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SEVERAL predictions of the genomic pattern of nu- A crude model: It is intuitive that gene conversion
should increase the rate of exchange for closely linkedcleotide polymorphism include the local recombi-

nation rate, r, as a parameter. In typical population sites, but should have negligible effects for more distant
sites. Assume that over very short intervals, the probabil-genetic models, the parameter r, for two specified loci

(or sites), is properly defined as the probability that a ity of crossing-over increases linearly with d, the physi-
cal distance in base pairs between two sites. Thus therandomly selected gamete produced by a double het-

erozygote is a recombinant. In a given region, r can probability of producing a recombinant by crossing-over
equals rd, where r is the probability of a crossing-overbe measured directly through genetic crosses. This is

typically done by observing markers spaced several centi- event between two given sites per base pair per genera-
tion. We suggest that the following crude model de-morgans apart, in which case recombinants are pro-

duced almost exclusively by classical crossing-over. Over scribes the added effect of gene conversion events on
the rate of exchange between two sites. Define g as thesmall intervals it may be assumed that crossing-over

events are equally likely to occur at any point between probability per generation that a given site is included
in a gene conversion tract of length L base pairs, wheretwo markers, and the probability of observing more than

one can be neglected. Thus r, to a reasonable approxi- L is taken to be fixed. The probability per generation
that a gene conversion tract will produce a recombinantmation, increases linearly over short physical distances.

The problem we wish to draw attention to is that this for two markers d base pairs apart will then be roughly
2gd/L, when d , L. Thus, incorporating both crossing-model is often extrapolated to distances far too small

to ignore the added effect of gene conversion events over and gene conversion, r depends on d as follows:
on the overall probability of producing a recombinant.

r 5 rd 1 2 g
d
L

if d , L,In fungi and Drosophila, a common feature of models
of homologous recombination is that Holliday junctions
are resolved either as gene conversion alone or as gene r 5 rd 1 2 g if d $ L. (1)
conversion with the accompanying exchange of flanking
markers (Carpenter 1984). Thus some fraction of ge- Reasonable values for r and g in Drosophila are z1028

netic exchanges will involve the transfer of short tracts and z1025 per generation, respectively (Ashburner

of information from one gamete to another (i.e., gene 1989; Hilliker and Chovnick 1981), and L is esti-
conversion) without concurrent crossing-over. For clar- mated to be about 350 base pairs on average (Hilliker

ity, we will refer to gene conversion without crossing- et al. 1994). It is clear from Equation 1 that gene conver-
over as “gene conversion,” and gene conversion accom- sion contributes significantly to r only when d is of the
panied by crossing-over as “crossing-over.” Here we show same order as L or smaller.
that, at intragenic distances, gene conversion, rather Some implications: Several attempts have recently
than crossing-over, is likely to be the dominant force been made to interpret estimated levels of linkage dis-
that breaks up associations among sites. We discuss im- equilibrium between polymorphic sites at the intragenic
plications for population genetic predictions for the level in the context of competing population genetic
behaviour of neutral sites closely linked to a site under models (e.g., Schaeffer and Miller 1993; Miyashita

balancing or directional selection. et al. 1993; Begun and Aquadro 1995). Ohta and
Kimura (1971) showed that in a neutral finite popula-
tion at equilibrium,
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Figure 1.—The expected
pairwise coalescence time,
E(T2), as a function of physical
distance for neutral sites linked
to a balanced polymorphism
(Equation 3) under various
models of recombination:
r 5 rd for crossing-over only,
r 5 2gd/L for gene conversion
only and see Equation 1 for
crossing-over 1 gene conver-
sion. The parameters used are
N 5 106, r 5 1028, g 5 1025 and
L 5 350.

where s2 is the squared correlation between linked sites time, a build-up of differences between allelic classes,
centered on the selected site, is expected. Consider theand N is the effective population size. We see that Equa-

tion 2 predicts stronger associations, on average, in re- expected pairwise coalescence time for a neutral site
linked to a two-allele polymorphism with both allelesgions of the genome with “low recombination,” such as

the tip of the X chromosome in Drosophila. However, maintained at equal frequencies, given by
“low recombination” refers only to empirically mea-

E(T2) 5 1 1
1

4Nr
, (3)sured rates of crossing-over in the region. When rates

of crossing-over are low, rates of gene conversion need
not be similarly affected; the two mechanisms are to where r is the rate of recombination between the neu-

tral site and the site under selection (Strobeck 1983;some extent separable (Carpenter 1984; Engebrecht

et al. 1990). Under Equation 1, we expect less linkage Hudson and Kaplan 1988; Hey 1991; Nordborg

1997). Since the expected number of pairwise differ-disequilibrium among closely linked sites than expected
under a model that only considers rates of crossing- ences (p) between alleles is proportional to E(T2), Equa-

tion 3 implies that a “peak of polymorphism” sur-over. It is easy to see that if Ng is sufficiently large, a
low local rate of crossing-over will have little effect on rounding the selected site is expected. Figure 1

illustrates this effect and also demonstrates that genethe expected level of intragenic disequilibrium. In sup-
port of this view, Begun and Aquadro (1995) observed conversion, even in the absence of crossing-over, will

narrow the peak considerably.extensive haplotype shuffling in the y-ac-su( f ) region,
despite its position in a region of low rates of crossing- Strong signals of balancing selection have been ob-

served at MHC loci in humans (Hughes and Nei 1988)over. This observation is also consistent with other avail-
able data for patterns of linkage disequilibria at the tip and at plant self-incompatibility loci (see Charles-

worth and Guttman 1997 for a review). In D. melano-of the X chromosome in Drosophila melanogaster (C. H.

Langley, personal communication). It should also be gaster, a few loci with polymorphisms thought to be
maintained by selection have been investigated, but sonoted that because gene conversion will tend to de-

crease the expected level of linkage disequilibrium, tests far, only the Adh locus shows significant evidence for
balancing selection (Begun and Aquadro 1994; Eanesfor selective sweeps based on haplotypic structure that

ignore gene conversion (e.g., Hudson et al. 1994) may et al. 1996; Hudson et al. 1987; Hudson and Kaplan

1988; Kreitman and Hudson 1991). This has led tobe conservative.
Another implication concerns our ability to detect speculation that either balancing selection is not a prev-

alent force maintaining variation or that it only rarelybalancing selection. If some form of balancing selec-
tion acts on a given polymorphism for a sufficiently long acts long enough for the equilibrium pattern predicted
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et al., 1996 Historical selection, amino acid polymorphism and
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Engebrecht, J., J. Hirsch and G. S. Roeder, 1990 Meiotic genein Drosophila is simply too high, given the population
conversion and crossing-over: their relationship to each other

size, for this phenomenon to be readily observed. The and to chromosome synapsis and segregation. Cell 62: 927–937.
Hasson, E., and W. F. Eanes, 1996 Contrasting histories of threestriking signal seen at Adh remains an enigma as it is

gene regions associated with In(3L)Payne of Drosophila melanogas-larger than expected even under a model that does not
ter. Genetics 144: 1559–1564.

include gene conversion (Hudson and Kaplan 1988).
Hey, J., 1991 A multi-dimensional coalescent process applied to

multi-allelic selection models and migration models. Theor. Pop.Possible explanations include past geographic subdivi-
Biol. 39: 30–48.sion or the association of Adh alleles with the common

Hilliker, A. J., and A. Chovnick, 1981 Further observations of
polymorphic rearrangement, In(2L)t . intragenic recombination in Drosophila melanogaster. Genet. Res.
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Hudson, R. R., M. Kreitman and M. Aguadé, 1987 A test of neutralgenomic regions where gene conversion is likely to be molecular evolution based on nucleotide data. Genetics 116:
suppressed, such as near an inversion breakpoint (see, 153–160.

Hudson, R. R., and N. L. Kaplan, 1988 The coalescent process infor instance, Hasson and Eanes 1996). As Hudson and
modelswith selection and recombination. Genetics 120: 831–840.

Kaplan (1988) point out, picking an organism with
Hudson, R. R., K. Bailey, D. Skarecky, J. Kwiatowski and F. J.

smaller N may not help, because such organisms are Ayala, 1994 Evidence for positive selection in the Superoxide
Dismutase (Sod) region of Drosophila melanogaster. Genetics 136:expected to harbor less polymorphism, which reduces
1329–1340.our power to detect selection. A better solution may be

Hudson, R. R., 1996 Molecular population genetics of adaptation,
pp. 291-309 in Adaptation, edited by M. R. Rose and G. V. Lauder.to study organisms with lower r, such as partially selfing
Academic Press, San Diego.organisms, where the effective rate of exchange is re-

Hughes, A. L., and M. Nei, 1988 Pattern of nucleotide substitution
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nant selection. Nature 335: 167–170.borg et al. 1996).
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