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ABSTRACT
To date, few methods have been developed explicitly for meta-analysis of linkage analyses. Moreover,

the methods that have been developed or suggested generally depend on certain ideal situations and have
not been widely applied. In this article, we apply standard statistical theory and meta-analytic techniques in
novel ways to five published papers discussing the evidence of linkage of body mass index (BMI) to the re-
gion of the human genome containing the 

 

OB

 

 gene. These methods are “inference based,” meaning that
they allow one to make statements about the statistical significance of the entire body of evidence. As cur-
rently developed, they do not allow specific statements to be made about the amount of variance explained
by any putative locus or allow precise confidence intervals to be placed around the putative location of a
linked locus. By applying these techniques to the literature on linkage in the human 

 

OB

 

 gene region, we
are able to show that the evidence for linkage somewhere in the region is extremely strong (

 

P

 

 

 

5

 

 1.5 

 

3

 

 10

 

2

 

5

 

).

 

We agree with L

 

ander

 

 and K

 

ruglyak

 

 (1995) that
the preferable way to meta-analyze data is by obtaining
the raw data from each study and conducting a pooled
analysis (J

 

eng

 

 

 

et al.

 

 1995). In the context of pooling
raw data, multipoint procedures (

 

e.g.

 

, K

 

earsey

 

 and
H

 

yne

 

 1994; H

 

yne

 

 and K

 

earsey

 

 1995; F

 

ulker

 

 

 

et al.

 

1995; X

 

u

 

 and A

 

tchley

 

 1995) will have great utility.
However, in many situations this is not feasible and the
meta-analyst must work with the data available in pub-
lished reports. Moreover, L

 

i

 

 and R

 

ao

 

’s (1996) method
is limited in that not every study uses the Haseman–Elston
procedure or the same markers. Herein, we present meta-
analytic techniques that can be used under worst-case
conditions, including:

1. Different studies use different genetic markers.
2. Different studies use different statistical techniques

to test for linkage.
3. Some studies include multiple hypothesis tests by us-

ing multiple markers, multiple statistical techniques,
or multiple phenotypic cutoff points. This creates is-
sues of nonindependent multiple testing that must
be managed.

4. Not all studies report all of the information required
for easy extraction of the data. The techniques we
will present are applicable even under these difficult
circumstances.

 

GENERAL PRINCIPLES

 

Assume that there are 

 

m

 

 independent studies assess-
ing linkage of a disease or trait to markers within a re-
gion of the genome. Suppose that a 

 

P

 

 value can be ob-
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P

 

OOLING data to increase the precision of one’s es-
timates and conclusions dates back at least to the

early 1900s (P

 

earson

 

 1904, 1933a,b; T

 

ippett

 

 1931;
F

 

isher

 

 1954) and was termed 

 

meta-analysis

 

 by G

 

lass

 

(1976). Since then, the use of meta-analysis has in-
creased dramatically. However, there has been rela-
tively little use of meta-analysis in assessing evidence of
linkage between human diseases and genetic markers.

Recently, several authors have suggested the possibil-
ity of developing methods for meta-analysis of linkage
studies. L

 

ander

 

 and K

 

ruglyak

 

 (1995, p. 245) state
“careful meta-analysis of 

 

all

 

 studies may be useful to as-
sess whether the overall evidence for linkage is convinc-
ing. . . . To combine results among studies it is always
best to pool the raw data and re-analyze the entire data
set. Lod scores can be added across studies, but only
when they are computed with the same methods, with
the same set of markers, and at the same map position.”
L

 

ander

 

 and K

 

ruglyak

 

 (1995) then state that other
meta-analytic methods are available and cite C

 

ox

 

 and
H

 

inkley

 

 (1974). The meta-analytic technique men-
tioned by C

 

ox

 

 and H

 

inkley

 

 (1974, p. 80) involves com-
bining 

 

P

 

 values from several independent samples as
outlined by F

 

isher

 

 (1954, p. 99). Recently, L

 

i

 

 and R

 

ao

 

(1996) presented a meta-analytic method in which each
study used the Haseman–Elston procedure (H

 

aseman

 

and E

 

lston

 

 1972) and the same markers.
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tained on each of the 

 

m

 

 data sets where the 

 

P

 

 value
indicates the probability of obtaining data as extreme
or more extreme than the data observed under the null
hypothesis of no linkage in the region. F

 

isher

 

 (1954, p.
99) showed that 

 

m

 

 independent 

 

P

 

 values can be com-
bined into a single test of significance. Specifically,

. (1)

This quantity is distributed as 

 

x

 

2

 

 with 2

 

m

 

 degrees of
freedom. One then can test the significance of the en-
tire body of data by evaluating the probability of obtain-
ing a 

 

x

 

2

 

 greater than or equal to the observed 

 

x

 

2

 

 under
the null hypothesis and by using the significance level
of their choice. (One could imagine situations in which
the null hypothesis is rather different. However, in this
article we confine our attention to the simple null hy-
pothesis of no linkage in the region.)

In this article, we illustrate the application of this
technique to published evidence for linkage in the hu-
man 

 

OB

 

 gene region to body mass index (BMI; kg/m

 

2

 

).
Most of the exposition involves the application of stan-
dard statistical methods and meta-analytic “tricks of the
trade” to derive one 

 

P 

 

value from each study. Following
the 

 

example

 

, a reiteration and discussion of the gen-
eral approach are included.

 

EXAMPLE

 

To our knowledge, there are five published studies
concerning linkage of BMI with markers in the human

 

OB

 

 gene region. A sixth study (S

 

tirling

 

 

 

et al.

 

 1995) ex-
amined linkage of diabetes mellitus to markers in the

 

OB

 

 region but only examined associations (not link-
age) with obesity and, therefore, is not included. We re-
view each study below. The use of only published data is
addressed in the 

 

discussion

 

 section.

 

Clement

 

 

 

et al.

 

 (1996):

 

C

 

lement

 

 

 

et al.

 

 (1996) evalu-
ated linkage to BMI dichotomized as “greater than 35”

χ2m
2 2– ln

i 1=

m

∑ Pi( )=

 

or “less than or equal to 35” with markers ranging from
D7S651 to D7S509. The main results are displayed in
Table 1. The data consist of sib-pair analyses testing
whether the mean proportion of alleles shared identi-
cal by descent (IBD) among sib pairs differs from the
expectation of 1/2 under the null hypothesis. The ex-
traction of a single 

 

P

 

 value from this study is not easy
because (1) in some cases the information offered is
imprecise; (2) the data really consist of two different
studies, one of obese-lean pairs and one of obese-obese
pairs; and (3) multiple markers are used.

However, the first problem of incomplete data can
be solved rather easily in this case. Because the exact 

 

t

 

values are provided along with 

 

n

 

 (the sample size) it is
easy to obtain the exact 

 

P

 

 values by integrating the 

 

t

 

distribution with 

 

n 

 

2 

 

1 degrees of freedom (d.f.). In
this case, the second problem of having two separate
studies can also be solved. Although the two samples
involved contain overlapping individuals, it has been
shown that the IBD status of different sibling pairs from
within the same sibship are pairwise independent (

 

e.g.

 

,

 

Hodge

 

 1984; A

 

mos

 

 

 

et al.

 

 1989). Therefore, test statistics
obtained on the two samples will be independent, and
this one paper (

 

Clement

 

 

 

et al

 

. 1996) can then be con-
sidered to simply contain two statistically independent
studies, each of which yields one 

 

P

 

 value. The final
problem, multiple markers, is more challenging. Had a
multipoint procedure been used to yield a single 

 

P

 

value for the point in the interval that yielded the max-
imum evidence of linkage, the single 

 

P

 

 value could be
corrected and used. However, because a multipoint
procedure was not used, it is necessary to combine the
eight 

 

P

 

 values observed into a single 

 

P

 

 value. Because
the markers are linked to each other, test statistics ob-
tained at each marker, and therefore the 

 

P

 

 values of
each marker, are not statistically independent. Any
method of combining them must take this noninde-
pendence into account.

To accomplish this, we begin by converting each 

 

P

 

value to a corresponding (standard normal) Z-score by

 

TABLE 1

Proportion of alleles shared IBD in 

 

OB

 

 markers for discordant (obese-lean) and concordant (obese-obese)
sib pairs (

 

Clement

 

 

 

et al

 

. 1996)

 

Marker

Extreme obesity (BMI 

 

.

 

 35 kg/m

 

2

 

)

Full sample Obese-lean pairs Obese-obese pairs

 

n

 

p

 

n

 

p

 

t P n

 

p

 

t P

 

D7S651 145 0.56 60 0.56

 

2

 

1.42 NS 66 0.57 1.98 0.03
D7S692 136 0.53 57 0.54

 

2

 

1.29 NS 59 0.52 0.68 NS
D7S677 94 0.47 37 0.48 0.76 NS 46 0.49

 

2

 

0.29 NS
D7S680 123 0.52 54 0.48 0.42 NS 57 0.59 2.47 0.008
D7S514 111 0.52 45 0.45 1.02 NS 53 0.59 2.44 0.009
D7S530 144 0.51 58 0.43 2.04 0.02 65 0.59 2.96 0.002
D7S640 126 0.50 51 0.43 1.87 0.03 57 0.55 0.99 NS
D7S509 134 0.52 57 0.50 0.14 NS 56 0.54 1.01 NS
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means of the inverse standard normal distribution
function 

 

F

 

21, that is, Z 5 F21 (1 2 P). Under the null
hypothesis of no linkage, the eight Z-scores have a mul-
tivariate normal distribution with zero means, unit vari-
ances, and a correlation matrix R. According to Carey

and Williamson (1993), the correlation of IBD status
(and therefore Z-scores based on IBD status) between
two markers is equal to (1 2 2u)2, where u denotes the
recombination fraction between the markers. Note that
one centimorgan (cM) is equal to u of 0.01, equivalent,
on average, to 1 million base pairs (bp) (Department

of Energy 1992).
In this case, since the tests on individual markers are

one-sided, we defined more extreme data in terms of
the sum of the Z-scores

that is, P 5 P(Sk . sk), where sk represents the observed
sum of the Z-scores. Specifically, because the variance
of the sum of variates is the sum of the variances plus
twice the sum of the covariances,

(2)

will be distributed as the standard normal, where rij is
the correlation of the i and jth Z; hence, the covari-
ance. Using this approach, the single P values were
obtained as 0.294 and 0.031 for the obese-lean pairs
and the obese-obese pairs, respectively.

Duggirala et al. (1996): Although a multiple-marker
linkage analysis was conducted by Duggirala et al.
(1996), in contrast to the previous case of Clement et
al. (1996), all the information contained in their multi-
ple markers is already combined into a single P value
for the interval investigated by their use of a multipoint
procedure. For BMI, the P value was 0.003. However,
one needs to correct this P value by taking into account
that it was calculated from a multipoint procedure in-
cluding markers spanning a 211-cM interval (D7S531
to D7S483). This can be accomplished by using the for-
mula provided by Lander and Kruglyak (1995, p.
244). Let us denote a corrected P value by P*; then,
according to their formula, we have P* 5 1 2 exp (-m(T)),
where

, (3)

where C is the number of chromosomes, G is the ge-
nome length measured in Morgans, r is the crossing-
over rate between the genotypes being compared, and
T is the threshold level that yields the significance level
a(T). In Duggirala et al. (1996), these values are as
follows: C 5 1 (one chromosome used for the study), G 5
2.11 (equivalent to 211 cM), r 5 2 (for sib-pair tests;
Lander and Kruglyak 1995), a(T ) 5 0.003 (observed
P value), and T 5 F21 (1 2 0.003), which is the thresh-
old level of the observed P value. This yields m(T ) 5
0.073, and hence P* 5 0.070. Therefore, after correct-

Sk Zi, 
k
i 1=∑=

Sk k 2+ ri j< ij∑⁄

µ T( ) C 2ρGT 2+[ ]α T( )=

ing the P value of 0.003 for the fact that it was obtained
by a multipoint procedure with a 211-cM interval, the
corrected single P value is 0.070.

Borecki et al. (1994): Borecki et al. (1994) used only
one marker in the area of the human OB gene. This
one marker was KELL, located at 7q33. Four hundred
two sibling pairs were included and the Haseman–Elston
procedure was used. Thus, this study already yields a
single P value requiring no correction. However, the
P value is reported as 0.000. This implies that the actual
P value was less than 0.001. From the published text
there is no way of knowing how much less. Although it
might have been reasonable to use the value 0.001 in
the analysis, we contacted the original authors who
provided us with an exact t of 24.4383 with 400 d.f.,
which translates to a single P value of 4.8 3 1026.

Norman et al. (1996): Norman et al. (1996) also used
the Haseman–Elston procedure with 488 sibling pairs
from the Pima Indian community. Only two markers
were used, D7S530 and HCPA2. These markers are esti-
mated to be 1 cM away from each other (Duggirala et
al. 1996). Z-scores obtained for the two markers there-
fore will be highly correlated. The exact correlation be-
tween these two statistics is estimated to be 0.96 using
again the formula from Carey and Williamson

(1993). As was done with the data from Clement et al.
(1996), the P values observed in Norman et al. (1996)
were converted to Z statistics. The probability of obtain-
ing two Z’s as great or greater than the two Z’s observed
was again calculated in terms of the sum of the Z-scores,
which yielded a single P value of 0.544 for this study.

Reed et al. (1996): The data for Reed et al. (1996)
present a unique challenge. The data consist of 213
concordant obese sibling pairs. Reed et al. (1996) used
markers contained in and surrounding the interval
D7S504 through D7S1875. They combined the marker
information into haplotypes and conducted their analy-
sis by looking at sharing of haplotypes rather than alle-

TABLE 2

Mean proportion of the OB gene haplotypes identical by 
descent for obese-obese sibling pairs (Reed et al. 1996)

Obese
cutoff

Pairs
(n)

Proportion
identical

by descent t value
Nominal
P value

Corrected
P value

$30 213 0.51 6 0.33 0.24 0.4038 NS
$35 135 0.50 6 0.34 0.03 0.4333 NS
$40 59 0.60 6 0.33a 2.28 0.0132* 0.0396**

Data are means 6 SD. Obesity is defined at ascending val-
ues of BMI (30–40 kg/m2). The levels of statistical signifi-
cance were corrected for three tests using a Bonferroni
correction: *P # 0.01; **P # 0.05.

a This combination does not produce the corresponding t
value. However, the Z-score was extracted from the P value,
which was confirmed by D. R. Reed (personal communica-
tion).
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les. This aspect of their analysis simplifies the extrac-
tion of a single P value since significance is assessed
only for IBD sharing at the single haplotype rather than
at each individual locus. The challenge of the data is
twofold. First, Reed et al. (1996) used two different
statistical approaches to analyze their data. They used
the sibling-pair approach as described, and they used
transmission disequilibrium testing (TDT; Spielman

et al. 1993) on a subset of offspring for whom hetero-
zygote parents were available. Second, within each sta-
tistical analysis, Reed et al. (1996) analyzed the data
three times, each at a different cutpoint of BMI to de-
fine obesity. The results from Reed et al. (1996) are re-
produced here in Tables 2 and 3.

We begin by considering the data for the sibling-pair
sets in Table 2, in which for each BMI cutoff, the corre-
sponding nominal P value was provided. Hence, by ap-
plying F21 to those P values, the corresponding Z-scores
are obtained. In this situation, the 3 3 3 correlation
matrix R for the Z-scores can be calculated by assuming
that the IBD status for the sibling pairs is indepen-
dently and identically distributed (i.i.d.). Under this as-
sumption, the correlation between the Z-score for a
sample and a subset within the sample is the square
root of the proportion of subjects in the subsample
from the larger sample. For example, the correlation
between the Z-scores for sibling pairs above 35 and sib-
ling pairs above 30 is 

.

As above, once the three Z’s and their correlation ma-
trix are obtained, a single P value, in terms of the sum,
can be obtained. In this case, it was observed to be
0.159 for the sib-pair test. (Note that the sib-pair tests in
Table 2 are one-sided.)

Turning to the TDT results in Table 3, a single P  value
can be obtained in a similar fashion. The chi-squares in
Table 3 are converted to Z-scores by taking their square
root. Assuming that the data are i.i.d., the correlation
among the Z’s can again be estimated as the square root
of the proportion of subjects in a subset divided by the
number of subjects in the larger set. For example, the es-
timated correlation of the Z-score in subjects with a BMI
$40 and the Z-score for subjects with a BMI .30 is 

135 213⁄ 0.796=

With the Z-scores and the 3 3 3 correlation matrix
among them derived, a single P value for the TDT in
Reed et al. (1996) can be calculated. However, the TDT
is two-sided, unlike the previous sib-pair tests, which
must be considered. Denoting the vector of Z-scores by
Z, we defined the P value in terms of a quadratic form

, (4)

that is, P 5 P(Q . q), where q represents the observed
value of Q. In general, it is well known that Q is chi-
square-distributed with d.f. equal to the number of
Z-scores. However, in this particular example, since the
correlation matrix R has one restriction (if two correla-
tions are given, then the remaining third one can be
decided from the two), the d.f. is the number of Z-scores
minus one, that is two. More specifically, if there are m
Z-scores and the correlations are determined by means
of the proportion of sample sizes, the d.f. would be
m 2 1. From this consideration, the single P value was
obtained as 0.026.

The final challenge with the data from Reed et al.
(1996) is that one now has two P values, one from TDT
and one from sibling-pair testing. If the correlation
among these two tests could be determined, then one
could combine these into a single P value. However, it
is not immediately apparent how to estimate this corre-
lation. There are several alternatives. First, one could,
on some a priori grounds of preference, choose one test
over another. For example, one might argue that be-
cause all of the other studies are using a sibling-pair ap-
proach rather than TDT it would be more appropriate
to combine sibling-pair data rather than the TDT data
and be consistent with the others. Second, one could
multiply the lowest P value by two as a form of Bonfer-
roni correction. However, this is overly conservative be-
cause it does not take the correlation between the two
tests into account. Third, one could estimate the corre-
lation via simulation. Fourth, one could conduct the
overall meta-analysis with the results of the sibling-pair
tests and then conduct the analysis again using the re-
sults of the TDT tests as a form of sensitivity analysis
(Greenhouse and Iyengar 1994). This is the strategy
that we adopt.

70 121⁄ 0.761.=

Q Z ′R 1– Z=

TABLE 3

Transmission disequilibrium of a haplotype flanking the OB locus (D7S504 and D7S1875) (Reed et al. 1996)

BMI of
sibling

1–5 transmitted/
not transmitted % transmitted x2 (1 d.f.)

Nominal
P value

Corrected
P value

$30 71/50 58.7 3.64 0.056 NS
$35 60/39 60.6 4.45 0.035* NS
$40 46/24 65.7 6.91 0.009** 0.027*

The size of allele 1 from D7S504 is 145 bp; the size of allele 5 from D7S1875 is 214 bp. The levels of statistical
significance were corrected for three tests using a Bonferroni correction: *P , 0.05; **P , 0.01.
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Overall meta-analysis: The (single) P values for the five
papers calculated as described above are presented in
Table 4. In the primary overall meta-analysis the P val-
ues were pooled using Fisher’s method described in the
Introduction. For Reed et al. (1996) the P value used
was that from the sib-pair study. Based on all these P val-
ues, the x2 for the overall analysis was 44.10 with 12 d.f.
(P 5 1.5 3 1025). These results apparently provide
strong evidence of linkage somewhere in the OB re-
gion. When the P value for Reed et al. (1996) was re-
placed with that for TDT the results were even more
significant, the overall x2 being 47.73 (P 5 3.5 3 1026).
Thus, these results suggest that there is clear evidence
for linkage of BMI to something in the OB region re-
gardless of whether one uses the TDT or sib-pair analy-
ses from Reed et al. (1996).

As a sensitivity analysis, each study result was re-
moved from the analysis, and the chi-square statistic
with 10 d.f. (from the remaining study results) was
computed. The corresponding P values are given in Ta-
ble 4. This table shows that while the Borecki et al.
(1994) study provides the extreme significance ob-
served, even excluding this study, the remaining results
still provide a significant value, again regardless of
whether one uses the TDT or sib-pair analyses from
Reed et al. (1996). It follows that the strong overall sta-
tistical evidence is not necessarily due to a particular
study with extreme significance but due to the accumu-
lation of many study results.

Apart from the overall significance of these results,
one may question whether the variation of the strength
of the evidence (in terms of the P value) seen from
study to study is simply random variation or represents
some statistically significant heterogeneity in the link-
age. Although this is clearly a legitimate question, it is
not possible to conduct such a heterogeneity test in the
current situation when only the inferential information

available from P values is used, since the heterogeneity
of the strength of statistical evidence across the studies
is not identifiable from the heterogeneity of the link-
age per se.

Summary of meta-analytic approach used: In this sec-
tion we reiterate in general terms the approach taken
in the meta-analysis. The first step is to extract a single
P value from each study. The studies contained herein
provide an illustration of several different techniques
for extracting the single P value from each study. The
techniques used can briefly be summarized as follows:

1. If a single P value was provided from a multipoint
procedure, then the Lander–Kruglyak correction in
Equation 3 was applied; Duggirala et al. (1996) case.

2. If a separate P value for each of several markers is
used, then the Z-scores and the correlations among
them are obtained by using the inverse standard nor-
mal distribution function F21 and the formula in
Carey and Williamson (1993), respectively. Since
the P values are one-sided for linkage studies, a sin-
gle P value was determined in terms of the sum of
the Z-scores in Equation 2, which is normally distrib-
uted; cases of Clement et al. (1996) and Norman et
al. (1996).

3. For the multiple cutoff study defining affected or un-
affected sib pairs (e.g., Reed et al. 1996), the correla-
tions among Z-scores were estimated by means of the
proportion of sample sizes. For the one-sided sib-pair
tests, the sum in (2) was used for extracting the sin-
gle P value. In contrast, for the two-sided TDT, the
single P value was extracted by means of the qua-
dratic form Q in (3), which is chi-square distributed.

4. For a single marker study, no correction needs to be
applied; Borecki et al. (1994) case.

Once a single P value is derived for each study, the P
values are pooled using Fisher’s method in Equation 1.

TABLE 4

P values obtained for each study in overall meta-analysis and sensitivity analysis

Reference P value x2 (P value)a x2 (P value)b

Clement et al. (1996) obese-lean 0.294 41.66 (0.9 3 1025) 45.28 (0.2 3 1025)
obese-obese 0.031 37.16 (5.3 3 1025) 40.78 (1.2 3 1025)

Duggirala et al. (1996) 0.070 38.78 (2.8 3 1025) 42.41 (0.6 3 1025)
Borecki et al. (1994) 4.8 3 1026 19.61 (0.0332) 23.23 (0.0099)
Norman et al. (1996) 0.544 42.89 (0.5 3 1025) 46.51 (0.1 3 1025)
Reed et al. (1996) sib pairs 0.159 40.43 (1.4 3 1025)

TDT 0.026 40.43 (1.4 3 1025)

Overall 44.10 (1.5 3 1025) 47.73 (3.5 3 1026)

a Chi-squares with 10 d.f., using Reed et al. (1996) sib-pair test result, when the corresponding reference is
deleted from the analysis; the last row is for the overall chi-square with 12 d.f. and its P value.

b Chi-squares with 10 d.f., using Reed et al. (1996) TDT result, when the corresponding reference is deleted
from the analysis; the last row is for the overall chi-square with 12 d.f. and its P value.
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DISCUSSION

The above example indicates that by judicious use of
standard statistical theory and meta-analytic techniques,
one can meta-analyze data from multiple linkage stud-
ies of the same phenotype even under a number of
worst-case conditions. We believe such methods will be-
come essential to understanding the overall signifi-
cance of the research literature when raw data are not
available. This is all the more important in the field of
gene mapping for complex traits because the power to
detect significance in any one study is often quite below
what one would desire. This power can be enhanced by
pooling the data in multiple studies.

The efficacy of these procedures is demonstrated by
the example involving the assessment of linkage of BMI
to the genome region containing the human OB gene.
Taken individually, no one study is terribly convincing,
except Borecki et al. (1994). Moreover, a cursory
glance at the body of literature suggests that the results
may be inconsistent across studies (i.e., some studies
obtain significant results and others do not), which
might lead readers to believe that the overall body of
evidence does not support linkage in this region. How-
ever, as the foregoing analyses demonstrate, such a con-
clusion would be erroneous. Thus, in this case at least,
meta-analysis of the entire body of data is able to de-
monstrate clarity, whereas individual studies or infor-
mal review of the individual studies yields no such clarity.

We wish to stress again that we do not consider our
approach outlined in the current paper to be the opti-
mal approach. Clearly, a better approach is to obtain
the raw data of all of the investigators, whether the data
were published or not, and conduct a pooled analysis.
However, for the near future, we suspect that there will
be many situations in which meta-analysts have only
one alternative available to them: the statistical integra-
tion of data from multiple published studies that have
used different statistical methods and different markers
and, in some cases, have presented incomplete infor-
mation. Moreover, although we hope that our paper
acts as a call for the presentation of more complete in-
formation, such calls have been issued by meta-analysts
for over two decades (Jackson 1980; Feinstein 1995).
Our subjective assessment is that such calls have re-
sulted in an only modest increase in the completeness
of information presented in published reports. Thus,
we suspect that meta-analysts will continue to be faced
with similar situations.

A limitation of the meta-analysis conducted herein
concerns the potential for publication bias. Publication
bias occurs when the probability of a study being pub-
lished is dependent upon the results of the study. Publi-
cation bias has been shown to exist in other fields (e.g.,
Allison et al. 1996). Again, although calls have been is-
sued to the research community to correct this prob-
lem (e.g., Chalmbers et al. 1990), the problem does
not appear to be going away (e.g., Dickersin and Min

1993). There are several ways to approach the problem
of publication bias. Clearly, the best way is to obtain un-
published studies as well as published studies. We did
not attempt to do that in the context of this paper be-
cause our primary goal was to present our approach to
conducting the meta-analysis as an example. The sec-
ond approach one might take is to calculate a quantity
called the “fail-safe sample size,” which is the number
of unpublished studies needed to overturn the overall
conclusion of statistical significance from the published
studies. Procedures for calculating the fail-safe sample
size are presented in Iyengar and Greenhouse (1988).
We calculated the fail-safe sample sizes for the current
example and obtained values of 15 and 18 depending
on whether Reed et al.’s (1996) sib-pair test or TDT
data were used, respectively. Because it seems very un-
likely that there are 15-to-18 unpublished studies on
this topic, the overall conclusion of statistical signifi-
cance seems reasonably safe.1

Finally, the methods presented herein only allow
one to conduct inferential tests of whether or not there
is significant linkage in a particular region. The appro-
priate conclusion to such an analysis, assuming a statis-
tically significant result is obtained, is that there is sta-
tistically significant evidence for linkage somewhere in
the region examined, in this case the region from
D7S531 to D7S483, which is the same as Duggirala et
al.’s (1996) interval. Unfortunately, one is unable,
based solely on an analysis of the type presented
herein, to estimate where in that interval the putative
QTL lies or in any way to place a confidence interval
around that estimated location. It is hoped that meth-
ods are developed to accomplish this goal in the future.

In conclusion, as more studies assessing the linkage
between genetic markers and complex diseases or traits
are possible, we suspect that there will be increasing
need for meta-analysis to objectively and quantitatively
pool the resulting information. We hope that the pro-
cedures outlined in this paper are a useful step in that
direction.
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