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ABSTRACT
An approach is presented here for quantitative trait loci (QTL) mapping analysis that allows for QTL 3

environment (E) interaction across multiple environments, without necessarily increasing the number of
parameters. The main distinction of the proposed model is in the chosen way of approximation of
the dependence of putative QTL effects on environmental states. We hypothesize that environmental
dependence of a putative QTL effect can be represented as a function of environmental mean value of
the trait. Such a description can be applied to take into account the effects of any cosegregating QTLs from
other genomic regions that also may vary across environments. The conducted Monte-Carlo simulations and
the example of barley multiple environments experiment demonstrate a high potential of the proposed
approach for analyzing QTL 3 E interaction, although the results are only approximated by definition.
However, this drawback is compensated by the possibility to utilize information from a potentially unlimited
number of environments with a remarkable reduction in the number of parameters, as compared to
previously proposed mapping models with QTL 3 E interactions.

DIFFERENTIAL expression of a phenotypic trait environments provides a significant increase in statisti-
by genotypes across environments, or genotype 3 cal power of QTL detection and accuracy of the esti-

environment (G 3 E) interaction, is an old problem of mates of QTL position and effect ( Jansen et al. 1995).
primary importance for quantitative genetics and its However, such an analysis is limited by situations where
applications in breeding, conservation biology, theory the environments can be obviously characterized by
of evolution, and human genetics (Eberhard and Rus- some parameters, like day length or irrigation-fertiliza-
sel 1966; Falconer 1981; Via and Lande 1987; Tiret tion treatments, etc. [like the “fixed effects” model of
et al. 1993; Wu and Stettler 1997). Recent successful analysis of variance (ANOVA)]. When these characteris-
attempts to dissect quantitative variation into Mendelian tics are not available, the application of the “general”
genes employing molecular markers (mapping quanti- QTL 3 E mapping model (see below) is accompanied
tative trait loci, or QTLs) have shifted the focus of G 3 by a tremendous number of parameters involved in the
E interaction analysis from the genotype to gene level model that increase as a product of the identified QTLs
(e.g., Paterson et al. 1991; Hayes et al. 1993; Asins et and the number of environments where the traits were
al. 1994; Sari-Gorla et al. 1997). For breeding pur- measured. In such a case, one could think about a “ran-
poses, the primary concern is possible environmental dom effects” model so that the number of parameters
instability in manifestation of mapped QTLs that might for each QTL will include only main effect, the variance
become candidates for marker-assisted selection. To of QTL 3 E interaction, and QTL position. Although
evaluate stability of QTL effects in crop species, dozens this option seems very attractive, it has its own draw-
of immortal mapping populations have been developed backs, especially if we are going to deal with environ-
for trait scoring under various environmental condi- mental variation associated with different localities. In-
tions (Hayes 1994). deed, some (or many) localities may manifest quite

Several algorithms and computer packages have been repeatable differences from each other, justifying the
proposed to conduct QTL mapping, allowing for QTL 3 “fixed model” approach (Baker 1996). Moreover, the
E interaction effects (Hayes et al. 1993; Jansen et al. information of geographically-specific QTL effects may
1995; Tinker and Mather 1995; Romagosa et al. 1996; be of practical importance. In such a case, a fixed effects
Beavis and Keim 1996; Utz and Melchinger 1996). model is, whenever possible, preferable over the ran-
In addition to testing the hypothesis of QTL 3 E inter- dom effects model, because the latter hides the biologi-
action, simultaneous treatment of data from multiple cal (geographic) specificity of the QTL effect, compress-

ing all the results to an estimate of variance. The major
goal of this paper is to present an approach of QTL
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ments, without the necessity for a corresponding increase technical features. These could strongly affect the mani-
in the number of parameters. The proposed model is festation of quantitative traits and the effects of QTL
especially relevant in situations of geographic variation of but are difficult to characterize quantitatively. As first
external conditions, where the fixed model approach is suggested by Eberhard and Russel (1966), we advo-
desirable but not easy to implement. cate that the measured trait values of the mapping popu-

lation (e.g., trait means) may serve as objective integral
characteristics of the environmental state. Accordingly,

THE MODEL a larger number of traits should provide a better “bioin-
dication.” In the simplest form, one can approximateApproximated description of environmental depen-
the environmental dependence of the effect of alleledence of QTL effect: The main distinction of the pro-
substitution at a QTL by a polynomial over the meanposed model is in the choice of approximation of the
values of the same trait across the environments. Thedependence of putative QTL effects on environmental
following example of a QTL mapping in a barley experi-states. In reality, each environment is a complex of abi-
ment (Hayes et al. 1996) with measurements conductedotic (temperature, humidity, ion concentration, etc.),

biotic (parasites, pathogens, competitors, etc.), and agro- in many environments, illustrates the idea (Figure 1).

Figure 1.—Regression approximation of QTL substitution effect a as a function of mean trait value mi. Data on barley malting
quality traits from Hayes et al. (1996). Circles represent pairs (ai,mi) where i is the number of environment. RL and RQ denote
the explained part of variation of the estimated QTL effect based on linear and quadratic regression, respectively; R, all nine
environments used; #k, the k th environment is excluded; * and **, regression is significant at P , 0.05 and 0.01.
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For some putative QTLs, the dependence on mean value Ui(x) 5 pi fqq(x) 1 (1 2 pi)fQ Q(x), i 5 1,4, (2)
of the respective traits explains a large part of the envi-

where the proportions pi 5 pi(r1,r2) are dependent onronmental variation of the QTL effect. This suggested
r1 and r2. Here, fqq(x) and fQ Q(x) are the trait densityapproach does not exclude the possibility to take into
distributions in the QTL groups qq and QQ, respectively.account any additional information, like temperature,
With no interference, p1 5 (1 2 r1)(1 2 r2)/(1 2 r);day length, water regime, etc., that might characterize the
p2 5 r1(1 2 r2)/r ; p3 5 1 2 p2; and p4 5 1 2 p1.environments (e.g., Jansen et al. 1995). These “physical”

In a single-environment formulation, one could testcharacteristics can be introduced into the model parallel
whether or not the observed variation of x is associatedto the bioindicatory terms (e.g., polynomial over the mean
with segregation in interval Mk/mk 2 Mk11/mk11 and iden-values) together with terms characterizing the depen-
tify the corresponding locus Q/q. Provided recombina-dence of the putative QTL effect on interaction between
tion rate between marker loci is known, the vector of n1the physical and bioindicatory factors. Another approach
parameters specifying the putative QTL can be presentedto analyze QTL 3 E interaction without direct specifica-
as un1 5 {r ,m,a,s2}. The assumption of no association be-tion of the physical characteristics of the environments
tween segregation in Mk/mk 2 Mk11/mk11 interval canwas recently proposed by Romagosa et al. (1996). Their
formally be presented by another set of parameters,algorithm is based on clustering the environments using
u 5 un0 5 {m,s2}. The null hypothesis {H0: u 5 un0}, asa few (e.g., two) detected QTL with most variable effects
contrasted with the alternative {H1: u 5 un1}, can beacross environments. Actually, this is a different version
investigated with the likelihood ratio test approachof the same general idea of bioindicators as a tool for
(Wilks 1962). If H0 is true, the statisticcharacterizing “anonymous” environments.

Clearly, the results one could obtain by means of the x2(H1 vs. H0) 5 2ln[maxL(un1)/maxL(un0)] (3)
method of QTL 3 E analysis proposed in this paper un1 P S1 un0 P S0
will be approximate, allowing, at best, to consider the

is distributed asymptotically as chi-square with n 1 2 n 0major part of QTL 3 E interaction. However, as will
d.f., where S0 and S1 are the parameter spaces corre-be demonstrated below, the possibility to work with an
sponding to H0 and H1, respectively (Wilks 1962; Zengunlimited number of environments without increasing
1994). Thus, if x2 exceeds some critical value corre-the number of parameters, as compared to usual map-
sponding to a preset level of significance a, the nullping models with QTL 3 E interactions, may signifi-
hypothesis can be rejected. In such a case, numericalcantly offset loss-of-accuracy drawback, resulting in in-
values of the parameters that maximize L(un1) are con-creased power to detect QTL 3 E interactions and in
sidered maximum likelihood estimates of the parame-improved accuracy of estimates of QTL genomic location.
ters characterizing Q/q, its effect and position (WellerMixture-model of interval QTL mapping: Consider
1986; Lander and Botstein 1989; Knott and Haleya simplified situation when the trait of interest (x) de-
1992). As applied to (3), the test statistic will havepends on a single QTL, Q/q. We will confine the analysis
n 1 2 n 0 5 4 2 2 5 2 d.f.to dihaploid mapping populations (which also applies

In multiple environments, we could use the foregoingto backcrosses and recombinant inbreds), but it can
to trait measurements obtained under several environ-easily be extended to other population structures. Then,
mental conditions. Namely, when comparing the fore-for an arbitrary genotype of the mapping population,
going alternatives H0 and H1, QTL 3 E interaction ef-the trait measurement in the ith environment can be
fects could be included in the model and tested againstpresented as
the alternative of no QTL 3 E interaction. In other

xi 5 mi 1 0.5gai 1 ei , (1) words, an additional group of hypotheses {H2: u 5 un2}
could be considered that assume a dependence of thewhere mi is the mean trait value in the ith environment,
target QTL effect and, possibly, of the residual variance,g is either 11 (for QQ genotypes) or 21 (for qq geno-
on environment. Vector un2 of the full model, corre-types), ai is the effect of allele substitution at putative QTL
sponding to H2 with environment-specific parameterson trait in environment i, and ei is a random variable with
ai, s2

i , and mi will then contain 3p 1 1 components,zero mean and variance s2
i . If we find ai z a for any i,

where p is the number of environments. Consequently,then no G 3 E interaction is manifested by Q/q.
un1 specifying H1 (constant effect ai z a of the QTLAssume that Q/q resides in some interval (k,k 1 1) of
across environments, though allowing for variable s2

ia chromosome marked by a series of marker loci, Mj/mj,
and mi) contains 2p 1 2, while un0 (no QTL on the testedwith recombination rates r1 and r2 in Mk/mk 2 Q/q and
chromosome) contains 2p parameters.Q/q 2 Mk11/mk11, respectively. For simplicity, we con-

In the simplified case of only one QTL segregatingfined the analysis to the “no interference” case. For a
in the mapping population, no correlation between traitdihaploid (backcross) mapping population, the expected
measurements across environments are expected. Withdensities of the trait x in each of the four marker groups
this assumption, instead of the test statistics (3), one canUmkmk11(x) 5 U1(x), UMkmk11(x) 5 U2(x), UmkMk11(x) 5 U3(x),

and UMkMk11(x) 5 U4(x) can be written as build its multi-environmental equivalent x2 (H1 vs. H0)
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with df 5 2p 1 2 2 2p 5 2. If H0 is rejected (ai ? Equation 3, a and b, we could replace the corresponding
0), then the obvious benefit of the corresponding multi- coordinates of the parameter vectors uni by polynomials:
environmental model is the striking increase in the num-

ai 5 a0 1 a1mi 1 a2m
2
i 1 . . . 1 asm

s
i ,ber of measurements, resulting in higher precision of

s2
i 5 b0 1 b1mi 1 b2m

2
i 1 . . . btm

t
i , i 5 1,p . (4)parameter estimates (e.g., Jansen et al. 1995). No less im-

portant is the possibility to conduct the following two tests: In other words, instead of estimates of r1, ai , and s2
i , the

procedure will provide ML-estimates of r1 and regressionx2(H2 vs. H0) 5 2ln[maxL(un2)/maxL(un0)] (3a)
coefficients a0, a1,..., as , b0, b1, and bt . The followingun2 P S2 un0 P S 0
information about these coefficients will be useful. One

with df 5 3p 1 1 2 2p 5 p 1 1, and can represent the approximation (4) in form of devia-
tions from the mean values of the trait m averaged over

x2(H2 vs. H1) 5 2ln[maxL(un2)/maxL(un1)] (3b)
environments, i.e., with terms ak(m 2 mi)k and bj(m 2

un2 P S 2 un1 P S1 mi)j, instead of akm
k
i and bjm

j
i. Then, the genetic interpre-

tation of the coefficient a0 is that it specifies the averagewith df 5 3p 1 1 2 (2p 1 2) 5 p 2 1. Note that the
substitution effect at the putative QTL, whereas coeffi-same d.f. for the test statistics will be obtained if the
cients ai (i . 0) reflect the stability of the QTL effectentire analysis is conducted for the centered data, so
over environments. This parallels the stability analysisthat mi are subtracted from the individual measurements
of Eberhard and Russel (1966), although they usedat corresponding environments.
only linear regression in their model. There are differ-The asymptotic distribution of the test statistics (3)
ent reasons why linear approximation for QTL depen-in the multi-interval mapping remains unknown (see
dence on environment may be not sufficient. For exam-Zeng 1994), but one could use extensive Monte-Carlo
ple, one may mention the effect of canalization of genesimulations in order to obtain an empirical critical value
effects (Gilbert 1961; Rendel 1967; Korol et al. 1981,of the statistics for each considered situation. Our previ-
1994). Likewise, the coefficient b0 specifies the residualous simulation studies (Korol et al. 1995) have shown
variance under average conditions, whereas bi (i . 0)that the chi-square distribution is a good approximation
reflect the stability of the residual variance with devia-for the test statistic (3), and here we will demonstrate
tion from average conditions. The changes in the resid-that it may also be suitable for the test statistic (3b).
ual variance may result from either QTL 3 E interactionRegression specification of QTL 3 E interaction:
at other sections of the genome not accounted by theIgnoring possible variation of the QTL effect among
model or dependence of nongenetic components ofenvironments may lead to erroneous breeding decisions
residual variation on environment.in subsequent applications of the mapping results, an

The degrees of polynomials in Equation 4 cannot beaccompanied reduction in the power, and loss of preci-
predetermined before the mapping analysis. By con-sion in estimated QTL effects and genome location. On
trast, the analysis includes model adjustment with a se-the contrary, accounting for QTL 3 E interaction in
ries of polynomials a(m) 5 Pas(m) and s2(m) 5 Ps2

t (m),the data obtained in multiple environments can strongly
and the final degrees s and t are to be chosen on theincrease the resolution of the mapping experiment
basis of maximum statistical significance of the hypothe-(Jansen et al. 1995; Tinker and Mather 1995). How-
sis QTL 3 E interaction vs. the alternative of noever, this proficiency is seriously attenuated by the neces-
QTL 3 E interaction (see further analysis).sity to build into the mapping model a large number

An important point of concern with the proposedof parameters specifying the working hypothesis of the
approach is how to proceed in a situation where theQTL effects. For example, an experiment with 10 envi-
employed model allowed us to detect a significant QTLronments will require a model with 31 parameters when
effect, but QTL 3 E interaction was not detected. Doesevaluating a single interval.
it mean that no QTL 3 E interaction is characteristic ofAccording to the proposed approach, the unknown
the revealed QTL or, alternatively, that this interactioneffects ai and, if desirable, the residual variances s2

i are
exists, but the chosen parametrization (e.g., regressionrepresented by low degree polynomials. For instance,
of QTL effects on mean trait values across environ-with a cubic approximation for ai and a quadratic for
ments) poorly approximates the real dependence of thes2

i , we will only need seven parameters instead of 20!
QTL effect on environment. One of the possible waysClearly, the main question remains to what extent the
to overcome this obstacle will be presented below.bioindicating trait, or a (linear) combination of traits,

Obtaining parameter estimates: Maximum likelihoodwill indeed be informative with respect to the depen-
estimates of all of the parameters, including a and b,dence of the target QTL effect on environmental states.
are obtained using the procedure of numerical multipa-No prior answer is possible, but the foregoing examples
rameter optimization of functions L(u) from Equationon barley (see Figure 1) demonstrate that such an as-
3, a and b. Optimization was by modified gradient methodsumption is quite realistic, even with the simplest univar-
(Himmelblau 1972). The possibility of multiple max-iate mode of the approximation, ai 5 f(mi). Thus, in

the log-likelihood functions lnL(unk) (k 5 0,1,2) from ima was excluded by using various sets of starting values.
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RESULTS The results presented in Table 2 show that adequate
approximation of a(m) results in an appreciable in-The efficiency of the proposed method was tested
crease in the power of both tests: H1 vs. H0 (presencethrough Monte-Carlo simulations. Three groups of situ-
of a QTL, allowing for ai 5 const and s2

i ? const), andations were simulated: a single QTL (situations S1–S3),
H2 vs. H1 (presence of QTL 3 E interaction, allowingtwo unlinked QTLs (situations S 4–S 5), and several un-
for s2

i ? const). Utilization of a(m) and s(m) polynomiallinked QTLs (situation S6) (Table 1).
approximations resulted in an improved precision inSingle QTL: In the situation with a single QTL, no
the estimated QTL position (compare the estimated“between-environment” correlation is expected for the
position L and its standard error sL for MA and MGresidual (within QTL groups) variation. Thus, the log-
in Table 2). In situation S 1 with the smallest averagelikelihood functions 3a and 3b for the mixture model
simulated QTL effect, the power to detect the QTL at3a and 3b could be calculated by summing up over all
the significance level of 1% was 45 and 34% for MA andenvironments and employing the polynomials of Equa-
MG, respectively, whereas the corresponding figures fortion 4. This assumes implicitly that after removing the
detection of QTL 3 E interaction were 41 and 29%.effects of the QTL under consideration, the residuals
Note that this increased resolution of the MA model asare independent across environments. Clearly, such an
compared to the MG model was obtained using onlyidealization is correct if all residual genetic variation of
eight parameters (less than half of that in MG). Hence,the quantitative trait is taken into account by markers
the superiority of the MA model over MG is reflectedof other genomic regions, such as cofactors ( Jansen

in the values of AIC. Likewise, the polynomial modeland Stam 1994; Zeng 1994). This may not be the case,
provided z1.5–2-fold reduction in the estimated confi-calling into question the applicability of the proposed
dence interval for the ai estimates across environmentsapproach to real data analysis. It is indeed a very serious
(Figure 2).problem, but as shown in the following section, the

With simulated data, it is easy to compare “the ade-conclusions may be fairly promising.
quate” and “nonadequate” approximations simply be-As a first step in demonstrating the idea of our
cause we know the employed model. The results inmethod, we here consider the simplest case of a single
Table 3 illustrate this point. As one can see, the adequateQTL. The dependence of the simulated QTL effect and
model (MA 3) gave the highest power of detection ofthe residual variance on environment was modeled as
both the presence of the QTL in question and QTL 3cubic and quadratic functions, respectively (see Table
E interaction, and the most accurate and precise esti-1). The simulated experiment included 10 environ-
mate of QTL location. Note that even the poorest ap-ments with mean value of the trait (mi) linearly increas-
proximate model (MA1) resulted in a higher power ofing from m1 5 0 to m10 5 3.6. The target QTL was
QTL detection and better estimate of location than thepositioned in the middle of the third interval of six of
best single-environment model (i.e., for the environ-a linkage group. Each interval consisted of 24 cM. The
ment where the QTL effect was the highest). However,size of the mapping population (either dihaploid or
the situation will be quite different when real data willbackcross) was n 5 200.
be analyzed, i.e., no prior information exists on the formThe results obtained with polynomials of different
of a(m). Thus, the decision about the adequacy shoulddegrees corroborate the expectation that the best reso-
be justified using statistical criteria. This can be donelution is achievable when the adjusted polynomials are
on the basis of the dependence of the evaluated signifi-of the same degree as those employed in generating
cance level on the degree of the applied polynomials.the data (not shown). We found such a correspondence
The corresponding results for the situation S 2 are pre-to be more important for approximating the substitu-
sented in Table 4.tion effects ai than the residual variances s2

i .
Table 4 illustrates the possibility to deduce the ade-Our intention was to compare the general model

quate approximation of the QTL 3 E interaction based(MG), specifying all effects ai and residual variances
on the analysis of the obtained LOD scores. The columnss2

i with the proposed model (MA), which utilizes a poly-
bet 5 b(a) show the power of detection of QTL 3 Enomial approximation of ai and s2

i (Equation 4) as func-
interaction for each of the presented models for threetions of an environmental bioindicator. Here, we used
levels of significance (5, 1, and 0.1%). It is noteworthypopulation mean values of the same trait, but there are
that the critical values of the test statistics (see Equationother possibilities, e.g., mean values of other traits or
3b) were determined by using: (1) the asymptotic x2some other scores characterizing the performance of
distribution, and (2) Monte-Carlo simulations with 5000the target population or even other species. The main
runs for each of the models (data in brackets). Thecriteria for comparison include the power of detection
obtained results showed a remarkable proximity of theseof QTL effect and QTL 3 E interaction, and the accu-
two estimates of the power for all of the models. Clearly,racy and precision of the estimated chromosomal loca-
such a correspondence may be disturbed when a QTLtion of the detected QTL. In addition, we employed
not accounted for by the model affects the residualAkaike’s information criterion (AIC), which takes into
genetic variation, causing correlation between environ-account the cost of an increased number of parameters

in the model (Bozdogan 1987). ments (see below). As in Table 3, the highest power of
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TABLE 1

Characteristics of the simulated multiple environment experiments with both the QTL substitution
and residual standard deviation represented as functions of trait mean value

env. Ei 1 2 3 4 5 6 7 8 9 10
mi 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

Single-QTL situations

S 1 ai 5 mi(mi 2 2)(mi 2 4)√3/18, si 5 0.064m2
i 1 1.2

ai 0.00 0.22 0.30 0.26 0.15 0.00 20.15 20.26 20.30 20.22
si 1.20 1.21 1.24 1.29 1.36 1.46 1.57 1.70 1.86 2.03

h2
i % 0.00 0.83 1.40 0.99 0.29 0.00 0.22 0.57 0.63 0.29

S 2 ai 5 mi(mi 2 2)(mi 2 4)√3/18, si 5 0.032m2
i 1 0.8

ai 0.00 0.22 0.30 0.26 0.15 0.00 20.15 20.26 20.30 20.22
si 0.80 0.81 0.82 0.85 0.88 0.93 0.98 1.05 1.13 1.21

h2
i % 0.00 1.86 3.14 2.28 0.70 0.00 0.56 1.49 1.69 0.83

S 3 ai 5 mi(mi 2 2)(mi 2 4)√3/12, si 5 0.064m2
i 1 0.8

ai 0.00 0.33 0.44 0.39 0.22 0.00 20.22 20.39 20.44 20.33
si 0.80 0.81 0.84 0.89 0.96 1.06 1.17 1.30 1.46 1.63

h 2
i % 0.00 4.04 6.50 4.51 1.30 0.00 0.89 2.17 2.26 1.03

Two QTL situations

S 4 a1i 5 ai(S3), a2i 5 (0.064m2
i 1 0.8)2d, si 5 (0.064m2

i 1 0.8)√(1-d2), d 5 0.25
a1i 0.00 0.33 0.44 0.39 0.22 0.00 20.22 20.39 20.44 20.33
a2i 0.40 0.41 0.42 0.45 0.48 0.53 0.58 0.65 0.73 0.82
si 0.78 0.79 0.81 0.86 0.93 1.02 1.13 1.26 1.41 1.58

h 2
1i% 0.00 4.04 6.50 4.51 1.30 0.00 0.89 2.17 2.26 1.03

h 2
2i% 6.25 6.00 5.84 5.97 6.17 6.25 6.19 6.11 6.11 6.19

S 5 a1i 5 ai(S3), a2i 5 (0.064m2
i 1 0.8)2d, si 5 (0.064m2

i 1 0.8)√(1-d2), d 5 0.5
a1i 0.00 0.33 0.44 0.39 0.22 0.00 20.22 20.39 20.44 20.33
a2i 0.80 0.81 0.84 0.89 0.96 1.06 1.17 1.30 1.46 1.63
si 0.69 0.70 0.73 0.77 0.84 0.92 1.01 1.13 1.26 1.41

h 2
1i% 0.00 4.04 6.50 4.51 1.30 0.00 0.89 2.17 2.26 1.03

h 2
2i% 25.0 24.0 23.4 23.9 24.7 25.0 24.7 24.5 24.4 24.7

Multiple QTL situations

S 6 spi 5 0.064m2
i 1 0.8, a1i 5 ai(S 3), a2i 5 2spi √0.1, a3i 5 2spi √0.05,

a4i 5 2spi √0.04, a5i 5 a6i 5 2spi √0.02, a7i 5 2spi √0.01, a8i 5 2spi √0.005,
a9i 5 a10i 52 spi √0.002, a11i 5 2spi √0.001.

a1i 0.00 0.33 0.44 0.39 0.22 0.00 20.22 20.39 20.44 20.33
a2i 0.51 0.51 0.53 0.56 0.61 0.67 0.74 0.82 0.92 1.03
a3i 0.36 0.36 0.38 0.40 0.43 0.47 0.52 0.58 0.65 0.73
a4i 0.32 0.32 0.34 0.36 0.39 0.42 0.47 0.52 0.58 0.65

a5i 5 a6i 0.23 0.23 0.24 0.25 0.27 0.30 0.33 0.37 0.41 0.46
a7i 0.16 0.16 0.17 0.18 0.19 0.21 0.23 0.26 0.29 0.33
a8i 0.11 0.11 0.12 0.13 0.14 0.15 0.17 0.18 0.21 0.23

a9i 5 a10i 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.12 0.13 0.15
a11i 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.10
si 0.69 0.68 0.69 0.75 0.83 0.91 1.01 1.11 1.24 1.40
spi 0.80 0.81 0.84 0.89 0.96 1.06 1.17 1.30 1.46 1.63

h 2
1i% 0.00 4.20 6.95 4.73 1.32 0.00 0.90 2.22 2.32 1.04

h 2
2i 5 10%, h 2

3i 5 5%, h 2
4i 54%, h 2

5i 5 h 2
6i 5 2%, h 2

7i 5 1%, h 2
8i 5 0.5%,

h 2
9i 5 h 2

10i 5 0.2%, h 2
11i 5 0.1%.

The proportion of genetic variance attributed to the QTL is denoted by h 2% (h 2
1i, h2

2i , etc., when several QTL
were simulated); mi is the (expected) mean value of the trait in the environment Ei; the residual standard deviations
are denoted as si . In the most complex situation S6, we show also the phenotypic standard deviations spi.
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TABLE 2

Estimated location L(cM) and power of detection of QTL effect (bf for testing H1|H0) and
QTL 3 E interaction (be for testing H2|H1) employing the general (MG) and

approximated (MA) models in single-QTL situations

bet (%)(H2|H1) bft (%)(H1|H0)

L(cM) a%→5 1 0.1 5 1 0.1 np dfe dff AIC

S 1 MA 66.0 6 2.03 67 41 16 67 45 22 8 3 5 10.8
MG 65.4 6 2.56 57 29 6 64 34 8 21 9 11

S 2 MA 61.7 6 0.89 97 87 70 94 87 67 8 3 5 12.4
MG 62.5 6 1.45 88 71 47 91 78 49 21 9 11

S 3 MA 59.8 6 0.49 100 99 94 100 99 97 8 3 5 12.2
MG 61.1 6 0.68 100 95 81 100 98 90 21 9 11

The results of 200 Monte-Carlo runs are presented for single-QTL situations (see Table 1). L is the estimated
QTL location (the simulated value of L is 60 cM); a is significance level; np is the number of parameters
specifying the model. To reduce np, the vector of mean values mi across environments was calculated before
starting the optimization procedure for the tests 3, 3a, and 3b (for either MA or MG); dff and dfe are the
degrees of freedom for the tests of QTL presence (H1 vs. H0) and QTL 3 E interaction (H2 vs. H1), respectively.

detection of QTL 3 E interaction and the most precise ronments, which should be taken into account. One of
the possible ways to account for this correlation is throughestimate of QTL location were obtained with model

MA 3. It is not surprising that MA3 is superior over MG. simultaneous analysis of multiple traits, taking the trait
values in different environments as different quantitativeBut less expected is the fact that the nonadequate ap-

proximations MA2 and MA4 were also superior over MG, traits (Korol et al. 1987, 1994, 1995; Jiang and Zeng

1995; Ronin et al. 1995). However, the multiple trait analy-whereas the poorest approximation MA1 gave the closest
results to MG, but with fewer parameters. Thus, it is not sis limits the number of environments, because it is asso-

ciated with an increased number of parameters. Themandatory to have the adequate approximation to take
advantage of the proposed method. It will be sufficient approach proposed in this paper does not have this

drawback, but introduces other sources of distortions:to provide a good approximation. Nevertheless, how
can we decide about the adequate model, provided the (1) correlations caused by unaccounted QTLs, and (2)

approximated description of QTL dependence on envi-class of the approximation functions is chosen correctly?
To address the last question, the following procedure ronment based on the bioindication assumption.

Consider the first problem. We should now evaluatewas employed. For each run, the data were analyzed
using all of the models (MA1–MA4, and MG), and mod- to what extent correlations between environments

caused by unaccounted QTLs may affect the efficiencyels that detected QTL 3 E interaction at the level of
significance a were chosen. Then, the model that: (1) of the proposed approach. The second problem will be

treated in the next section and in the discussion.exceeded significantly (at some level a*) all of the more
simple models: (2) did not differ significantly (at a*) For the simulated cases of two QTLs segregating in

the mapping population (S4 and S5), we first analyzedfrom more complex models was selected as adequate.
The general model also participated in this competition the consequences when the proposed approach of ac-

counting QTL 3 E interaction is applied, ignoring theas the most complex one, because of the number of
parameters needed. The resulting distribution of the correlations caused by the effect of Q 2/q 2 (model 1,

Figure 3). Then, we re-evaluated the results by applyingchoices of the adequate model is presented in the last
three columns of Table 4. It allowed us to conclude the proper model (model 2, Figure 3). In these simula-

tions, we considered two situations of relative effects ofthat: (1) model MA 3 is an adequate model because it
was chosen in more than half of the runs where the the “target” QTL (Q 1/q1) and of the cosegregating QTL

(Q2/q2): Q 1/q1 and Q 2/q 2 have comparable effects on theQTL 3 E interaction was detected, and with a frequency
that is threefold higher than the next best choice; (2) target trait though a1 , a2 (S4), and Q 2/q 2 is much

stronger than Q 1/q1 (S5). The residual variance s2
i of thethe models of the polynomial class were chosen 25–30

times more than the exact general model MG. More- trait within the QTL groups Q 1/Q 1 and q1/q1 was the
same in S 3, S 4, and S5.over, even the simplest approximation, MA 1, would be

selected 4–6 times more frequently than MG. First, compare the accuracy of the QTL mapping ob-
tained employing model 1 for situation S4, with thoseTwo QTLs: When several QTLs segregate simultane-

ously in the mapping population, their effects will gener- of S3 where only the effect of Q 1/q1 was simulated (the
situations S3 of Table 2 and S 4, model 1, Figure 3). Inate correlations between trait measurements across envi-
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both cases, the results clearly demonstrate the superior- Two possibilities exist for considering the effects of
cosegregating QTLs in the mixture mapping model.ity of the approximated model MA. Hence, provided that

the effect of a cosegregating QTL, Q 2/q 2, does not consid- The first is to represent all QTL groups (four, in our
case, of two QTLs cosegregating in a doubled haploiderably exceed the effect of the target QTL, Q 1/q1, the

proposed approach provides accurate results even if or backcross population) in the likelihood function.
Although this procedure is not feasible for mappingthe effect of Q2/q2 is ignored. However, this may not be

the case with larger effects of Q 2/q 2, as demonstrated multiple QTLs across the genome, it may be very useful
in cases of linked QTLs. The second is to include intoby the results for S5 (model 1, Figure 3). In general, a

correct model should account for the genetic compo- the mixture model the effects of the cosegregating QTLs
as cofactors derived from regression analysis on markernents of the residual variation in the alternative geno-

typic groups of the target QTL, causing correlation be- loci (Zeng 1994; Jansen and Stam 1994). The proposed
approximated method is equally applicable in both oftween trait values across environments (e.g., Jiang and

Zeng 1995). This is also true for the method proposed these approaches. Here, we demonstrate it using the
first approach. Although this mixture formulation ishere of mapping analysis with data measured in multiple

environments. more challenging technically, it allows for a proper anal-
ysis of potential variance effect of the cosegregating
QTL (although we do not deal with this problem here).
It is not obvious how to model the effect of a second
QTL with regression cofactors. As was shown earlier,
variance effect of a QTL may result in increased accuracy
of the mapping model if it is included into the model,
and may seriously reduce the accuracy with an inade-
quate model (Korol et al. 1996).

With two QTLs, four densitites fq1q1q 2q 2(x), fq1q1q2q 2(x),
fQ 1Q1q 2q2(x), and fQ1Q 1Q 2Q2(x) should be considered. Conse-
quently, in calculations of the maximum likelihood
function, instead of four marker groups for a current
interval, it is necessary to characterize 16 marker groups
for any pair of nonadjacent intervals. The application
results of the full MG model and the approximated
polynomial MA model are presented in Figure 3 (model
2). It is noteworthy, that the proposed approximation
of the environmental dependence of QTL effect as a
function of the mean value of the trait in a given environ-
ment was applied not only to the target QTL Q 1/q1, but

Figure 2.—Accuracy and precision of estimates of QTL also to the cosegregating Q 2/q 2. This approach may be
effects across environments obtained by the general and ap- especially attractive when there are many cosegregating
proximated single-QTL models applied to single-QTL data. QTLs with environmental dependent effects (e.g., asThe graph represents estimated average trend and a sampled

regression cofactors on respective marker loci). This95% vicinity of the p-dimensional point {ai /si , i 5 1,... p} from
will result in far fewer parameters. As expected, the full200 Monte-Carlo runs for situation S 2 (described in Table 1).

Open circles and light region are for the general model MG, model 2 increased the power of detection of Q 1/q1 effect
black circles and shaded region are for the approximated on the trait x and (Q 1/q1) 3 E interaction (not shown),
model MA. The regions were obtained as follows. Let ai and as well as increased accuracy of estimates of the chromo-
si be the QTL effect and the residual standard variation at the

some position of Q 1/q1 and of its effects by the environ-ith environment (i...., p), and aij and sij be the corresponding
ments (model 2, Figure 3). Again, MA had superiorestimates at j th run ( j 5 1,..., 200). As a measure of discrepancy

of the estimated parameters from the expected, across envi- attributes than MG. This conclusion is also supported
ronments, we used the index by the values of AIC.

dj 5 √R(ai/si 2 aij/sij)2 . Several QTL: As we could see before, a strong QTL,
The sampled 95% volume is defined as a p-dimensional sphere, if not accounted by the model, may cause correlations
S0.95 , of minimal radius with center at point {ai/si, i 5 1,..., p}, between environments resulting in reduced accuracy
which includes 95% of estimated results rj 5 (aij/sij, i 5 1,..., p) of estimated parameters. Nevertheless, the distortion
from the simulations. The sphere provides a 95% region of

caused by a QTL comparable with the target one (e.g.,estimated curves aj(m(E)) in the plane of the estimated effects
exceeding the target effect no more than two times) is{aij ,m(Ei)}:
not dramatic (see Figure 3). Including the effects ofD 0.95 5 {aj(m(E)), aij P [min aij , max aij], i 5 1,... p }.
cosegregating QTLs into the model solves this problem.rj P S0.95 rj P S0.95

This can be done by combining the proposed approachAccording to our calculations, the radius of S 0.95 is smaller for
MA than MG (0.672 vs. 0.805). with regression cofactors. However, an appreciable pro-
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TABLE 3

Comparison of the general model with the polynomial approximations for the power of detection
of the QTL (bft

), QTL 3 E interaction (bet
), and the accuracy of QTL location (L)

bft
(%)(H1|H0) bet

(%)(H2|H1)

Model L(cM) a%→5 1 0.1 dff 5 1 0.1 dfe

MA 1 60.6 6 0.74 98 90 74 3 96 85 63 1
MA 2 61.0 6 0.59 99 98 92 4 98 95 84 2
MA 3 59.8 6 0.49 100 99 97 5 100 99 94 3
MG 61.1 6 0.68 99 98 90 11 99 97 83 9
ME 3 60.9 6 1.44 83 63 40 2

MA 1, MA2, and MA3 are the approximated models based on polynomials of first, second, and third degree,
respectively, for the target QTL effect. Situation S 3 (see Table 1) is considered. The results are compared to
the best single-environment model (ME 3, for data from the environment 3 where the effect of the target QTL
is the largest one).

portion of genetic variation for the analyzed trait may Table 5 (first row for N 5 1,3,5). It is noteworthy, that in
this case employment of the asymptotic distribution forstill remain in the residuals, because of combined effect

of many small QTLs. This residual genetic variation may the critical values of the test statistics gives seriously biased
upward estimates bet 5 bet (a) of the power of detectionbe several-fold larger than the effect of the target QTL.

Would the resulting correlation between environments of Q1/q1 3 E interaction (compared to the estimates
bes 5 bes (a) obtained using Monte-Carlo simulationspreclude the application of the method?

To address this question, let us consider the case S6 with 5000 runs).
As we see from the foregoing results for the two QTL(for detailed specification see Table 1). Here, the genetic

variation of the trait depends on the target QTL (Q1/q1) situations (S4 and S5 in Figure 3), an unaccounted QTL
will not seriously affect the results for the target QTL if(with an average h2 z 2.5% across environments) and 10

additional unlinked QTLs (Q2/q2 –Q11/q11). The average its effect does not exceed the target one by too much
(e.g., not more than twofold). In the current situation(across environments) effect of Q 2/q2 was h2 z 10%,

whereas the combined average effect of Q3/q3 –Q 11/q11 was S6, each of the simulated effects of Q 3/q 3 –Q 11/q11 fit this
condition, whereas this is not true for their combined15%. Thus, the total effect of Q 2/q 2–Q11/q11 is 10-fold com-

pared to that of Q 1/q1, whereas the effect of Q3/q3 –Q 11/q11 effect or for the individual effect of Q 2/q 2. It is interesting
to explore whether including Q 2/q 2 into the model asis sixfold compared to that of Q1/q1. One may expect that

the power of detection of Q1/q1 3 E interaction will be very a cofactor will improve the situation. This is indeed
an important question, because in practice sufficientlylow if the segregation of Q2/q2 –Q 11/q11 is not accounted

for by the model, hence causing correlation between the strong QTLs can be compensated in such a way (Jansen

and Stam 1994; Zeng 1994), but this does not guaranteeenvironments. This is indeed the case as can be seen from

TABLE 4

Comparison of the general model with the polynomial approximations for the detection
power of QTL 3 E interaction (be), and accuracy of QTL location (L)

be(%) fM

Model L(cM) a%→5 1 0.1 df a%→5 1 0.1

MA 1 62.0 6 1.46 88 (88) 68 (69) 48 (46) 1 0.18 0.16 0.13
MA 2 61.1 6 1.31 92 (92) 78 (77) 56 (59) 2 0.18 0.17 0.15
MA 3 61.7 6 0.89 96 (97) 86 (87) 66 (70) 3 0.54 0.49 0.45
MA 4 61.6 6 0.92 95 (95) 80 (82) 61 (61) 4 0.05 0.05 0.05
MG 62.5 6 1.45 88 71 47 9 0.03 0.03 0.03

Total frequency of cases where QTL 3 E interaction was detected 0.98 0.90 0.78

MA i (i 5 1,...,4) denotes the approximated model based on polynomial of ith degree for the target QTL
effect. Situation S 2 (see Table 1) is considered. The power of the test was obtained using Monte-Carlo simulations
(see text); corresponding results based on x2 asymptotic distribution of the test statistic are given in brackets.
The distribution of frequencies of the chosen approximations is presented in the last three columns ( fM)
resulted from competition between MA 1 –MA 4 and MG, see text.
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Figure 3.—Accuracy of estimates of QTL effects across environments obtained by the general and approximated models
applied to two-QTL data. Here model 1 and model 2 denote a single- and two-QTL mapping models. In situation S 4, the effects
of simulated unlinked QTLs were: average h2% ≈ 2.5 (range 0–6.5) for QTL1 and 6.0 (range 5.84–6.25) for QTL2, respectively;
in situation S5, the simulated effects were: average h2% ≈ 2.5 (range 0–6.5) for QTL1 and 24.0 (range 23.4–25.0) for QTL 2,
respectively. AIC is the Akaike’s information criterion which takes into account the cost of increased number of parameters in
the model (Bozdogan 1987).

that the residual variation caused by many small polygenes and bes) in spite of the noise caused by Q 3/q 3 –Q 11/q11. It
would be quite desirable to get some idea of the dis-will not exceed the target effect several times over, thus

preventing the application of the proposed method. torting effect of the correlations caused by joint action
of the unaccounted QTLs Q3/q3 –Q 11/q11. Therefore, forThe data presented in the second row of Table 5

show that including Q2/q2 as a cofactor into the model comparison we provide in the third row the results for
the case where all the residual genetic variation causedsubstantially improved the situation by increasing the

detection power of Q 1/q1 3 E interaction from two- to by Q 3/q 3 –Q11/q11 is replaced by nongenetic variation.
We can conclude that distortion of the basic modelfivefold (for a, ranging from 0.05 to 0.001) and the

precision of Q1/q1 estimated location more than twofold. assumption of “no correlation between environments”
caused by the presence of Q 3/q 3 –Q 11/q11, which collec-Note that in this case the x2 distribution appeared to

be a very good approximation for the distribution of tively exceed by a factor of six the effect of the target
QTL Q 1/q1, is incomparably smaller than that caused bythe test statistic (compare corresponding values of bet
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TABLE 5

The effect of cofactors on the power of detection of QTL 3 E interaction (be),
and accuracy of QTL location (L)

be (%)
N Model h 2% Dgei L(cM) a%→5 1 0.1

1 1 2.4 0.101 62.9 6 1.66 45 (70) 27 (58) 15 (42)
2 59.9 6 0.74 96 (96) 91 (90) 76 (76)
3 59.2 6 0.49 99 (99) 99 (99) 96 (97)

3 1 5 0.015 60.2 6 0.72 19 (76) 8 (57) 1 (32)
2 59.3 6 0.37 42 (56) 21 (37) 6 (13)
3 59.6 6 0.22 41 (40) 23 (23) 4 (5)

5 1 2 0.006 62.6 6 1.52 14 (62) 4 (41) 1 (23)
2 60.5 6 0.85 20 (32) 7 (16) 2 (4)
3 59.9 6 0.71 18 (19) 8 (8) 1 (1)

The power of the test was obtained using Monte-Carlo simulations (see text); (corresponding results based
on x2 asymptotic distribution of the test statistic are given in brackets). Data of the situation S6 (see Table 1)
were used with the target QTL on chromosome N (N 5 1, 3 or 5). Three models of the analysis of the residual
variation were employed: (1) the cofactors are totally ignored; (2) the effect of the strongest QTL is fitted
using two-QTL mixture model; (3) the genetic component of the residual variation is replaced by the equivalent
nongenetic variation. Dgei is the variance of QTL 3 E interaction for the target QTL; h2% is the averaged
heritability over environments attributed to the target QTL.

a single QTL, Q 2/q2, which exceeds the target QTL only 1996). Thus, according to the simulation results of the
previous section, even if one ignores the effects of otherby a factor of four. The same analysis was conducted

when instead of Q 1/q1 another QTL was considered as genomic segments when dealing with markers of chro-
mosome 1, we did not expect serious reduction in thea target one (Q 3/q 3 or Q 5/q 5). The results are presented

in the remainder of Table 5 and manifest the same efficiency of the mapping analysis. As shown in Figure 1,
the estimates of ai for this trait obtained for separatepattern.

Missing data: One can hardly expect that all geno- environments can be approximated as a quadratic para-
bola of the mean value of the trait over the environments.types will be perfectly represented in all of the environ-

ments where the experiment was conducted. Some data This approximation was used to construct a combined
model for testing QTL 3 E interaction effect and to esti-will be missed, hence it is of interest to get some idea

how it could affect the power of QTL 3 E detection. mate the QTL location on chromosome 2 (Table 7).
The first step was to decide whether variation in s2

iOur approximate model allows us to treat this problem
easily. It appeared that with a large number of environ- is significant and should be included into the model.

Our prior trial showed that polynomial regression ofments, even if a large proportion of genotypes is not
represented in each environment, the resulting power s2

i on mean trait value is nonsignificant (data not
shown). Thus, the hypotheses “constant s2

i 5 s2 acrossof the test of QTL 3 E interaction and location accuracy
of the target QTL are quite high. Monte-Carlo simula- environments” and “variable s2

i across environments”
were contrasted employing two models to describe thetions presented in Table 6 illustrate this point. It is

noteworthy, that if only 20–50% of the data are available dependence of ai on environment: the general model
MG and quadratic approximation MA. Both approachesin each of the 50–100 environments, the approximated

model is still very satisfactory even when a suboptimal reject the hypothesis of constant s2
i at a highly significant

level (with LOD values 21.64 and 20.25 for MG and MA,approximation was used (compare the results for MA 1,
MA 2, and MA3 for the two examples with the situation respectively). Therefore, we should test for the presence

of QTL 3 E interaction given environmental-specificS 4). Clearly, an attempt to apply the general model
would mean an unrealistic task of estimation of about s2

i . Here, we can see the advantage of the proposed
approach. Indeed, with the polynomial approximation100–200 parameters, in contrast to our model which

needs only eight parameters. of ai for H2 {ai ? const}, the hypothesis H1 {ai 5 a 5
const} is rejected at the significance level of P 5 0.010,Example of application: The trait “alpha amylase activ-

ity” from a barley QTL 3 E study presented in Figure 1 while based on the general model MG we can get only
P 5 0.095.(see Hayes et al. 1993, 1996) was used to demonstrate

the utility of the proposed procedure. From previous An important question is whether the two models,
MA or MG, differ significantly provided H2 {ai ? const}analyses, the largest QTL effect for this trait was associ-

ated with segregation on chromosome 1 (Hayes et al. is true. Such a comparison was conducted for both con-



2026 A. B. Korol, Y. I. Ronin and E. Nevo

TABLE 6

The effect of missing data on the power of detection of QTL 3 E interaction and accuracy of QTL
location when the number of environments is large

bet
(%)

Si Model Nlin Nenv N L(cM) a%→5 1 0.1

S 1 MA 3 200 10 200 66.0 6 2.03 67 41 16
200 100 50 59.7 6 0.94 94 82 60
200 100 100 60.0 6 0.45 100 99 98

S 3 MA 3 100 50 40 60.0 6 0.72 100 98 93
200 50 40 60.2 6 0.56 98 96 88

S 4 MA 1 200 50 40 61.4 6 1.10 81 69 46
MA 2 200 50 40 61.0 6 1.10 89 77 56
MA 3 200 50 40 60.0 6 0.72 98 93 82

S 4 MA 1 200 50 100 60.1 6 0.41 98 97 93
MA 2 200 50 100 60.2 6 0.39 99 98 97
MA 3 200 50 100 59.9 6 0.27 100 100 100

Nlin is the total number of genotypes (lines) in the mapping population, Nenv is the number of environments,
and N is the mean number of genotypes scored per environments. To generate the data, the initial form of
the dependence of the QTL on environment was used as presented in Table 1, but with a correspondingly
smaller step in changes of the independent variable.

sidered situations, i.e., with s2
i 5 const and s2

i ? const, large (in fact, unlimited) number of “anonymous” envi-
using LOD scores (see the last section of Table 7). In ronments. Expressing the dependence of a QTL effect
no case was the difference significant, so that MA pro- on environmental conditions as a function of environ-
vides the same solution as MG, but the approximated mental mean value of the trait can also be applied to
model is preferable because of a lower number of multiple QTLs from independent genomic regions.
needed parameters. In other words, MA extracts from Therefore, the proposed approach could be very helpful
the data the same information on variation of the QTL in coping, albeit in an approximate form, with a difficult
effect ai across environments as MG, but does it more problem of QTL mapping analysis, i.e., rapid increase
efficiently. in the number of parameters with increasing number

of effective QTLs and environments. This improves our
ability to efficiently extract more mapping information

DISCUSSION when more environments are used to evaluate the quan-
titative trait.The conducted simulations and the example of barley

In addition to the large number of parameters to bemultiple environments experiment demonstrate the
estimated, the general model MG of QTL 3 E interac-utility of the proposed approximate approach for analyz-
tion fails to account for correlation between environ-ing QTL 3 E interaction. Its main benefit is the ability to
ments caused by cosegregating QTLs not included intouse data collected from a large number of environments
the model. While the first problem is not critical forwithout the necessity of increasing the number of pa-
our method, the second one may be more serious. Therameters. Earlier, an elegant solution to this problem
foregoing simulations showed that unaccounted QTLswas proposed by Jansen et al. 1995. Their QTL mapping
with a strong individual effect may indeed reduce themodel includes in an obvious way the terms describing
power of detection of QTL 3 E interaction and thethe effects of the target QTL and regression cofactors
accuracy of parameter estimation by the proposed ap-of cosegregation QTL, the effects of multiple environ-
proximated method. Therefore, including such QTLs asments, and the terms of QTL 3 E interactions. However,
cofactors into the model is mandatory for applications.such an analysis is limited by situations where the envi-
However, such a compensation cannot be perfect andronments can be obviously characterized by some physi-
a significant genetic component may remain in the re-cal attributes. When such characteristics are not avail-
sidual variation. An important question is whether thisable, the application of the general QTL 3 E mapping
residual genetic variation, which can be several-foldmodel (our foregoing MG model) is accompanied by
larger than the effect of the target QTL, will producea tremendous number of parameters involved in the
correlation between the environments precluding themodel. The method proposed in this paper overcomes,
application of the method. Our simulations allowed usthough in an approximate form, both these obstacles,

allowing us to analyze QTL 3 E interactions across a to conclude that distortion of the basic model assump-
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TABLE 7 not valid. If the opposite is true, i.e., if the dependence
of the QTL effect on environmental conditions canDetection of QTL 3 E interaction in a barley
indeed be presented in the form of regression on meandihaploid population scored over nine environments (for
values or any other bioindicators, then the proposeda QTL of chromosome 1 affecting ‘alpha amylase

activity’; see Hayes et al. 1996) approximated method proved to give a higher detecting
power of QTL 3 E interaction compared to the precise

sj ? const sj 5 const general model (MG). Thus, one can start the procedure
k 1 2 using the approximated method, though the general

model can also be applied in parallel if the number ofMG LOD(H2k /H1k) (df ) 2.954 (8) 3.403 (8)
environments is not too large, so that the number ofP 0.095 0.015
parameters for MG is not unrealistically large. However,

MA LOD(H2k /H1k) (df ) 1.983 (2) 1.817 (2)
if the approximated analysis revealed no significantP 0.010 0.015
QTL 3 E interaction, does it really mean an indepen-

MG LOD(H21/H22) (df ) 21.64 (8) dence of the QTL effect from environmental condi-
P 0.000 tions? Or, alternatively, the interaction may exist, but it

MA LOD(H21/H22) (df ) 20.25 (8) cannot be represented as a regression of the target QTL
P 0.000 effect on the mean values of the trait or some other

bioindicators?LOD(HG
2k/HA

2k) (df ) 0.971 (6) 1.586 (6)
Consider one of the possible ways to cope with thisP 0.60 0.29

problem. If the general model is applicable, i.e., the
We used the index k to denote two types of models corre- number of parameters is not too large, it may be usedsponding to equal (k 5 1) vs. nonequal (k 5 2) residual

as a tool to answer the foregoing question. Rejection ofvariances across environments. Therefore, H11 and H12 hypoth-
the H0 hypothesis “no QTL 3 E interaction” by MGeses here assume the presence of a QTL effect with constant

and varying residual variances, respectively. Correspondingly, will mean that our basic assumption (regression on the
H21 and H22 assume the presence of a QTL with varying effect bioindicator) does not fit the data. If the number of
and constant and varying residual variances, respectively. To test

environments is too large, the general model can bewhether the two models, MA or MG, differ significantly, provided
applied for randomly chosen groups of environments.H2 {aj ? const} is true, both situations, i.e., with s2

t 5 const and
Then, the significance of the interaction may be evalu-s2

i ? const, were considered using LOD score, LOD(HG
2k/HA

2k)
(see the last section of the table). ated from the obtained distribution of the tests using

the Bonferroni correction. For example, with N 5 100
environments, one can produce k 5 20 samples, each

tion of “no correlation between environments” caused including data of m 5 10 randomly chosen environ-
by the segregation of several small QTLs, which collec- ments. Let a be the accepted level of significance for
tively exceed by a factor of six the effect of the target the QTL 3 E interaction test for the whole set of the
QTL, is much smaller than that caused by a strong single samples. Then, assuming independence of these sam-
QTL, which exceeds the target QTL by only a factor of ples, one can reject the H0 hypothesis if at least one of
four (see Table 5). Thus, undetectable small QTLs will the samples achieved the significance level of a/k.
not attenuate seriously the resolution power of the pro- Clearly, due to the postulated independence, which is
posed method, even if their combined effect is several- not the case for mk . N, this is a conservative test of
fold higher than that of the target QTL. QTL 3 E interaction. Nevertheless, it seems preferable

An important question is how to reveal the adequate to us than the standard way of multiple-environment
approximation of the QTL 3 E interaction. With simu- data analysis when the data from each environment are
lated data, it is easy to compare the adequate and the treated separately, and the final conclusion is derived
nonadequate approximations simply because we know from the analysis of the estimated QTL effects across
the degrees of the polynomials employed in the simula- environments (Paterson et al. 1991; Stuber et al. 1992;
tions. However, the situation willbe quite different when Utz and Melchinger 1996).
real data will be analyzed. Thus, the decision about The foregoing test based on the general model may
the adequacy of the approximation should be justified result in the same conclusion as the approximated model,
statistically, i.e., we should decide about the adequate i.e., “no QTL 3 E interaction.” By contrast, if the general
model, provided the class of the approximation func- model allowed us to detect QTL 3 E interaction, but
tions is chosen correctly. This allows us to conclude the approximated model did not, it will indicate that the
that: (1) the adequate model MA 3 was the best, i.e., it proposed bioindicator(s) is not informative and other ex-
was chosen in more than half of the runs where the planatory factors could be found. Further studies are
QTL 3 E interaction was detected and with a frequency needed to develop more optimal algorithms of application
that was threefold higher than the next best choice. of the proposed approach when applied to a large number

The last and most difficult problem is how to recog- of environments (and when direct utilization of the gen-
eral model is impossible). However, even in the currentnize the situations when the applied approximation is
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Korol, A. B., A. A. Zhuchenko and A. P. Samovol, 1981 Linkageform, the drawbacks of the proposed method are compen-
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