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ABSTRACT We investigate the competing effects of hydrophobic mismatch and chain stretching on the morphology and
evolution of domains in lipidmembranes viaMonte Carlo techniques.Wemodel themembrane as a binarymixture of particles that
differ in their preferred lengths, with the shorter particles mimicking unsaturated nonraft lipids and the longer particles mimicking
saturated raft lipids. We find that phase separation can be induced upon increasing either the ratio J=~kk of the hydrophobic surface
tension J to the compressibilitymodulus ~kk. J/~kk determines the decay length for thickness changes.When this decay length is larger
than the system size the membrane remains mixed. Furthermore, increasing the thickness relaxation time can induce transient
phase separation.

INTRODUCTION

Strong evidence has been obtained that suggests the presence

of heterogeneities in the plasma membrane of many cells

(1–5). One type of membrane heterogeneity, termed rafts, is

enriched in cholesterol, sphingomyelin (SM), and certain

membrane proteins (6,7). Rafts have putative roles in many

physiological processes, such as signal transduction, endo-

cytosis, apoptosis, protein trafficking, and lipid regulation

(7–11).

Raft lipids typically have saturated hydrocarbon chains.

For example, SM comprises a sphingoid base that has a

saturated hydrocarbon chain plus a very long amide-linked

saturated acyl chain that is, on average, 20–24 carbons in

length (12). Glycerol-based phosphatidylcholine, on the other

hand, which is the major class of nonraft lipids that have, on

average, 18 carbons per acyl chain (13), is less saturated than

naturally occurring sphingomyelins, which generally contain

one saturated and one unsaturated acyl chain (14). These

unsaturated bonds produce kinks in the lipid chains, increas-

ing the area per molecule. Therefore, this leads to a reduction

in lipid thickness due to volumetric considerations. Choles-

terol, a molecule that is enriched in lipid rafts, has a shorter

hydrophobic length of 17.5 Å (15). However, it does not

change the length of SM. With or without cholesterol, C18:0

SM has been found to form bilayers with a thickness of 46–47

Å (16). Hence, because of the differences in lipid thickness

between raft and nonraft lipids, and since energetically it can

be expected that the lengths of the hydrophobic moieties of

neighboring membrane components will be approximately

equal to avoid unfavorable exposure of hydrophobic surfaces

to a hydrophilic environment, it is reasonable to assume that

nonraft lipids should coalesce and predominantly give rise to

smaller bilayer thicknesses compared to raft lipids (17,18).

Indeed, in studies of model membranes comprising dioleoyl-

phosphatidylcholine (DOPC), SM, and cholesterol, phase

separation is observed giving rise to SM- and cholesterol-rich

raft domains (19–21). Atomic force microscopy studies

reveals that these domains are typically of order 1-nm thicker

that the surrounding DOPC-rich region (19).

However, it has been shown that proteins are able to

integrate into a membrane while tolerating a length variation

of ;10 amino acids, depending on the amino acid compo-

sition (22,23). This therefore raises the questions: How

important is hydrophobic mismatch for membrane structure

and organization, and how do membranes relieve hydropho-

bic mismatch between proteins and lipid bilayers? Possible

adaptations for the relief of hydrophobic mismatch in mem-

branes include phase separation of lipids of different thick-

nesses, ordering and disordering of the acyl chains, peptide

backbone deformation, peptide aggregation, peptide tilt, no

transmembrane association of the peptide with the mem-

brane, or nonlamellar phase formation. Little is known about

which will be favored under certain conditions (24,25).

The goal of this article is to investigate how hydrophobic

mismatch in a simple model membrane comprising two

species of particle influences the membrane phase behavior.

Specifically, we model adaptations to hydrophobic mismatch

by stretching or compressing the particles, hence ordering or

disordering the lipid acyl chains.

Theories that address acyl-chain stretching or compression

due to the incorporation of a peptide of a different hydro-

phobic thickness include the phenomenological approaches

by Owicki et al. (26,27) and Jähnig et al. (28–30). In these

theories, they assume the location of the proteins to be fixed

and so they do not induce thermodynamic phase separation.

The phenomenological mattress model by Mouritsen and

Bloom (31) is a two-component real solution theory and

hence allows for phase separation. In their model, they relate

the energy stored in the undulations of the membrane surface

caused by the mismatch to the elastic properties of the lipids

and proteins. They do not include microscopic detail of the
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lipids, but use as input the known thermodynamic properties

of the pure lipid system. They also include indirect lipid-

protein interactions induced by the mismatch as well as

direct lipid-protein van der Waals-like interactions between

the hydrophobic parts of the lipid bilayer and the proteins.

The mattress model has been replicated in a Monte Carlo

simulation scheme by Sperotto and Mouritsen (32). They

allowed for different microstates of the lipids, classified

according to Pink’s 10-state model (33), hence enabling a

pure lipid bilayer phase transition. A major theoretical

advance was the work of Fattal and Ben-Shaul (34), who

provided a molecular theory for the behavior of the lipid

chains. This molecular modeling was combined with phe-

nomenological free energy contributions accounting for the

opposing effects of headgroup repulsions and hydrocarbon-

water surface tension. Duque et al. (35) described the effects

of an embedded protein in a bilayer via molecular theory,

which yielded the free energy of the entire system. All these

theories predict a significant stretch of the acyl chains of

lipids that are adjacent to a long peptide. These perturbations

in lipid thickness decrease for the lipids that are at a greater

distance from the peptide.

Many experimental studies of model membranes support

these theories. Deuterium (2H) NMR measurements on lipids

with perdeuterated acyl chains show that a reduction in both

acyl-chain order and bilayer thickness occurs when an

embedded peptide has a smaller hydrophobic thickness than

that of the lipid bilayer (36,37). Additionally, electron

cryomicroscopy measurements showed a reduction in bila-

yer thickness when a short peptide was incorporated into a

DOPC liposome (38). For the opposite case when a peptide

has a hydrophobic thickness that is greater than that of the

bilayer, it has been found via (2H) NMR experiments that the

bilayer increases its acyl-chain order and thickness. Inter-

estingly, upon increasing the peptide hydrophobic length, the

membrane thickness does not match this increment, although

its thickness does always increase (36,37,39). Hence, it

appears that complementary mechanisms of adaptation to

hydrophobic mismatch occur concomitantly with changes in

lipid acyl-chain order and thickness.

Issues that have not been addressed previously relating to

acyl-chain stretching or compressing to relieve hydrophobic

mismatch include the initial instability of a membrane that

could, for example, be induced biologically after delivery of

lipids having a different hydrophobic thickness to a mem-

brane, and also the potential induced large-scale structure. In

this article, we study how the hydrophobic mismatch between

two species of particle in a bilayer influences the membrane

phase behavior and the kinetics of phase separation. In

particular, a large hydrophobic mismatch between particles

that are stiff can induce phase separation since the particles are

unable to stretch or compress to relieve the mismatch. The two

species of particle, U and S, represent unsaturated and

saturated lipids, respectively, with the U particles having a

shorter preferred hydrophobic length than the S particles. The

mechanism of adaptation to hydrophobic mismatch is mod-

eled by stretching and compression of the particles, analogous

to stretching and compression of lipid acyl chains. To im-

plicitly treat a bilayer, a particle is assumed to be the same

lipid on opposite sides of the bilayer. Hence, a change in

particle hydrophobic thickness will stretch (or compress) both

lipids in opposite directions. We investigate the effects of

hydrophobic mismatch on membrane phase behavior in two

ways. Firstly, we present a mesoscopic calculation that probes

the intermediate to late stages of composition and bilayer

thickness growth. These regimes are explored via Monte

Carlo computer simulation. Secondly, we present an analytic

treatment describing the early stages of growth.

MESOSCOPIC MODEL

Free energies

Initially we study the effects of hydrophobic mismatch on

domain morphology for a mesoscopic model. We model the

bilayer as a two-dimensional square lattice with sides of

length L. Each lattice site, having an area a2, is occupied by

either a U or S particle. The particles have two degrees of

freedom. They can laterally exchange positions with a

neighboring particle or they can change their thickness. A

particle is assumed to be the same lipid on opposite sides of

the bilayer and so a change in particle thickness will stretch

(or compress) both lipids in opposite directions. All energies

are measured in units of kBT and all lengths are measured in

units of the lattice spacing a.

The free energy G of the membrane comprises three terms:

the lipid-lipid interaction energy Gint, the lipid stretching

energy Gstretch, and the hydrophobic mismatch energy

Gmismatch.

The lipid-lipid interaction energy is given by

Gint ¼ +
Æi;jæ

+
a;b

fiafjbVab; (1)

where fia is equal to 1 if species a is at lattice site i or equal to

0 if species a is not at lattice site i. The value a can be U or S.

The value Vab is the contact energy of neighboring species

a andb. The physical contribution toVab is from electrostatic

and van der Waals interactions between the lipids. However,

these interactions are not modeled explicitly. This term can

lead to phase separation in a two-component system if the

strength of the energetic interaction betweenU and S particles

(VUS) relative to their self-interactions (VUU,VSS), x, given by

x[
2ð2VUS � VUU � VSSÞ

kBT
; (2)

satisfies x . xMF ¼ 2 within mean-field theory (40), or x .

xc ¼ 3.526 in a physical system incorporating critical

fluctuations (Ising model) (41). Hence, for VUU ¼ VSS ¼ 1,

phase separation occurs if VUS . 1.88.
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The lipid stretching energy is given by

Gstretch ¼ +
i

+
a

~kka

2
ðli � la0Þ2

fia; (3)

where li is the actual thickness at site i, and la0 is the

preferred thickness of species a at site i. The preferred length

of a particle is constant throughout a simulation. Hence,

phase transitions between liquid-ordered and gel states are

not modeled since they are usually accompanied by changes

in lipid length. The value ~kka is the compressibility modulus

of particle a. The stretching energy arises due to a lipid not

having its preferred thickness. For simplicity ~kkU and ~kkS are

assumed to be equal in this study, hence we will refer to ~kka as

~kk. However, in a physical system, ~kk will be larger for lipids

that are more saturated, therefore having straighter and less

flexible hydrocarbon chains.

The hydrophobic mismatch energy is proportional to the

exposed hydrophobic area and is given by

Gmismatch ¼ +
Æi;jæ

+
a;b

Jabjli � ljjfiafjb; (4)

where the exposed hydrophobic area is linear in the particle

thickness difference. We have not included an explicit

bending penalty in the mesoscopic model because bending, a

long wavelength phenomenon, will arise from coarse-

graining Eqs. 3 and 4 up to longer length scales. The value

Jab is the hydrophobic surface tension between nearest and

next-nearest species a and b. The value Gmismatch will be

minimized when the particles are of equal thickness. Phys-

ically, this means that the lipid headgroups will be directly

adjacent, hence avoiding contact between the aqueous en-

vironment and the lipid hydrocarbon chains, and/or avoiding

contact between the water molecules around the lipid

headgroup of one lipid and the hydrocarbon chains of the

other lipid. In this study, we do not model lipid headgroups.

Hence, we assume that the hydrophobic surface tension be-

tween a lipid headgroup and hydrocarbon chains, and the

hydrophobic surface tension between the aqueous environ-

ment and the hydrocarbon chains, are equal. Additionally,

for simplicity we assume Jab [ J independent of particle

type. However, in a physical system the hydrophobic surface

tension will be higher for unsaturated lipids due to the acyl

chains being kinked. This leads to a larger available contact

area between the lipid chains and water around neighboring

lipid headgroups or the aqueous environment.

Model approximations

Our model assumes that the two monolayers are symmetric.

Hence, a concentration of a short component in one leaflet

implies a similar concentration in the opposite leaflet (Case

I), and thus local membrane thinning. Alternatively, an

excess of short components in one leaflet could be compen-

sated by an excess of longer components in the opposite

leaflet (Case II), thereby reducing the hydrophobic mis-

match. There are two main contributions to the difference in

free energies DG ¼ GI – GII between phase-separated

morphologies in these two cases. The first contribution is due

to the hydrophobic mismatch between domains. This incurs

a free energy penalty DGline ; lLd, where Ld is the domain

interface length and l is the line tension. The second

contribution is due to differences in the free energy of bilayer

assembly DGarea ; �gLd
2, since we expect the symmetric

bilayer to have the lower energy state. The competition

between these two free energy differences leads to a length

scale, ~jj;l=g. At early times, Ld,~jj, suggesting that Case II

will be the preferred configuration. However, at later times

Ld will exceed ~jj, which should favor Case I. Our model is

appropriate for the limit of Ld.~jj. We leave the very in-

teresting physics of the interplay between these two config-

urations to future work.

We also assume negligible frame tension, which prevents

the area per particle from decreasing. The work done against

a frame tension ~gg is given by

Gframe ¼ +
i

+
a

~ggva
1

li
� 1

la0

� �
fia; (5)

where va is the volume of species a. This would therefore

shift the phase boundaries slightly; i.e., a deeper quench will

be needed to effect phase separation that would lead to an

overall smaller area per particle.

Simulation details

The simulations are initialized by distributing the particles

randomly, with each species assigned its preferred thick-

ness. We only consider the symmetric case of equal com-

positions fU ¼ fS ¼ 1/2 here. The thicknesses then undergo

a preliminary relaxation period, where each particle is

allowed to relax a possible 1000 times. A thickness move

consists of randomly selecting a particle and choosing a

thickness change randomly between 6dlmax; this change is

accepted or rejected according to the Metropolis criterion

(42). The choice dlmax ¼ 1 allowed thermal fluctuations to

be sampled efficiently. After the initial thickness relaxation,

composition moves are made in conjunction with thickness

relaxation. Lateral exchanges are chosen that preserve the

thicknesses of the individual particles: e.g., a U particle of

thickness l at site i and an S particle of thickness l9 at site j
are swapped so that site i now contains an S particle of

thickness l9. These exchanges are implemented by the usual

Kawasaki dynamics (43) and accepted according to the

Metropolis criterion. After each possible composition

exchange, the thicknesses on sites i, j, and those of the

particles in the surrounding shell of lattice sites, are allowed

to relax a possible nr times per particle. The thickness

relaxation is performed regardless of whether the particle

lateral exchange was accepted or rejected, to allow continual

thickness relaxation. We define one Monte Carlo (MC)

cycle as the number of steps required for each lattice site to
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have the opportunity to have a particle lateral exchange. The

ratio of characteristic times for thickness relaxation and

diffusion can be adjusted by changing nr, with a decrease in

nr leading to slower thickness relaxation.

MORPHOLOGY AND EVOLUTION OF DOMAINS
USING THE MESOSCOPIC MODEL

Domain morphologies

Simulations were performed to investigate the effects of

hydrophobicity on domain morphology. Firstly, however,

we will demonstrate the effects of x in the absence of

coupling to thickness for comparison purposes. Fig. 1 a
shows the domain morphologies obtained after 131,072 MC

cycles in the absence of coupling composition with thickness

(J ¼ ~kk ¼ 0) and increasing x from 0 to 8. For x ¼ 0 the

membrane remains mixed since there is no driving force for

phase separation. As x is increased, the system moves to-

ward the critical point between the one-phase and two-phase

regimes. Hence, larger scale fluctuations occur. As the sys-

tem crosses the critical point (xc ¼ 3.526), phase separation

occurs. Upon further increasing x, purer phase-separated

domains are observed that coarsen more slowly since the

energy cost of a U–S contact becomes higher.

FIGURE 1 Intermediate-time domain morphologies in the absence of coupling to thickness (a), and when coupling to thickness for lu0¼ 36, ls0¼ 54, dlmax ¼ 1.0,

nr ¼ 1, L¼ 50, and time t¼ 131,072 MC cycles (b–d). Varying J2=~kk for x¼ 0 and J=~kk ¼ 2 (b). Varying J=~kk for ~kk ¼ 0:1 and x¼ 0 (c) and x¼ 5 (d). Note that the

value of J2=~kk is not constant for panels c and d.U (solid);S (shaded);fu¼fs. Below the domain morphologies are the respective thickness profiles taken atL/2 (b–d).

The x and y axes range from position x¼ 0. . .50 (b–d) and thickness l¼ 9. . .65 (b), while in panels c and d the y axes range from thickness l¼ 25. . .65 for each graph.
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When considering hydrophobicity we find two ratios of

interest, J=~kk and J2=~kk, with J=~kk having units of length while

J2=~kk has units of energy. To compare the effects of

hydrophobicity with the effects due to x (Fig. 1 a), we use

the ratio J2=~kk since this has units of energy, similarly to Vab

(recall that x;Vab=kBT). We anticipate similar trends to

those observed in Fig. 1 a, provided the particles U and S
have different preferred thicknesses. For small J2=~kk, the

membrane should remain mixed since the energetic cost of a

difference in thickness between neighboring particles will

be low and hence there will be no driving force for phase

separation. Increasing J2=~kk should drive the system into the

phase coexistence regime to minimize the energy of the

system by placing particles with similar thicknesses to-

gether.

As can be observed in Fig. 1 b, the effects of hydropho-

bicity probed by increasing J2=~kk are indeed similar to

the effects of increasing x. Domains are not observed

for J2=~kk#0:075, since there is no impetus for phase

separation. As J2=~kk is increased to 0.0875, critical fluctu-

ations are observed. For J2=~kk$0:1, phase separation oc-

curs, where domains coarsen more slowly upon increasing

J2=~kk, due to higher incompatibilities between the unlike

species.

We next investigate the effects of increasing the length

J=~kk for x ¼ 0 and ~kk ¼ 0:1 for a system of size L ¼ 50 (Fig.

1, c and d). As can be observed, the phase behavior differs

significantly at high J=~kk to that observed at high J2=~kk.

Domain formation does not occur for J=~kk ¼ 0 and x ¼ 0,

since there is no incentive for phase separation. As J=~kk is

increased to 0.2, critical fluctuations are observed. Upon

increasing J=~kk from 0.4 to 2, phase separation occurs. A

similar trend is observed to increasing either x (Fig. 1 a) or

J2=~kk (Fig. 1 b) in that as the system moves further from the

critical point, domains coarsen more slowly due to higher

incompatibilities between the unlike species. However, as

J=~kk is increased from 2 to 53, domains become larger and

less pure after the same number of MC cycles. Hence, there

is a reversal in behavior. In the next subsection, we will

discuss the relative rates of growth in composition and

thickness, and their dependence on the relative relaxation

times for composition and thickness. Interestingly, for

J=~kk ¼ 100, the membrane mixes for all initial configura-

tions. To understand this behavior, simulations were

performed for phase-separated membranes where only the

particle thicknesses were allowed to relax (Fig. 2), therefore

probing whether phase separation will be obtained for a

given value of J=~kk at late times. For J=~kk ¼ 100 and L ¼ 50

(Fig. 2 c), the thickness profile is approximately flat after

equilibration, implying that the composition will decouple

from the thickness for these simulation parameters, which for

x ¼ 0 would imply a mixed state. Indeed, as J=~kk is increased

to 100 in Fig. 1, c and d, the particle thicknesses become

equal and, hence, there is no impetus for phase separation

from hydrophobicity. However, upon increasing the system

size L to 100 for J=~kk ¼ 100 (Fig. 2 d), there is a clear

gradient in the thickness profile at the domain interface after

equilibration. The difference in thickness profiles for differ-

ent system sizes suggests that there is a decay length

jdecay � J=~kk, due to the competition between hydrophobic

mismatch and particle stretching, which controls phase

separation. For jdecay . L, hydrophobic mismatch domi-

nates, resulting in particle thicknesses becoming equal and

therefore decoupling from the composition. However, for

jdecay , L, particle stretching dominates, which can result in

phase separation depending on the value of J2=~kk. For

J=~kk ¼ 100 and L ¼ 50, jdecay . L and therefore phase

separation is not observed. Note that starting the simulation

from a phase-separated and flat state for this set of param-

eters results in remixing. Hence, the lack of phase separation

at high J=~kk is not thought to be a kinetic effect, but a finite

size effect.

FIGURE 2 Thickness profiles taken at L/2

for simulations that had a fixed phase-separated

composition allowing the particle thicknesses

to fully equilibrate. Each phase-separated do-

main was composed of either all U or all S, and

had sides of length L and L/2. ~kk ¼ 0:1, lu0 ¼ 36,

ls0 ¼ 54, dlmax ¼ 1.0, fu ¼ fs, and x ¼ 0.

(a) J=~kk ¼ 53 and L ¼ 50, (b) J=~kk ¼ 53 and

L ¼ 100, (c) J=~kk ¼ 100 and L ¼ 50, and (d)

J=~kk ¼ 100 and L ¼ 100. Time t is in MC

cycles, where in this figure an MC cycle is

defined as the number of steps required for each

lattice site to have the opportunity to have a

particle-thickness change.
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We next determine the J2=~kk versus J=~kk phase diagram

(Fig. 3) for x ¼ 0 and system size L ¼ 50. As can be seen, as

J=~kk approaches the system size L, finite size effects lead to

a significant increase in the magnitude of J2=~kk required to

induce phase separation.

Fig. 1 d shows the membrane morphologies obtained

when increasing J=~kk for x ¼ 5 and ~kk ¼ 0:1. For J=~kk ¼ 0 the

membrane has phase-separated due to x. Upon increasing

J=~kk to 0.4, domains decrease rather than increase in size.

This is due to the membrane already being below the critical

point at J=~kk ¼ 0. Above J=~kk ¼ 0:4, similar trends are

observed to those shown in Fig. 1 c, with the composition

decoupling from thickness at J=~kk ¼ 100 since jdecay . L.

Fig. 4 shows the J=~kk versus x phase diagram for

symmetric quenches (i.e., fu ¼ fs) into the phase coexis-

tence regime for L ¼ 50 and for ~kk ¼ 0:1 (note that, as with

Fig. 1, c and d, the value of J2=~kk is not constant). Above

xc ¼ 3.526, the membrane will demix regardless of the value

of J=~kk. However, below xc, the membrane will mix for either

small or large values of J=~kk. The lower limit of J=~kk that

leads to phase separation decreases upon increasing x, and

the upper limit of J=~kk that leads to phase separation increases

upon increasing x. As discussed above, this upper phase

boundary between mixing and phase separation for x , xc is

a finite size effect due to jdecay . L. For x ¼ 0, increasing

J=~kk at fixed ~kk in Fig. 4 traces a parabola in Fig. 3, which

intersects the phase boundary in Fig. 3 at two points. This

leads to the progression of states from one-phase to two-

phase to one-phase.

The results presented thus far illustrate trends in behavior

upon changing x and the hydrophobicity parameters J and ~kk.

We will now investigate membrane phase behavior for

biologically relevant parameters. X-ray diffraction measure-

ments of lipid bilayers have determined that at 30�C, fluid

phase DOPC has a cross-sectional area of 73 Å2 and a bilayer

thickness of 37 Å (44). At 22�C, gel phase SM (C18:0) has

been found to have a cross-sectional area of 45 Å2 and a

bilayer thickness of 50.5 Å (45). Assuming no area change

upon mixing, 1:1 SM/DOPC bilayer has an average cross-

sectional area of 59 Å2, giving rise to an average distance

between neighboring lipids of 8.6 Å. Lengths in the sim-

ulations are measured in units of the lattice spacing a. There-

fore, reasonable estimates for the preferred thickness of the U
species of particle lu0 that mimics DOPC and the preferred

thickness of the S species of particle ls0 that mimics SM are

4.3 a and 5.9 a, respectively.

Measured values for the area compressibility modulus kA

on fluid lipid bilayers and free biological cell membranes

range from (100–230) mJm�2 ¼ (0.242–0.556) kBT Å�2 at

300 K (46–48). The elastic energy per molecule can be

expressed as a difference between the actual area A and the

preferred area A0 per molecule by (49)

Gelastic ¼
kA

2

ðA� A0Þ2

A0

; (6)

and in the mesoscopic model studied here, the elastic stretch-

ing energy per molecule is expressed as a difference in thick-

nesses by

Gstretch ¼
~kk

2
ðl� l0Þ2

: (7)

If the change in volume v ¼ Al of the lipid as it stretches

is negligible, then

~kk ¼ A0

l
2

0

kA: (8)
FIGURE 3 J2=~kk versus J=~kk phase diagram for x ¼ 0, L ¼ 50, lu0 ¼ 36,

ls0 ¼ 54, dlmax ¼ 1.0, nr ¼ 1, fu ¼ fs, and time t ¼ 131,072 MC cycles.

The crosses (3) mark simulation data points.

FIGURE 4 J=~kk versus x phase diagram for ~kk ¼ 0:1, lu0 ¼ 36, ls0 ¼ 54,

dlmax ¼ 1.0, nr ¼ 1, L ¼ 50, fu ¼ fs, and simulation time t ¼ 131,072 MC

cycles. The crosses (3) are simulation data marking the approximate

boundaries of the two-phase regime. The dashed-dotted line marks the upper

phase boundary between the one- and two-phase regimes, where the position

of this line depends on the system size. The dotted line is predicted behavior

and is only schematic. For x . xc ¼ 3.526 (dashed line), phase separation

will occur regardless of the value of J. For comparison purposes between the

phase diagram shown here and the phase diagram in Fig. 3, the lower phase

boundary for x ¼ 0 occurs at J2=~kk ¼ 0:006, while the upper phase boundary

occurs at J2=~kk ¼ 281.
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Therefore, an average value of ~kk for DOPC and SM is 0.01

kBT Å�2 ¼ 0.7 kBT a�2.

The hydrophobic surface tension J, due to tail-water or

tail-headgroup interactions, provides the dominant contribu-

tion to the energy cost due to a mismatch in thicknesses of

neighboring lipids. The interfacial tension gWC of hydrocar-

bons with bulk water lies in the range (40–50) mJm�2 ¼
(0.097 – 0.121) kBT Å�2 at 300 K (49). This tension will

mainly be due to the hydrophobic effect. When the

headgroup is in contact with the lipid tails, gWC needs to

be scaled by the amount of water present in the heads, which,

for a DPPC bilayer, is approximately one-third of the total

headgroup volume (44). Hence, a rough estimate for the

interfacial tension between a lipid headgroup and lipid acyl

chains gHC is 0.04 kBT Å�2. However, entropy that is

associated with the hydrogen-bond network of water

contributes on the order of 85% to the hydrophobic in-

teraction (49). Since the hydrogen-bond network of water

will be significantly perturbed in the lipid head environment,

the interfacial tension should be even lower, of the order of

85%. This leads to gHC ; 0.006 kBT Å�2. In the simulations,

J is given by

J ¼ gHC

ffiffiffi
A

p
: (9)

Therefore, for an average cross-sectional area of DOPC and

SM, J ¼ 0.05 kBT Å�1 ¼ 0.43 kBT a�1, assuming that

hydrophobic mismatch only occurs between lipid heads and

neighboring lipid tails.

Fig. 5 illustrates the effects observed when simulating a

membrane comprising two species of particle mimicking SM

and DOPC, with the rough estimates for J and ~kk. As can be

seen, phase separation does not occur during the timescale of

the simulation; however, increasing ~kk by a factor of 10

results in domain formation.

Domain growth and effect of changing
relative relaxation times between thickness
and composition

We will next examine the growth in composition and

thickness. Fig. 6 shows both the length scale of compositional

growth l* (determined from the peak in the structure factor)

and the growth in the root mean-square thickness fluctuations

lRMS for various values of J for nr ¼ 1, fu ¼ fs, and ~kk ¼ 0:1.

Increasing J from 0.04 to 0.2 leads to slower coarsening with a

change in power law, indicative of a change in the mechanism

of growth. Interestingly, initial domain growth is not observed

for J equal to 0.8, 3.5, and 5.3, with the delay in growth

increasing for larger values of J. This is due to increasingly

slower relaxation of the particle thicknesses. Note that since

all quenches performed were symmetric, spinodal decompo-

sition will have been the mechanism of domain growth.

Growth during the early stages of such domain coarsening is

expected to be due to diffusion, while coarsening at the late

stages is expected to be due to interface-driven hydrodynam-

ics (50). In this study, only the diffusion is simulated. There-

fore, our model data will most accurately reproduce domain

growth in atomic force microscopy experiments on supported

lipid bilayers, in which growth by hydrodynamics is expected

to be significantly damped. This is because the thin hydration

layer between the support and the lower leaflet of the bilayer

will exert strong hydrodynamic stress.

The dependence of the delay of compositional growth on

thickness relaxation for J ¼ 0.8, 3.5, and 5.3 can be

demonstrated by changing the relative relaxation times

between composition and thickness. This can be done by

changing nr. For example, an increase in nr leads to a faster

thickness response, or alternatively a relative decrease in

particle lateral mobility. Fig. 7 illustrates the effects of

changing nr on both the growth in composition and thickness,

where each growth trace is averaged from five simulations. For

small values of J (J¼ 0.04), increasing nr from 1 to 4 has little

effect on growth in composition and thickness since the

impetus for equilibrating the particle thicknesses is also small.

Increasing J to 3.5 leads to faster thickness relaxation fornr¼ 4

than for nr ¼ 1. This increase in thickness relaxation enables

the growth in composition to also hasten. Again, for J¼ 5.3 the

thickness response is faster fornr¼ 4 than fornr¼ 1. However,

in this case, there is no overall compositional growth observed

for nr ¼ 4 during the timescale of the simulations.

The magnitude of J=~kk determines whether or not an

increase in nr enhances compositional growth. For smaller

J=~kk, the stretching free energy Gstretch will dominate the free

energy penalty, which will encourage particles to have their

preferred thicknesses. This occurs faster for larger nr. There-

fore, within a concentration fluctuation that enhances a given

species, the particle thicknesses will quickly relax toward their

preferred thicknesses for large nr, minimizing both the

stretching free energy (in the bulk) and also the hydrophobic

mismatch free energy (which only occurs at the interface).

FIGURE 5 Domain morphologies (a) and thickness profiles (b) taken at

L/2 for simulations having approximate biologically relevant parameters

with lu0 ¼ 4.3, ls0 ¼ 5.9, dlmax ¼ 1.0, nr ¼ 1, L ¼ 50, fu ¼ fs, t ¼ 131,072

MC cycles, and x ¼ 0 (rough estimates for biologically relevant ~kk and

J calculated in Morphology and Evolution of Domains Using the

Mesoscopic Model are 0.7 and 0.43, respectively). U (solid); S (shaded).

The x and y axes range from position x ¼ 0. . .50 and thickness l ¼ 4. . .7,

respectively, for each graph.
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Hence, an increase in nr will lead to faster compositional

growth for small J=~kk. However, for large J=~kk the hydrophobic

mismatch free energy Gmismatch dominates the free energy

penalty. Gmismatch will encourage the particle thicknesses to

become equal regardless of composition, with this occurring

faster for larger nr. Hence, because the thickness gradient will

be smaller for larger nr, thermal fluctuations will be able to

break up concentration fluctuations that lead to clustering of

like species more easily. Indeed, in Fig. 8 (J¼ 5.3 and nr ¼ 4),

the composition profile taken at t¼ 65,536 MC cycles clearly

shows the early stages of phase separation, while at a later time

(t¼ 131,072 MC cycles) the membrane has remixed. It should

be noted that both the growth in composition l* and the

growth in thickness fluctuations lRMS shown in Fig. 7 are

averaged from five data sets. Therefore, the compositional

growth for J¼ 5.3 (Fig. 7) does not show this transient domain

growth. It is anticipated that for smaller nr, these transient

domains will have a longer lifetime since the thickness

gradient at the domain interface will take longer to relax. In a

physical system it is expected that the thickness relaxation will

be fast, implying short-lived transient domains.

Thus far we have demonstrated via Monte Carlo simula-

tion that hydrophobic mismatch between neighboring parti-

cles can lead to phase separation. Two ratios of interest have

been identified; the ratio J=~kk of the hydrophobic surface

tension J to the compressibility modulus ~kk, which has units

of length, and the ratio J2=~kk, which has units of energy.

Increasing either of these ratios leads to phase separation,

with the phase-separated domains coarsening more slowly

upon increasing the ratios above zero. However, upon further

increasing J=~kk, domain sizes become larger after the same

number of MC cycles. Interestingly, for high enough J=~kk the

membrane remains mixed; this is a finite size effect, due to a

decay length jdecay � J=~kk that becomes greater than the

system size L at high J=~kk. Physically this is because the

gradient in the particle thicknesses at the domain interface is

too small to maintain phase separation after a concentration

fluctuation. It has also been shown that faster thickness

relaxation affects the speed of compositional growth.

CONTINUUM MODEL

In the previous section we examined coarsening and the late

stages of phase separation due to hydrophobic mismatch.

FIGURE 6 Characteristic length scale of growth in composition l* (a,b) and growth in RMS thickness fluctuations lRMS (c,d) for J from 0 to 10 (for J

from 0.0 to 0.2, each trace is an average of 10 data sets; and for J from 0.8 to 10.0, each trace is an average of five data sets) for ~kk ¼ 0:1, lu0 ¼ 36, ls0 ¼ 54,

dlmax ¼ 1.0, nr ¼ 1, L ¼ 50, fu ¼ fs, and x ¼ 0. There is no compositional growth for J ¼ 0 and 10.
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We will now use a continuum model to probe the initial

instability of a membrane due to hydrophobic mismatch and

the resultant initial domain growth.

The continuum model describing the evolution of com-

position f and lipid thickness l can be written, to fourth order

in the gradients of composition and thickness, as

G ¼
Z

~kkc

2
ðl� l0ðfÞÞ2

1 J=l � =f1
gf

2
ð=fÞ2

1
gl

2
ð=lÞ2

�

1 gfl=
2
l=

2
f1

gff

2
ð=2

fÞ2
1

gll

2
ð=2

lÞ2
1 f0ðfÞ

o
dxdy;

(10)

where the term containing ~kkc is the coarse-grained version of

Eq. 3. The value ~kkc is related to the compressibility modulus

in the mesoscopic model by ~kkc ¼ ~kk=a2. The value l0(f) is

the preferred local lipid thickness. We expect coarse-

graining to lead to a l0(f) that depends on J=~kkc. For large

J=~kkc, l0(f) is expected to be a very weak function of f. The

value f0(f) is the free energy per area of mixing, given by

f0ðfÞa2

kBT
¼ flnf1 ð1 � fÞlnð1 � fÞ1 xfð1 � fÞ: (11)

The terms involving gradients in Eq. 10 are coarse-grained

versions of Eqs. 3 and 4. Specifically, the terms comprising gl,

gfl, and gll are coarse-grained versions of the hydrophobic

mismatch (Eq. 4), with the terms containing gll and gfl

describing the bending penalty (51). The values gf and gl are

the second-order gradient coefficients in composition and

thickness, respectively, and gfl, gff, and gll are the next terms

in the gradient expansions for composition and thickness,

respectively. The higher order gff and gll gradient terms are

required to stabilize the growth rate at small length scales.

Phase separation

The local composition variable f (typically area fraction)

obeys the continuity equation (mass conservation),

FIGURE 7 Effects of changing the relative thickness relaxation time on the characteristic length scale of composition growth l* (a–c) and RMS thickness

fluctuation growth lRMS (d–g) for J equal to 0.04, 3.5, 5.3, and 10.0 (each trace is an average of five data sets). ~kk ¼ 0:1, lu0 ¼ 36, ls0 ¼ 54, dlmax ¼ 1.0, L¼ 50,

fu ¼ fs, and x ¼ 0. There was no compositional growth for J ¼ 5.3 and nr ¼ 4, and J ¼ 10.0, nr ¼ 1, and nr ¼ 4.

FIGURE 8 Composition profiles for J ¼ 5.3, nr ¼ 4, ~kk ¼ 0:1, lu0 ¼ 36,

ls0 ¼ 54, dlmax ¼ 1.0, L ¼ 50, and x ¼ 0. Time t is in MC cycles.
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@f

@t
¼ �= � J̃; (12)

where the flux J̃ of material is given by Fick’s law (40),

J̃ ¼ �M=m: (13)

M is the particle lateral mobility and m [ dG/df is the

chemical potential. Upon combining Eqs. 12 and 13 we can

expand the composition dynamics to linear order in devia-

tions of composition and thickness. We use a Fourier

expansion,

f ¼ f0 1 +
q

~ffqtcosðq � rÞ (14)

l ¼ l0 1 +
q

l̃qtcosðq � rÞ; (15)

and we assume an initial configuration of uniform compo-

sition f0 and a corresponding average thickness l0.

To linear order in the q 6¼ 0 modes, we find

@~ffqt

@t
¼ �Mq

2½ð~kkc
�ll9

2

0 1
�ff0$21 gfg

2
1 gffq

4Þ~ffqt

� ð~kkc
�ll90 � Jq

2 � gflq
4Þl̃qt�; (16)

where ~ffqt is a small perturbation in composition,
�ll90 ¼ ð@l0=@fÞjf0

, and f$0 ¼ ð@2f0=@f
2Þjf0

.

Thickness growth

The thickness evolves by relaxational kinetics,

@l

@t
¼ �1

z

dG

dl
; (17)

where the friction coefficient z is due to dissipation within

the membrane. Using Eqs. 10 and 17, we find

@l

@t
¼ 1

z
½ð~kkc

�ll90 1 J=
2 � gfl=

4Þf� ð~kkc � gl=
2
1 gll=

4Þl�:

(18)

In Fourier space this is given by

@ l̃qt

@t
¼ 1

z
½ð~kkc

�ll90 � Jq
2 � gflq

4Þ~ffqt � ð~kkc 1 glq
2
1 gllq

4Þl̃qt�:

(19)

Coupled composition and thickness growth

Finally, we consider simultaneous composition and thick-

ness evolution after a quench. Equations 16 and 19 can be

written as

@

@t

~ffqt

l̃qt

� �
¼ V

~ffqt

l̃qt

� �
; (20)

where

V¼Mq
2

3

�~kkc
�ll9

2

0 � f$0 �gfq
2 �gffq

4
~kkc
�ll90 � Jq

2 �gflq
4

1

Mzq
2½~kkc

�ll90 � Jq
2 �gflq

4� 1

Mzq
2½�~kkc �glq

2 �gllq
4�

0
B@

1
CA:

(21)

The value j ¼ ð1=MzÞ controls the dynamic coupling. For j

, 1, the diffusive coarsening is faster than thickness growth,

while for j . 1 the thickness evolves faster than diffusive

coarsening. Note that j . 1 is likely to be the more physical

regime since the frictional forces incurred upon lipid

stretching or compressing will be less than those incurred

upon lipids exchanging lateral positions. j . 1 is indeed

found in the following simple calculation: For lipids in a

bilayer the diffusion coefficient, D; 5 3 10�8 cm2 s�1 (52),

is roughly estimated as D � a2/2td, where a is a molecular

diameter and td is the hopping time. Hence, for a ; 9 Å we

estimate td ; 80 ns. The relaxation time tl for the slowest

peristaltic mode of a lipid bilayer, which corresponds to the

relaxation of thickness fluctuations, calculated via molecular

dynamics simulation is ;4 ns (53). Hence, the ratio of these

times td/tl is j ; 20.

Assuming the solutions

~ffqt ¼fqve
vqt (22)

l̃qt ¼ lqve
vqt ; (23)

we have

vq
fqv

lqv

� �
¼V

fqv

lqv

� �
: (24)

The eigenvalues (L1, L2) of the matrix V yield the rates vq,

which govern the growth of composition and thickness fluc-

tuations. Because the second eigenvalue L2 was stable in the

entire q-range for the parameters we consider, we will focus

on the effect of L1 on domain growth.

Parameters are chosen as follows. All lengths, including

the thickness variable l, are scaled by the lattice size a, and all

energies are scaled by ~kka2. The gradient terms gff, gfl, and gll

can be, in principle, derived as higher-order expansions of

terms ½ gf =fð Þ2; ½ gl =lð Þ2
, etc. Hence we write these as

gff ¼ gfj
2

f
; gll ¼ gl j

2

l ; gfl ¼ gf j
2

f
=a; (25)

where jf and jl are the ranges of the interactions in the

gradient expansion. Since all gradient expansions will be

governed by the lattice size a, which is of the order of a lipid

diameter, we choose jf ¼ jl ¼ a ; 9 Å. Note that the

gradient expansion in thickness may also involve the

thickness l0, but the largest effect should be due to splay

near the surface, so we take as an estimate jl ¼ a (an upper

bound on this may be jl;
ffiffiffiffiffiffi
al0

p
;20 Å). This leads to the

following dimensionless parameters:
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Ĵ[
J

~kka
; ĝf[

gf

~kka
2; ĝl[

gl

~kk
; ĝfl[

gf

~kka
2;

ĝff[
gf

~kka
2; ĝll[

gl

~kk
; ~vvq[

vq

M~kk
: (26)

The bending modulus, gll ¼ gl jl
2 ¼ gla

2 (51) is of order 24

kBT (at 300 K), and we estimate a ¼ 9 Å, J ¼ 0.4 kBT a�1,

~kk¼ 0.7 kBT a�2, and g1 ¼ 24 kBT a�2 (See near eqs. 6–9 for

the estimates of a, J, and ~kk). This leads to the following

estimates:

Ĵ¼ 0:6; ĝf ¼
gf

0:7kBT
; ĝl ¼ 30;

ĝfl ¼
gf

0:7kBT
; ĝff ¼

gf

0:7kBT
; ĝll ¼ 35: (27)

We assume gf ; 1 kBT, which is of the order of the result

from the Random Phase Approximation applied to a mixture

of monomers (54). This leads to the estimates

ĝf ¼ 0:5; ĝfl ¼ 1:0; ĝff ¼ 1:5: (28)

We control the quench depth by f̂$0 ¼ f$0=~kk, where, within

mean-field theory, f$0,0 leads to growth. Finally, the

thickness lDOPC of a DOPC bilayer is 37 Å and that of SM

is lSM ¼ 51 Å, leading to l̂90 � 1:6, assuming ideal mixing

l(f) ¼ f lDOPC 1 (1 – f) lSM.

Fig. 9 a shows the growth rate ~vvq[L1 as a function of qa
for a shallow quench depth f̂$0 ¼ 1 and for the dimension-

less measure of the hydrophobic surface tension Ĵ from 0 to

25. For small Ĵ, the membrane is stable. However, hydro-

phobic mismatch starts to drive phase separation upon

increasing Ĵ, with the dominant growing wavelength

l�ð}1=q�Þ decreasing. Upon increasing the quench depth

f̂$0 to �2 (Fig. 9 b), the membrane becomes unstable at Ĵ¼ 0,

and hence is below the critical point. There are two dominant

growing wavelengths for this quench depth, one that

increases and one that decreases upon increasing Ĵ . The

large wavelength instability is a perturbation of the ordinary

spinodal instability after a quench in a two-phase mixture.

The small wavelength instability is due to the coupling of

concentration and thickness gradients; this coupling renders

the theory unstable in the absence of higher order thickness

and composition gradient terms, which stabilize the insta-

bility at a higher wavenumber. Upon further increasing the

quench depth to f̂$0 ¼ �3 (Fig. 9 c), there is only one

dominant growing wavevector. The dominant growing

wavenumber q*a versus Ĵ for ~vvq.0 and increasing quench

depths is shown in Fig. 9 d. The decrease in q*a (increase in

l*) upon increasing Ĵ for f̂$0 equal to �2 and �3 is due to

the fast thickness relaxation coupling to the composition, so

that hydrophobicity perturbs the ordinary phase separation.

The increase in q*a (decrease in l*) upon further increasing

Ĵ for all quench depths shown is due to the competition

between hydrophobicity and bending effects. The hydro-

phobic coupling induces a short wavelength instability (see

Eq. 10), stabilized by the bending energy which is higher-

order in wavenumber.

Next we will ensure that our mesoscopic and continuum

models produce consistent results. Obviously these models

address different time regimes and so a comparison between,

for example, Figs. 1 and 9 is not possible. However, both

models should accurately predict the existence of mixed and

demixed membrane morphologies. To investigate this, we

have determined the Ĵ versus �f$0 phase diagram (Fig. 10)

from the continuum model, where increasing �f$0 corre-

sponds to increasing the quench depth and therefore x. As

can be observed in Fig. 10, an increase in quench depth leads

to a decrease in the value of Ĵ required to induce phase

separation. The same qualitative behavior is displayed by the

lower phase boundary in the phase diagram determined

numerically (Fig. 4). Note that the lower phase boundary in

Fig. 4 corresponds to the case where finite size effects are

unimportant. Obviously, this is the relevant phase boundary

for comparison with Fig. 10 since finite size effects are also

unimportant here. For quenches where �f$0.0; phase

coexistence occurs regardless of the hydrophobicity (Fig.

10). The discontinuity observed is due to the mean-field

nature of our continuum model. We expect that fluctuations

will smooth out the discontinuity because growing modes will

become coupled.

Next we investigate the effect of decreasing the thickness

relaxation time via increasing j for f̂$0 ¼ 1 and Ĵ ¼ 25 (Fig.

11 a) and f̂$0 ¼ �2 and Ĵ ¼ 15 (Fig. 11 b). Changing j, i.e.,

the system kinetics, does not effect the range of unstable

modes or appreciably effect the dominant growing wave-

length l*. However, l* does become more unstable upon

increasing j. Hence, a faster thickness response reduces the

resistance to coarsening, allowing faster coarsening.

In summary, we have used a continuum model to

investigate both the instability and the resultant initial

domain growth of a membrane due to hydrophobic mis-

match. We have found that the characteristic size for domain

formation is a nonmonotonic function of the dimensionless

measure of hydrophobic surface tension Ĵ for the quench

depths f̂$0 equal to �2 and �3. Firstly, domains increase in

size upon increasing Ĵ. Upon further increasing Ĵ, domain

sizes decrease for all quench depths investigated. Next, we

investigated the effects of decreasing the thickness relaxation

time via increasing j. We found that upon an increase in j,

there was no appreciable change in the dominant growing

wavevector. However, an increase in j did allow faster

coarsening.

CONCLUSIONS

In this article, we have studied how the stretching and

compression of acyl chains due to hydrophobic mismatch

between lipids in a bilayer influences the phase behavior. We

initially studied a mesoscopic description of a bilayer,

comprising a binary mixture of particles, via Monte Carlo
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computer simulation, hence allowing fluctuation effects. The

particles, U and S, differ in their preferred lengths, with the

shorter U particles mimicking the shorter and unsaturated,

nonraft lipids, and the longer S particles mimicking the

saturated rafts lipids. An increase in either the ratio J=~kk of

the hydrophobic surface tension J to the particle compress-

ibility modulus ~kk, which has units of length, or J2=~kk that has

units of energy, can induce phase separation, with the phase-

separated domains coarsening more slowly upon increasing

either of these ratios above zero (Fig. 1). This trend is similar

to the trend observed upon increasing x. However, upon

further increasing J=~kk there is a reversal in behavior, with

domain sizes becoming larger after the same simulation time.

Most surprisingly, if J=~kk is high enough the membrane

remains mixed. The absence of phase separation at high J=~kk
is due to finite size effects. This suggests that there is a decay

length jdecay � J=~kk, due to the competition between hydro-

phobic mismatch and particle stretching, which controls

phase separation. If jdecay . L, then the membrane will mix.

This is because it is energetically favorable for the particle

thicknesses to become equal to minimize the hydrophobic

mismatch energy. Hence, the composition decouples from

the thickness. However, transient domains can be induced

upon increasing the particle thickness relaxation time, since

the thicknesses do not equilibrate before subsequent com-

positional change. In a physical system, it is expected that the

thickness relaxation will be fast, therefore implying that any

transient domains will be short-lived.

We next determined the J2=~kk versus J=~kk phase diagram

(Fig. 3) for x ¼ 0 and system size L ¼ 50. We found that as

J=~kk approaches the system size L, finite size effects lead to

a significant increase in the magnitude of J2=~kk required to

induce phase separation.

When simulating a membrane with rough estimates for

biologically relevant parameters, coarsening was not ob-

served (Fig. 5). However, an increase in ~kk and J by a factor of

10 leads to phase separation. Hence, in a biological mem-

brane with embedded proteins having larger values of ~kk and

J, it is reasonable to assume that hydrophobic mismatch

between the proteins and the surrounding lipids could induce

phase separation.

Next, we studied, analytically, the initial growth in

composition and thickness, as a function of the dimension-

less measure of the hydrophobic surface tension Ĵ and the

FIGURE 9 Growth rate ~vvq ¼ vq=M~kk versus qa for different Ĵ with increasing quench depth f̂$0 from 1 (a) to �2 (b), and �3 (c). (d) q*a versus Ĵ for ~vvq.0

with increasing quench depth f̂$0 from 1 to �4. ~kkc ¼ 1; �ll90 ¼ 1:57; gf ¼ 0:5; gff ¼ 1:5; gfl ¼ 1; gl ¼ 30; gll ¼ 35; and j ¼ 10.
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ratio of the characteristic times for thickness relaxation and

diffusion j. For j , 1, the diffusive coarsening is faster than

thickness growth; whereas for j . 1, the thickness evolves

faster than diffusive coarsening. The value j . 1 is expected

to be the more physically relevant regime since the frictional

forces incurred upon lipid stretching or compressing will be

less than those incurred upon lipids exchanging lateral

positions.

We have found that for fixed j, the characteristic size for

domain formation is a nonmonotonic function of Ĵ for the

quench depths f̂$0 equal to �2 and �3 (Fig. 9). Firstly,

domains increase in size upon increasing Ĵ . This is due to the

fast thickness relaxation coupling to the composition, so that

hydrophobicity perturbs the ordinary phase separation. Upon

further increasing Ĵ, domain sizes decrease for all quench

depths investigated. This is due to the competition between

hydrophobicity and bending effects. The hydrophobic cou-

pling induces a short wavelength instability (see Eq. 10),

stabilized by the bending energy which is higher-order in

wavenumber. Upon increasing j, the dominant growing

wavelength l* does not change appreciably (Fig. 11).

However, l* does become more unstable. Hence, a faster

thickness response reduces the resistance to coarsening,

allowing faster coarsening. We have shown consistency

between our mesoscopic and analytical models by deter-

mining the Ĵ versus – f$0 phase diagram (Fig. 10) from the

analytical model. This phase diagram qualitatively agrees

with the phase diagram determined via our mesoscopic

model (Fig. 4).

In this article, we have developed a simple model to

describe how the competition between hydrophobic mis-

match and acyl-chain stretching can lead to phase separation

in a lipid bilayer. Estimates for the model parameters for our

simple model can be obtained from microscopic and

mesoscopic theories (see (55) for a review). The advantage

of our approach is that it enables the prediction of large-scale

structures. This model can be extended to include proteins

embedded in a mixed lipid bilayer. Hence, the influence of

the protein on both phase separation and also on the

perturbation of the hydrophobic thickness of the bilayer, and

alternatively the influence of the bilayer on protein organi-

zation, can be investigated. To investigate the validity of this

model, an ideal experiment would be to cool a mixed planar

membrane comprising two species of lipid that only differ in

their acyl-chain lengths, and simple a-helical transmem-

brane peptides of variable hydrophobic length (55). A

convenient method to observe the membrane thickness

profile would be atomic force microscopy (19).

The authors acknowledge the Wellcome Trust for financial support and the

use of the UK National Grid Service in carrying out this work.

FIGURE 11 Growth rate ~vvq ¼ vq=M~kk versus qa for different degrees of dynamic coupling j ¼ ð1=MzÞ. (a) f̂$0 ¼ 1 and Ĵ ¼ 25. (b) f̂0 ¼ �2 and Ĵ ¼ 15.

~kkc ¼ 1; �ll90 ¼ 1:57; gf ¼ 0:5; gff ¼ 1:5; gfl ¼ 1; gl ¼ 30; and gll ¼ 35.

FIGURE 10 Ĵ versus f̂$0 phase diagram where �f̂$0}x, ~kkc ¼ 1; �ll90 ¼
1:57;gf ¼ 0:5;gff ¼ 1:5;gfl ¼ 1;gl ¼ 30;gll ¼ 35; and j ¼ 10. The solid

line locates the onset of domain growth at large length scales due to pertur-

bation of the ordinary spinodal instability after a quench in a two-phase

mixture. The dotted line locates the onset of growth at small length scales

due to the coupling of concentration and thickness gradients.
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