 and also

mean and dispersion of the box distribution Eq. 28 are close

to those of the truncated Gaussian Eq. 16.

All in all, for the above modifications and several further

variations of the distribution equation (Eq. 16) and of the

dissociation rates equation (Eq. 12) that we tried out, the

resulting fit parameters were always comparable to those in

Eq. 19 and the agreement with the experimental data was

comparable to or worse than that in Fig. 3, but never

significantly better.

Randomization of k0

In a first step, we keep a in Eq. 12 fixed and instead ran-

domize k0 according to a truncated Gaussian distribution of

the form (see Eq. 16)

rð~ll;~mmÞ ¼ N expf�ðk0 � qÞ2=2s2

kgQðk0Þ; (30)

with random parameters ~ll ¼ k0 and fit parameters

~mm ¼ ðq;sk;aÞ: The fit to the experimental data (not shown)

is considerably worse than in Fig. 3. For the corresponding

fit parameters ~mm ¼ ðq;sk;aÞ we obtained the result

q ’ 0:0064 s
�1
;sk ’ 4:0 s

�1
;a ’ 0:05 pN

�1
: (31)

Although the most probable dissociation rate q and the

parameter a are still comparable to k0 and am in Eq. 19, the

relative dispersion sk/q of the dissociation rate distribution

takes the quite unlikely value of ;1000. The latter is in

accordance with our above guess (see Eq. 15) that random-

izing a has a much stronger effect than randomizing k0 in

Eq. 12 due to the exponentiation.

In view of the aforementioned bad agreement between

theory and experiment and the prediction that the dissoci-

ation rate k0 will vary by factors of 1000 between different

realizations of the same chemical bond, we conclude that

varying k0 instead of a does not admit a satisfactory

theoretical description of the experimental reality.

We remark that under the assumptions Eq. 11 and Eq. 12,

the quantities k0 and k appear in the combination k0/k in Eq.

14. Hence, a randomization of the linker stiffness, as

considered in Friedsam et al. (31) and Kühner et al. (32),

is basically equivalent to a randomization of k0 and does not

satisfactorily explain our present experimental findings.

As a next step, we consider a simultaneous randomization

of k0 and a. Specifically, we employed a distribution func-

tion of the form (see Eqs. 16 and 28)

rð~ll;~mmÞ ¼ N Qðk0 � klÞQðkr � k0Þ
3expf�ða� amÞ2=2s2gQðaÞ; (32)

with random parameters ~ll ¼ ðk0;aÞ (see Eq. 15) and

fit parameters ~mm ¼ ðkl; kr;am;sÞ (see Eq. 18). The resulting
fit to the experimental data (not shown) is practically
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indistinguishable from that in Fig. 3. For the corresponding

fit parameters we obtained the result

kl ’ 1:2 � 10�11
s
�1
; kr ’ 0:0091 s

�1

am ’ 0:13 pN
�1
;s ’ 0:07 pN

�1
: (33)

These parameters are also very similar to those in Eq. 19.

In other words, the agreement with the experimental data

and the quantitative numbers hardly change despite the two

extra fit parameters.

The main conclusion of this subsection is that randomiz-

ing k0 is of no use.

A second basic observation of this section is that

variations of the rate k0 in Eq. 12, or equivalently of k in

Eq. 11, have a much weaker effect than variations of a. The

same conclusion is corroborated by comparison of the solid

and dashed lines in Fig. 8 and by the huge variations of the

linker stiffness in the works (31,32), and is naturally

explained by the discussion preceding Eq. 15.

Conversely, this implies that estimating k0 from experi-

mental data is much more critical, i.e., accompanied by much

larger uncertainties, than estimating a.

GENERALIZED DISSOCIATION RATES

Complementary to the previous section, in this section we

address modifications of the dissociation rate, Eq. 12, while

keeping the ansatz for the probability density, Eq. 16,

unchanged. In doing so, the main motivation is the obser-

vation from section Synthetic Data, Fluctuations, Systematic

Deviations that Figs. 3–7 exhibit a small but still significant

systematic underestimation of the experimental data by the

theoretical lines for large forces f. Accordingly, the basic

criterion for the subsequent variations of the dissociation rate

will be to further reduce those small deviations between

theory and experiment. As usual, we focus on one exper-

imental data for expE1/E5 and ExpG from Fig. 3.

Throughout this section, the following simple argument

plays a crucial role. If one modifies the force-dependent

dissociation rate k(f) of a given chemical bond such that it

becomes larger than before for all f-values, then the survival

probability py(f) up to the force f will obviously become

smaller than before for any f-value. The same property is

inherited by �ppyðf Þ after averaging over the random variations

of the dissociation rate k(f); see Eq. 9. Since �ppyðf Þ is

decreasing from 1 toward 0 as f increases from fmin toward

N, the resulting property of the function �ylnð�ppyðf ÞÞ is to
become larger than before. The opposite behavior results if

the rate k(f) is modified so that it becomes smaller than before

for all f-values.
Hence, to reduce the above-mentioned deviations between

experiment and theory, we are seeking for physical mech-

anisms which systematically increase the dissociation rates

k(f), especially for large forces f.

Nonlinear generalization of Bell’s rate

First, we generalize Bell’s ansatz Eq. 12 for the dissociation

rate (10) according to

kðf Þ ¼ k0 e
af 1 gf 2

: (34)

A straightforward calculation shows that a negative

contribution to g arises from the nonlinear corrections to

the so-far adopted leading-order approximation DU(f) ¼
DU0 – Dx f for the effective potential barrier that has to be

surmounted by thermal activation in the presence of an

external pulling force f $ 0; see also the discussion above

Eq. 13 and in the sequel. According to the general argument

at the beginning of this section, it follows that including

nonlinear corrections of the potential barrier DU(f) does not
improve the agreement between theory and experiment but

rather worsens it.

So, to further improve our theory, a mechanism that

generates positive g-values is required. For instance, such a

positive value of g may be caused by deformations of the

polymer linkers attached to the ligand-receptor complex (see

Fig. 1), such that an increasing force f leads to an alignment

of the reaction coordinate with the force direction. Since the

supposed rotation of the reaction coordinate is caused by the

component of the force perpendicular to it and larger values

of a correspond to a close alignment of the reaction co-

ordinate and the force direction from the beginning of the

pulling process (see item 3 in section Basic Idea), g is a

decreasing function of a.

In the absence of a quantitative model for the mechanisms

of bond heterogeneities mentioned in section Basic Idea, we

quantify the above mentioned decreasing behavior of g as a

function of a, together with further possibly existing mech-

anisms contributing to g in Eq. 34, by the heuristic ad hoc

ansatz,

g ¼ b
2

0 expð�2ða=amÞ2Þ; (35)

where b0 is an additional fit parameter and a is randomly

distributed according to Eq. 16.

In other words, our generalized model involves still the

usual single random parameter Eq. 15, while the original fit

parameters Eq. 18 are now extended to ~mm ¼ ðk0;am;s;b0Þ:
The fit to the experimental data along these lines in Fig. 10

is of the same quality as in Fig. 3, except that the agreement

for large forces f is now indeed slightly better. For the

corresponding fit parameters, we obtained the result

k0 ’ 0:0031 s
�1
;am ’ 0:13 pN

�1
;

s ’ 0:08 pN
�1
;b0 ’ 0:010 pN

�1
: (36)

Again, these results for k0, am, and s are close to those in

Eq. 19.

In conclusion, the slight systematic deviations between

theory and experiment in Figs. 3–7 can be reduced by means
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of a physically meaningful generalization of the force-

dependent dissociation rate Eq. 34 (nonlinear corrections in

the exponent) with a single additional fit parameter.

Intermediate energy barriers

Although the chemical reaction path, in the simplest case,

proceeds from a bound metastable state across an energy

barrier (activated state) toward a dissociated product state, in

more general cases there may exist additional intermediate

metastable states separated by additional intermediate energy

barriers (11,15,16,26).

The simplest example of such a situation with one

intermediate state is sketched in Fig. 11. At small forces f
the population of this state is small and the dissociation is

effectively governed by a decay rate of the form k(f) ¼ k0e
af,

where a is the distance between the first and the last

extremum of the potential U0(x) divided by the thermal

energy kBT; see Eqs. 12 and 13. On the other hand, the decay
is always limited by the escape rate across the outer energy

barrier k90e
a9f with k0 , k90 and a . a9. At larger forces this

becomes the effective decay rate, because most of the

population is now in the intermediate metastable state.

Altogether, we thus have k(f) ¼ k0e
af for small forces and

k(f) ¼ k90e
a9f , k0e

af for larger forces.

According to the general argument at the beginning of this

section it follows that such a modification of k(f) due to the

presence of an additional intermediate energy barrier cannot

lead to an improved agreement between experiment and

theory. It only can lead to an increased curvature of the

theoretical lines in Figs. 3–7, while a better agreement would

require that the curvatures decrease.

In Fig. 11 we have tacitly assumed that upon increasing

the tilt f, the two minima exchange their roles (local versus

global minima) before the two barriers exchange their roles

(local versus global maxima). One can easily see that our

final conclusions remain valid also in the opposite situation.

Moreover, the conclusions persist also in the case of more

than one intermediate state.

The same conclusion is once more confirmed by Fig. 8. If

there were an intermediate state present along the dissoci-

ation pathway, then the rate law k(f) ¼ k0e
af, which governs

the small–f regime, would become less and less relevant with

increasing fmin, whereas the large-f law k(f) ¼ k90e
a9f would

become more and more dominant. Hence one should see a

systematic increase of the fit parameter k0 with increasing

fmin, while am should systematically decrease. Comparing

the fit parameters Eq. 19 for fmin ¼ 20 pN (Fig. 3) with those

for fmin ¼ 50 pN and fmin ¼ 100 pN in Fig. 8, such a

systematic tendency is not observed.

In conclusion, the experimental data in Figs. 3–7 do not

imply the existence of intermediate states within the frame-

work of our present theoretical description.

Note the difference between this conclusion and the one

from Raible et al. (20), mentioned also as one of the unsuc-

cessful explanations. There, it has been shown that within the

framework of the standard theory, it is not possible to explain

the very strong disagreement of the experimental curves

�y lnðp̃vðf ÞÞ for different pulling velocities y in Figs. 3–7 by
taking into account intermediate states.

COMPARISON WITH THE STANDARD METHOD

In this section we discuss some practical aspects of exper-

imental data evaluation in the light of our extension of the

standard theory, thereby also providing a further strong

argument in favor of our new theory.

Although our main quantity of interest so far was

�y lnð�ppvðf ÞÞ; traditionally one mostly considers rupture

force distributions �d�ppyðf Þ=df ; and similarly for p̃yðf Þ: Fig.
12 illustrates a well-known problem of the standard theory

Eqs. 1 and 2 supplemented by Eqs. 11 and 12 in this context

(see e.g., (29,30)): the dotted theoretical curves and the

FIGURE 11 Sketch of the relevant dissociation rates of a chemical bond

whose reaction coordinate x experiences a reaction potential U(x) with an

intermediate energy barrier.

FIGURE 10 (Symbols) Same experimental data as in Fig. 3. (Solid lines)

Theoretical functions �y lnð�ppyðf ÞÞ for the same pulling velocities y as the

symbols, using Eqs. 8, 9, 11, 16, 34, and 36.
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experimental rupture force histograms have opposite skew-

ness and agree very badly after fitting k0 and a ¼ am

according to the so-called standard method, as described

in more detail in the next paragraph. On the other hand,

our generalized theory has the correct skewness and agrees

very well with the experimental histograms in Fig. 12,

thus quantitatively confirming the qualitative arguments in

Simson et al. (29) and Strigl et al. (30).

The most probable rupture force f* by definition maxi-

mizes the rupture force distribution �d�ppyðf Þ=df within the

regime f $ fmin, implying

f
� ¼ maxffmin; f

�
0 g with d

2 �ppyðf
�
0 Þ=df

2 ¼ 0: (37)

For the standard theory Eqs. 1 and 2 with Eqs. 11 and 12, it

readily follows that

f � ¼ max ffmin;a
�1
lnðakv=k0Þg: (38)

Accordingly, in many experimental studies one tradition-

ally plots f* versus ln v and determines k0 and a according to

Eq. 38, by means of a (piecewise) linear fit, where f*(y)
is estimated for each pulling velocity v by way of fitting

a Gaussian with four parameters c1, . . ., c4 of the form

yðf Þ ¼ c1 expð�c2ðf � c3Þ2Þ1 c4 (39)

to the experimentally observed rupture force histogram. This

procedure is commonly referred to as the standard method.

Along these lines we determined the fit parameters k0 and

am ¼ a used for the dotted curves in Fig. 12.

Note the difference between our present notions of

standard method and standard theory. The standard theory

consists in the assumptions from Eqs. 1 and 2 about the

rupture process (often supplemented by the assumptions

from Eqs. 11 and 12). The standard method consists in fitting

Gaussians Eq. 39 to the experimental histograms of rupture

FIGURE 12 (Histograms) Same ex-

perimental rupture data as in Fig. 3 but

represented as rupture force distributions.

(Solid lines) Theoretical curves �d�ppyðf Þ=
df according to Eqs. 9 and 11–19. (Dotted

lines) Same but for k0 ¼ 0.011 s�1, am ¼
0.14 pN�1, s ¼ 0 pN�1, fmin ¼ 0 (see

main text), and with �d�ppyðf Þ=df divided
by a factor 3 for better visibility of the

other curves.
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force distributions and using the resulting most probable

rupture forces f* to determine a and k0 according to formula

Eq. 38.

The standard theory, together with the common ansatz

Eqs. 11 and 12, implies formula Eq. 38. We will now dem-

onstrate that the standard method may still be a satisfactory

approximation although the standard theory is not.

Within our generalized theory, Eq. 37 is no longer tractable

analytically but easily solved numerically (see Fig. 13).

Although the mean a-value, given by �aa in Eq. 17, and the

most probable a-value, given by am in Eq. 16, are quite

similar if the relative dispersion s/am is comparable to or

smaller than unity, they may notably differ for larger dis-

persions. In Fig. 13 we have kept am fixed and compared the

resulting curves for different ratios s/am and thus dif-

ferent dispersions s, hence implicitly varying �aa as well. Com-

plementarily, in Fig. 14 we have kept �aa fixed while varying

s and hence also am in such a way that their ratio s/am

was still the same as in Fig. 13.

Finally, in Fig. 15 we again kept �aa fixed like in Fig. 14, but

now we did not determine f* by numerically solving Eq. 37

but rather by fitting Gaussians of the form Eq. 39 to the

actual rupture force distributions �d�ppvðf Þ=df in the spirit of

the standard method.

In all three Figs. 13–15, the curves for s ¼ 0 (solid lines)
are almost identical and represent the prediction Eq. 38 of the

standard theory (see discussion below Eq. 18)). Surprisingly,

even for s . 0, in all three figures f* still remains in very

good approximation (but not rigorously) a (piecewise) linear

function of ln y. However, in general the dependence of these

curves on the parameters k0, am, or �aa; and s, is much more

complex than for the standard theory in Eq. 38.

Curiously enough, the increasing agreement of the

different curves when proceeding from Fig. 13 to Fig. 15

implies that if one estimates f* in the traditional spirit by

fitting Gaussian Eq. 39 to the rupture force distributions then

the dependence of this fit on the dispersion s is approxi-

mately negligible. Hence one still can approximately deter-

mine k0 and �aa by means of the standard method, since the

error of the underlying standard theory and of the Gaussian

fitting procedure almost compensate each other!

E.g., the parameters k0, �aa which can be inferred from

the five functions in Fig. 15 via Eq. 38, remain between

k0 ¼ 0.0046 s�1, �aa ¼ 0:13 pN�1, and k0 ¼ 0.0033 s�1,

FIGURE 13 Most probable rupture force f* versus pulling velocity y

(logarithmic scale) by solving Eq. 37 numerically with Eq. 9, fmin ¼ 0,

Eqs. 11–16, k0 and am from Eq. 19, and five different values of s. For

fmin . 0, the maximum of the plotted curves and fmin yield f*.

FIGURE 14 Same as Fig. 13, except that �aa in Eq. 17 rather than am in

Eq. 16 has been kept fixed to the value 0.135 pN�1.

FIGURE 15 Same as Fig. 14, except that f* was not determined according

to Eq. 37 but rather by fitting the rupture force distributions �d�ppyðf Þ=df by
Gaussian Eq. 39. (The fit was performed on the interval 0 # f # 250 pN.)
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�aa ¼ 0:19 pN�1—i.e., quite close to their actual values

k0 ¼ 0.0033 s�1, �aa ¼ 0:135 pN�1.

In other words, the inconsistency of the standard theory as

unraveled in our present work could not be discovered in the

traditional f* versus ln y plots. Conversely, such plots still

remain admissible from the viewpoint of our present

generalized theory to approximately determine k0 and �aa;
while s (and hence am) can only be estimated by means of a

more elaborate data analysis.

SUMMARY AND CONCLUSIONS

The theory by Evans and Ritchie (11) plays a key role in the

field of single-molecule force spectroscopy. While extended

in several important directions, their basic assumptions from

Eqs. 1 and 2 have been taken over in all subsequent the-

oretical and experimental works in this field, reflected also

by the almost 450 citations of that article.

We demonstrated that the incompatibility of this standard

theory with experimental findings—originally unraveled in

Raible et al. (20)—is a general feature of many different

experimental systems. The qualitative similarity of Figs. 3–7

suggests that this incompatibility is, in fact, universal.

The central part of our present work is represented by

section Heterogeneity of Chemical Bonds, where we show

how the problem can be cured. Namely, we explain and

remedy the discrepancy between experiment and theory by

postulating heterogeneities of the chemical bonds in exten-

sion of the standard theory. In the simplest case, the single

new fit parameter of the generalized theory is the dispersion

of the effective dissociation lengths. The resulting very good

agreement with the experimental data corroborates that the

proposed heterogeneity of the chemical bonds is ubiquitous

in dynamic force spectroscopy experiments and that our

model equations (Eqs. 9, 11–16) constitute a faithful model

for the interpretation of these experimental data.

At the same time, another long-known problem of the

standard data analysis procedure is resolved in Comparison

with the Standard Method, namely the notoriously bad

agreement between experimentally observed and theoreti-

cally calculated rupture force distributions (Fig. 12). Since

this procedure builds on the standard theory and since the

rupture force distribution from Comparison with the Stan-

dard Method is basically the derivative of the survival

probability from Heterogeneity of Chemical Bonds, it seems

possible that the two problems of the standard theory treated

in those two sections are essentially two sides of the same

coin, though we have not been able to explicitly demonstrate

such a connection.

Amain open problem is a more detailed understanding and

quantitative modeling of the bond heterogeneities instead of

the rather qualitative arguments in section Basic Idea and an

ad hoc ansatz like in Eq. 16. On the other hand, by assuming

a distribution of a we could demonstrate that the specific

quantitative form of those ansatzes does not matter very

much. Moreover, such a detailed modeling of the many dif-

ferent potential sources of bond randomness would probably

go beyond the present possibilities of experimental verifica-

tion.

In view of our numerous unsuccessful previous attempts

to explain the experimental findings, we believe that our

present explanation indeed captures an important real effect

in such experiments. In particular, the fact that the exper-

imental curves in Figs. 3–7 are typically increasing with

increasing pulling velocity v, seems difficult or even

impossible to explain quantitatively in a different way.

Although the standard theory predicts no such y-dependence

at all, most physically meaningful alternative explanations

lead just to the opposite y-dependence that is observed

experimentally (20). That an explanation is both physically

meaningful and in quantitative agreement with the experi-

ment seems to be an important requirement to us. E.g., it may

be easily possible to fit the curves in Fig. 3–7 by some ad hoc

mathematical ansatz with a few fit parameters but without a

physical basis. An example of such an ansatz is a scaling

function with certain scaling exponents. The fragility of such

a satisfactory quantitative agreement between theory and

experiment is once more illustrated when we assumed a

random distribution of the parameter.

Since our central theoretical quantity, �y lnð�ppyðf ÞÞ; is very
different from the traditional observables considered in the

context of dynamic force spectroscopy (see section Com-

parison with the Standard Method), it may be worthwhile to

summarize the effects of our three basic fit parameters k0, am,

and s (see Eq. 18) on the shape of this function. The

qualitative effect of the force free dissociation rate k0 and of

the most probable dissociation length am in units of kT can

still be inferred from Eq. 14, yielding

�y lnð�ppyðf ÞÞ �
k0
kam

ðeamf � 1Þ: (40)

Plotted on a logarithmic scale, like in Figs. 3–10, the small-f
regime is thus dominated by a logarithmic asymptotic of the

form ln(f k0/k), crossing over for large f toward a linear

asymptotics of the form am f. The remaining parameter s,

representing the random dispersion of the dissociation lengths

a in units of kT, mainly determines the spreading of the

functions �y lnð�ppyðf ÞÞ upon variation of the pulling speed y.

In particular, for s / 0 this spreading disappears and our

new theory reduces to the standard theory (with a ¼ am).

The remaining small systematic differences between

theory and experiment at large forces f in Figs. 3–7 have

been explained with the help of nonlinear generalization of

Bell’s rate by means of a simple physical mechanism, giving

rise to one further fit parameter. This mechanism would

support the physical reason 3 to explain bond heterogeneities
in section Basic Idea, namely geometrical variations of the

entire setup in Fig. 1, which are changing upon increasing

the external load f on the bound complex.
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According to the conclusions of section Randomization of

k0, variations of k0, or equivalently, of k in Eq. 12, have a

much weaker effect than variations of a. Further closely

related conclusions are:

1. Randomization of the linker stiffness (31,32) is of no

help to explain the experimental observations in Figs. 3–7.

2. Small-to-moderate variations of the force-extension

curves are of little importance in Figs. 3–7. Except for

the rigorous arguments in Assumptions (see The Stan-

dard Theory), no such variations are admissible (see also

Fig. 2).

3. Estimating k0 from experimental data is accompanied by

a much larger uncertainty than estimating the mean value

am and the dispersion s of the random distribution

governing a. In fact, Eq. 12 suggests that not k0 itself, but
rather ln k0, should be considered as the natural fit

parameter complementing am and s.
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