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ABSTRACT
Empirically derived models of amino acid replacement are employed to study the association between

various physical features of proteins and evolution. The strengths of these associations are statistically
evaluated by applying the models of protein evolution to 11 diverse sets of protein sequences. Parametric
bootstrap tests indicate that the solvent accessibility status of a site has a particularly strong association
with the process of amino acid replacement that it experiences. Significant association between secondary
structure environment and the amino acid replacement process is also observed. Careful description of
the length distribution of secondary structure elements and of the organization of secondary structure
and solvent accessibility along a protein did not always significantly improve the fit of the evolutionary
models to the data sets that were analyzed. As indicated by the strength of the association of both solvent
accessibility and secondary structure with amino acid replacement, the process of protein evolution—both
above and below the species level—will not be well understood until the physical constraints that affect
protein evolution are identified and characterized.

WIDELY used models of sequence evolution pro- of Kimura (1983). In macroevolutionary applications,
the Jukes-Cantor (1969) model may often be sufficientvide notoriously poor fits to actual sequence data

(e.g., Goldman 1993; Goldman and Yang 1994). For for accurate reconstruction of phylogenies.
Nevertheless, the limitations of widely used modelsexample, the infinite sites model of population genetics

assumes that distinct mutational events never affect the of sequence evolution often prevent more refined and
informative questions from being addressed. A key tosame site in a DNA sequence. This assumption cannot
modelling and understanding the evolutionary processbe reconciled with the data: this model predicts that at
is identification and characterization of the constraintsmost two nucleotide types will be represented in a col-
that evolution “perceives” as proteins diverge. Selectiveumn of a sequence alignment, yet it is often the case
constraints on protein structure would be expected tothat an actual aligned data set contains one or more
give rise to associations between patterns of amino acidalignment columns where three or sometimes all four
replacement and structure. In this article, we extend ournucleotide types are represented. For these data sets,
earlier approach (Thorne et al. 1996) for characterizingthe infinite sites model can be rejected by inspection.
these associations by increasing the number of second-More sophisticated models (e.g., Jukes and Cantor

ary structures distinguished by the evolutionary model1969; Hasegawa et al. 1985; Yang 1994) are typically
and by considering solvent accessibility (i.e., whether oremployed when sequences from different species are
not a residue is near the surface of a protein and rela-being compared. These may be superior to the infinite
tively exposed to solvent). We also add a more realisticsites model in that they cannot be rejected by inspection,
description of secondary structure organization alongbut these also tend to be rejected by goodness-of-fit tests
a protein sequence.such as the one proposed by Goldman (1993).

There is a tradition of studies (e.g., Overington et al.Although their assumptions may be violated and there
1990; Lüthy et al. 1991; Topham et al. 1993; Wako andmay be statistical grounds for rejecting them, simple
Blundell 1994) that attempts to associate amino acidmodels of sequence evolution may still be adequate
replacement patterns and protein secondary structurefor investigating the questions to which they are often
or solvent accessibility, but these studies were performedapplied. In population genetics, the infinite sites model
without direct consideration of evolution and theirmay be good enough for testing the neutral hypothesis
findings are therefore difficult to apply to evolutionary
questions. The work of Koshi and Goldstein (1995)
is more interpretable from an evolutionary perspective
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Figure 1.—Observed and predicted secondary structure length distributions. Open bars are empirically observed frequencies
of secondary structure lengths. Solid bars are predicted frequencies. The predicted frequencies for Figures 1 (A–D) assume a
geometric length distribution. The predicted frequencies for Figures 1 (E–G) are those used by the HMM. For coils, the HMM
uses the geometric distribution depicted in (D). (A) Observed and geometric distributions of helix lengths (n 5 1339). (B)
Observed and geometric distributions of sheet lengths (n 5 1862). (C) Observed and geometric distributions of turn lengths
(n 5 4482). (D) Observed and geometric distributions of coil lengths (n 5 5113). (E) Observed and HMM distributions of helix
lengths (n 5 1339). (F) Observed and HMM distributions of sheet lengths (n 5 1862). (G) Observed and HMM distributions
of turn lengths (n 5 4482).

accessibility. Other recently proposed models incorpo- and coil. For each secondary structure type, we further
divide sites into those that are relatively exposed torate variation of preferred amino acid residues among

sites (e.g., Brown et al. 1993; Bruno 1996) but are not solvent and those that are buried.
Having two accessibility classes, buried (b) and ex-designed to facilitate study of the relationship between

protein structure and evolution. With the approaches posed (e), for each of the four secondary structure types
(H, E, T, C) gives rise to a model with protein sites thatdescribed here, associations between protein secondary

structure, solvent accessibility, and the pattern of pro- belong to one of eight categories (Hb, He, Eb, Ee, Tb,
Te, Cb, Ce). We use a hidden Markov model (HMM)tein evolution can be investigated from within a likeli-

hood inference framework. approach (see Churchill 1989; Asai et al. 1993; White

et al. 1994; Yang 1995; Felsenstein and ChurchillWe assume that each site in a protein belongs to one
of several categories. The categories need to be prede- 1996) to describe organization of these eight categories

along a protein sequence, and we describe the lengthtermined, but the category to which each site belongs
does not need to be prespecified. In this study, we have distribution of secondary structures more accurately

than did our earlier model. The model that results fromfour types of secondary structure: a-helix, b-sheet, turn,
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namic programming-based similarity search (Gotoh 1982) tothese changes is both relatively complicated and com-
find sequences of .30% identity with the sequence of knownparatively realistic when contrasted with previous ex-
structure. Each family found in this manner is aligned via the

plicit models of protein sequence evolution. In the sec- multiple sequence alignment method of Taylor (1988).
tions that follow, we first describe the model. We then Secondary structure assignments and solvent accessibility

scores are calculated for the protein of known structure withinvestigate several data sets to understand how much
the DSSP program (Kabsch andSander 1983) and are extrap-various features of the model improve its fit.
olated across each aligned sequence family by assuming that
all residues in an alignment column share the secondary struc-
ture and solvent accessibility classification of the homologousMATERIALS AND METHODS
residue in the protein with experimentally determined struc-
ture. Residues inserted into the middle of a secondary struc-BRKALN database: Fixed parameters of the model were

estimated as described below from a database of structure- ture element are assigned that secondary structure, and inser-
tions elsewhere are defined as having unknown secondaryrelated amino acid sequence alignments. The BRKALN data-

base maintained by D.T. Jones (unpublished results) contains structure. Using the January 1995 release of PDB and release
25.0 of OWL resulted in the BRKALN database containingamino acid sequences classified into families of closely related

sequences for which the tertiary structure of at least one mem- 207 families of sequences.
The DSSP assignments that occur in the BRKALN databaseber has been experimentally determined. The database is built

by extracting nonhomologous sequences from the Brookha- are classified as follows: H, helix; E, sheet; S and T, turn; all
others (i.e., B, “.”, G, and I), coil. The decision to classify Sven Protein Databank (PDB; Bernstein et al. 1977). Low reso-

lution (.2.6Å) and NMR structures are excluded. Each se- and T as a separate turn category instead of as coil (as in
Thorne et al. 1996) was made because the DSSP assignmentsquence is compared to the OWL nonredundant protein

sequence database (Bleasby and Wootton 1990) with a dy- S (bend) and T (turn) yield amino acid replacement patterns
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Figure 2.—Examples of permitted transitions among the 38 HMM states. Arrows indicate the permitted transitions among
the states illustrated and are labelled with the parameter combinations that define the transition probabilities rij. Thicknesses
of arrows are approximately proportional to the values of the corresponding rij. (A) Twelve sheet states. (B) Four turn states.
(C) Two coil states. (D) All permitted transitions from the Eb 3 state. The HMM may progress to either of the next sheet states
(Eb4 or Ee4) or may leave the sheet and enter a helix, turn, or coil via their first states (Hb1 and He1, Tb1 and Te1, or Cb1 and Ce1).
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Figure 2.—Continued
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and rates that are qualitatively similar to one another. DSSP can leave the sheet. This arrangement of 12 sheet states is
illustrated in Figure 2A. The manner of controlling the distri-solvent accessibility values were converted to two states, buried

(accessibility ,10%) and exposed (accessibility $10%). Rela- butions of secondary structure lengths is described below.
The choice of six position-specific sheet states each for bur-tive accessibility was estimated by using a fully extended Gly-

X-Gly tripeptide as the reference state. This resulted in approx- ied and exposed was made with a likelihood ratio testing
procedure that took into account the number of parametersimately half of the sites in known structures of the BRKALN

database being classified as buried and half as exposed. There being estimated and the improvement in goodness-of-fit as
the number of position-specific states increased. We use nE tois scope for more refined solvent accessibility schemes to be

explored in the future. represent the number of position-specific states for each of
buried and exposed sheet. Similar considerations suggestedReplacement processes: Each combination of secondary

structure and accessibility status is associated with a particular that the helix states Hb and He each be expanded into nH 5
10 states (Hb1, Hb 2,..., Hb10 and He1, He 2,..., He10) and that theamino acid replacement process. As is the case for most widely

used models of nucleotide substitution and amino acid re- turn states Tb and Te be expanded to Tb1, Tb 2, Te1, and Te 2

(n T 5 2). Only two coil states (denoted Cb1 and Ce1) are inplacement, our models of amino acid replacement are Marko-
vian with respect to time. To specify the process of evolution the HMM (n C 5 1) because coil represents a collection of

diverse minor secondary structure elements (including butfor a specific replacement category k that is one of the eight
in our model, there are parameters ak

ij , the relative rate of not limited to loops) that together have approximately a geo-
metric length distribution. In summary, this led to 38 hiddenchange from type i to j. Slight modifications ( Jones et al. 1992;

Goldman et al. 1996; Thorne et al. 1996) of the approach by states comprising 10 buried and 10 exposed helix states, six
buried and six exposed sheet states, two buried and two ex-Dayhoff et al. (1972, 1978) are used to base estimates of ak

ij

on observed amino acid replacement counts. These counts posed turn states, and one buried and one exposed coil state.
The model requires that all sites with a particular secondaryare made by comparing pairs of sequences in the BRKALN

database that are 85% or more identical and by recording the structure and accessibility status experience the same amino
acid replacement process, regardless of relative position withinnumber of times for replacement category k that amino acid

type i is observed in one sequence of the pair and type j is their secondary structure element. For example, a buried site
that begins a helix (Hb1) and a buried site in the third positionobserved at the corresponding site in the other.

Hidden Markov model: Neither the secondary structure nor of a helix (Hb 3) share the same replacement process. Thus,
each of the 38 HMM states corresponds to a particular onethe solvent accessibility at one site in a protein is independent

of that at nearby sites. In fact, secondary structures at adjacent of the eight amino acid replacement categories.
The most natural way to estimate transition probabilitiessites are strongly positively correlated. Accessibility status at

adjacent sites is also positively correlated, although less strongly (rij) among the 38 HMM states is to examine amino acid
sequences of known structure, count how many times a siteso. We adopt a hidden Markov model (HMM) to describe the

organization of secondary structure and accessibility status in state i is followed by a site in state j, and divide this count
by the number of times sites in state i are followed by sites inalong amino acid sequences. The states of the model corre-

spond to the underlying but unobserved (hence hidden) sec- any category. We felt there were insufficient data in the
BRKALN database to make reliable estimates of all transitionondary structure and accessibility. Transitions among the

states are modelled with a Markov process. parameters in this manner. To reduce the number of parame-
ters without a great sacrifice in the utility of the model, weA very simple HMM would ignore accessibility status and

only describe the organization of the four secondary structure make assumptions that we believe are reasonable albeit not
strictly correct. Because these assumptions define the form oftypes along a protein sequence. A consequence would be

that the number of sites in each uninterrupted stretch of a transition probabilities in our model, they are described here
in detail and are illustrated in Figure 2.secondary structure would be geometrically distributed. Figure

1, A–D, compares the length distributions predicted under If the current state is Xyi (where X is one of H, E, T, C; y
is b or e ; and i 5 1,2,...,nX), the probability that the nextthis simple model for the four secondary structure types with

the empirically observed frequencies in the 207 known struc- state does not have secondary structure X is assumed to be
independent of the current accessibility status (y). This proba-tures of the BRKALN database. For the secondary structure

type coil (Figure 1D), the observed and predicted length distri- bility is denoted g X
i for i 5 1,2,...,n X 2 1 (and X ? C) and 1 2

r X for i 5 nX.butions are reasonably close. For the other three secondary
structure types, the observed distribution and that predicted The probabilities g X

i can be fixed so that the expected pro-
portions of secondary structure X elements with given lengthsunder this simple HMM are quite different. For example, the

geometric distribution necessarily has length one as its mode, between 1 and nX 2 1 can take any specified values. If the
desired proportion of elements of length i P {1,2,...,nX 2 1}but it is impossible for an a-helix to consist of just one residue.

To provide a better fit between observed and predicted is f X
i (and defining f X

0 5 0 for all X), then setting g X
i 5 f X

i /
(12 oi21

j50f X
j ) satisfies these length distribution requirements.distributions, our HMM has states for the first, second, etc.,

positions in a secondary structure. We illustrate this with We have estimated the f X
i as the observed proportions of sec-

ondary structure elements of type X that have length exactlysheets. To represent the ith position of a sheet for i P {1,2,...,5},
we use Ebi or Eei, respectively, when the accessibility status is i in the BRKALN database and applied the above formula for

the g X
i .buried or exposed. The states Eb 6 and Ee 6 denote buried and

exposed sites in position six or greater of a sheet. The probabilities r X determine the expected length distribu-
tions of secondary structures X for lengths i $ nX. Effectively,We constrain the HMM to enter a sheet only through either

the Eb1 or Ee1 states. Once in state Ebi or Eei (i P {1,2,...,5}), we model the tail of the length distribution with a geometric
distribution. After selecting the value of nX, we estimate thethe HMM must continue by progressing to either Ebi11 or

Eei11 or by leaving the sheet states (and entering a helix, turn, parameters r X by the values that equate the observed mean
lengths of secondary structure X elements in the BRKALNor coil state). In other words, the HMM must progress through

the sheet states in an ordered fashion (but may switch among database and the expected mean lengths. We note that our
estimates of g X

i and r X are maximum likelihood estimates forthe buried and exposed states) until such time as it leaves the
sheet. Once in the states Eb 6 or Ee 6, the HMM can remain there the case where the probabilites of lengths less than nX are

each represented by an individual parameter, and the probabi-(with the possibility of switching between these two states) or
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lites of lengths nX or greater are determined by attaching a TABLE 1
geometric tail to the length distribution. A comparison be-

Estimated amino acid frequencies for the eighttween the observed and predicted distributions of secondary
replacement categoriesstructure lengths is given in Figure 1, D–G.

Given that the secondary structure W of the next state differs
from the secondary structure X of the current state Xyi, we Replacement category
assume that W and the next accessibility status z 5 b or e are

Hb He Eb Ee Tb Te Cb Ceindependent of the value of i. The conditional probabilities
of transitions from Xyi to Wz1 are denoted aXy,Wz and were

A 15.3 10.9 7.4 3.0 8.1 5.7 6.5 5.7estimated directly from the known structures in the BRKALN
R 3.6 7.5 3.0 7.0 4.6 4.2 2.8 5.3database by their observed relative frequencies.
N 2.9 4.4 1.6 2.1 4.2 6.9 3.2 5.0Given that the secondary structure of the next state is identi-
D 2.2 7.2 2.4 5.0 6.7 8.7 6.0 8.7cal to that of the current state Xyi, we assume the accessibility
C 2.8 0.5 4.6 0.7 3.3 0.5 2.6 0.6status of the next state is independent of i. The probability
Q 2.3 5.8 3.1 5.1 1.4 4.1 1.6 5.4that the next site is buried, given that the current site is buried
E 3.1 14.8 1.9 7.5 2.8 7.5 2.1 7.3and both sites have secondary structure X, is represented by
G 4.9 3.6 5.7 3.8 19.5 17.4 10.4 7.4pX

b . The complementary probability qX
b 5 1 2 p X

b is then the
H 1.9 2.7 2.7 3.1 2.6 2.8 3.3 2.9probability that the next site is exposed, given that the current

site is buried and both sites have secondary structure X. Simi- I 7.0 2.6 10.8 2.3 3.5 1.3 6.0 1.5
larly, p X

e is the probability that the next site is exposed, given L 15.9 5.4 11.7 5.7 7.6 3.7 9.6 4.6
that the current site is exposed and both are secondary struc- K 2.1 14.0 1.6 10.7 1.4 9.1 2.1 8.8
ture X. We use q X

e to represent the complementary probability M 3.0 1.1 2.6 1.2 1.2 0.7 1.9 1.0
1 2 pX

e . These probabilities are again estimated directly from F 5.6 1.1 7.1 3.1 7.4 1.2 6.4 2.0
the observed frequencies in the experimentally determined P 1.5 2.5 1.8 4.2 4.8 7.8 6.7 9.2
structures of the BRKALN database. S 4.0 4.8 3.8 11.9 5.9 9.7 6.1 9.4

Relative rates of amino acid replacement: One way to com- T 3.9 5.4 5.3 14.1 4.9 4.6 5.9 7.6
pare the eight estimated amino acid replacement processes W 2.3 0.5 2.7 0.9 2.1 0.4 2.1 1.1
is to determine the relative rate at which sites in the different Y 4.5 2.0 7.7 2.6 2.9 1.3 5.7 2.5replacement categories evolve. We normalize rates so that the

V 11.1 3.2 12.5 5.9 5.1 2.4 9.1 3.8average site evolves at rate 1. First, note that the rate at which
amino acid i is replaced in category k is oj ≠i ak

ij , the sum of the Values listed are the parameters pk
i as described in the text,

replacement rates ak
ij over all amino acids that are not i. Second, given as percentages.

the overall replacement rate for category k is oip
k
i oj ≠i a

k
ij , which

accounts for amino acid frequencies by weighting the amino
acid-specific rates by pk

i , the frequency of amino acid i in employed a nonparametric bootstrap resampling procedure
category k. Table 1 displays the estimated values of the pk

i. (Efron and Tibshirani 1993). One hundred resampled data
Finally, different replacement categories k have different sta- sets were constructed by sampling 207 randomly selected pro-
tionary probabilities Ck, determined for our HMM by the tein families with replacement from the 207 families of the
equilibrium distribution of the matrix rij. Accounting for the BRKALN database. From each resampled data set, stationary
variation in stationary probabilities among replacement cate- probabilities of the eight replacement categories for our model
gories, the relative rate of replacement for category k is were estimated. Likewise, replacement counts were generated

from each resampled data set. Each resampled data set thereby
Rk 5

Rip
k
i Rj ?i a

k
ij

RlWlRip
l
iRj ?i a

l
ij

. (1)

TABLE 2Relative replacement rates associated with a particular second-
ary structure averaged over accessibility classifications can also Relative rates of amino acid replacement
be estimated. For example, the relative rate for helices is

Structure Buried Exposed Average
R H· 5

WHbR Hb 1 WHeRHe

WHb 1 WHe Helix 0.71 6 0.08 1.57 6 0.07 1.11 6 0.06
0.70 6 0.09 1.54 6 0.07 1.09 6 0.07

5
WHb(Rip

Hb
i Rj ?i a

Hb
ij ) 1 WHe(Rip

He
i Rj ?i a

He
ij )

(WHb 1 WHe)RlWlRip
l
i Rj ?i a

l
ij

(2) Sheet 0.72 6 0.05 1.20 6 0.18 0.87 6 0.04
0.71 6 0.06 1.18 6 0.17 0.85 6 0.04

Similarly, relative rates for each accessibility classification aver- Turn 0.56 6 0.05 1.30 6 0.09 1.08 6 0.07
aged over secondary structures (e.g., R·b) can be estimated. 0.55 6 0.05 1.28 6 0.08 1.06 6 0.06These estimates are shown in Table 2.

Coil 0.51 6 0.03 1.23 6 0.06 0.90 6 0.04A concern is that one or a few proteins in the BRKALN
0.50 6 0.03 1.35 6 0.12 0.96 6 0.06database could potentially have an especially large impact on

the relative rate estimates. The potential for a small number Average 0.65 6 0.04 1.35 6 0.04 1
of protein families to have a great impact exists because the 0.64 6 0.05 1.36 6 0.05 1
rate estimates are based upon amino acid replacement counts
from pairwise sequence comparisons. Protein families with many For each entry in the table, two pairs of rate estimates and
sites or many sequences will tend to generate higher counts sample standard deviations are listed. The upper line of each
that families consisting of a few short sequences. If these influ- entry refers to the case in which insertions relative to known
ential protein families tend to evolve via comparatively atypical structures are ignored. The lower line refers to the case in
evolutionary processes, the general applicability of our evo- which insertions relative to known structures are classified as

exposed coil.lutionary model would be restricted. To investigate this, we
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yielded estimates of relative rates of replacement for each To obtain the maximum likelihood estimate T̂, we use numeri-
cal optimization algorithms (e.g., Swofford et al. 1996) tocategory and the sample standard deviations of these estimates

were determined (see Table 2). determine the T that maximizes Pr(S uT). A slight improve-
ment in model fit compared to our treatment might be gener-A decision that we had to make when analyzing the pairwise

replacement count data was how to treat data from sites that ated via special consideration of secondary structure elements
at the extreme carboxyl-terminus of proteins. For example,had unknown secondary structure or accessibility because they

were insertions relative to the experimentally determined column N of the alignment should not be the first position
of an a-helix.structure. One possibility was to ignore these data. Another

was to add these replacement count data to the exposed coil Prediction of protein secondary structure can subsequently
be performed with a plug-in approach that fixes the tree at(Ce) replacement category because of the observed tendency

for insertion and deletion events to affect exposed coils. As T̂ and uses appropriate methods to calculate the posterior
distribution Pr(ciuS,T̂). This has been described in more detailthe relative rate estimates in Table 2 exhibit, the treatments

yield similar outcomes. All other results presented here are for a simpler HMM of sequence evolution by Goldman et
al. (1996) and will be explored in the future for the HMMbased on estimating rates by ignoring sites that are insertions

relative to known structures. introduced here.
Model comparisons: When a statistical comparison indicatesPhylogenetic tree: Typically the form (topology and branch

lengths) of the phylogenetic tree relating a set of sequences that one evolutionary model is superior to a simpler model,
this implies that features possessed by the complicated modelis unknown but of interest. In this case, it may be treated as

a parameter of the problem and estimated using statistical and absent from the simple model may be evolutionarily im-
portant. This approach has been taken in the past to comparemethods. This is the approach that we adopt.

In protein structure prediction problems, it is now realized models of DNA sequence evolution (Goldman 1993; Yang et
al. 1994, 1995), indicating the importance of factors such asthat evolutionarily related amino acid sequences should not

be treated as though they are statistically independent of one base composition bias, transition/transversion rate ratio, and
rate heterogeneity across DNA sites.another (Benner et al. 1994; Goldman et al. 1996). In fact,

common ancestry induces a correlation structure among se- In this study, we investigate models that range from the
simplicity of sites evolving identically to the relative complexityquences that is specified by the phylogenetic tree relating

them. It has been shown that ideas developed in comparative of the full version of our new HMM in order to test the
significance of the different componentsof the new model. Weevolutionary biology (Felsenstein 1985; Harvey and Pagel

1991) for using phylogenetic trees to describe this correlation introduce the following notation to label the model variants. If
structure can improve the results of secondary structure pre- the number of different secondary structure types recognized
diction algorithms (Goldman et al. 1996). The model pre- is ss, the number of solvent accessibility classes distinguished
sented here provides a statistical basis for a protein secondary is acc, and the total number of states in the HMM is hmm,
structure prediction technique that shares these benefits. then we can label models as ss/acc/hmm1 (1 indicating the

Likelihood calculations: After estimating the relative rates use of the HMM to model dependencies between adjacent
of replacement ak

ij and the HMM transition probabilities rij sites) or ss/acc/hmm2 (2 indicating the disabling of the HMM;
from the BRKALN database, we can calculate the likelihood see below). Using this notation, our new HMM is denoted
for a candidate phylogenetic tree T (representing both topol- 4/2/381. The following models were also considered:
ogy and branch lengths). We do not re-estimate the ak

ij or rij 1/1/12: This model represents the simplest case, in which
during the likelihood calculations but instead fix them at their no information on protein structure or nonindependence of
estimated values. We denote the aligned data set by S, its sites is incorporated (hence, ss 5 1 average secondary structure
length (number of amino acids) by N, the first i columns of category, acc 5 1 average accessibility state, and no meaningful
the data set by Si, and the ith column itself by si. In the equa- HMM is possible). This corresponds to currently available
tions below, many of the probabilities are actually conditional methods implemented in software such as PAML (Yang 1997)
upon ak

ij and rij but, for the sake of clarity, we omit ak
ij and rij and MOLPHY (Adachi and Hasegawa 1995). We have per-

when this is feasible. The likelihood of the tree T is given by formed some analyses with each of three variants of this model:
Pr(S uT), and this is calculated via the terms Pr(Si,ciuT) for each one derived from the work of Dayhoff et al. (1978) and
possible secondary structure category ci at site i using the denoted 1/1/1D2, one derived from Jones et al. (1992) and
iteration: denoted 1/1/1J2, and the third derived from the BRKALN

database of this study and denoted simply 1/1/12.
Pr(Si,ciuT ) 5 o

ci21

Pr(Si21,ci21uT)rci21ciPr(siuci,T) (3) 4/2/81: This model adds to the 1/1/12 model an HMM
recognizing four secondary structure elements, each with two

for i . 1. The terms Pr (siuci, T) are evaluated using the Markov accessibility categories. No special allowance is made for the
process replacement models appropriate for each secondary distributions of lengths of secondary structures (which there-
structure ci and the pruning algorithm of Felsenstein (1981). fore follow a purely geometric distribution under this model).
Because the site at the N terminus of a protein tends to be 4/1/19 1: This model adds to the 1/1/12 model an HMM
an exposed coil (Ce), we assume this is the case and start the recognizing four secondary structure elements and making
iteration according to: allowance for the distributions of lengths of these structures

but does not recognize different solvent accessibilities.
Pr(S1,c 1uT ) 5 Pr(s1uc1,T)Pr(c1uT) 5 Pr(s1uc1,T)dc1,Ce (4) For all the above models, the methods for estimating model

parameters varied slightly from those described above for thewhere dc 1,Ce 5 1 if c1 5 Ce, and 0 otherwise. This has proved
4/2/381 model because not all of the parameters of that

slightly superior to using the stationary distribution (Ci) to model are meaningful for simpler versions. In all cases, meth-
describe the secondary structure probabilities at the first site ods analogous to those described above for the 4/2/381 modelof sequences (results not shown), in which case Pr(S1, c1|T) were used to estimate appropriated parameters from theis set equal to Pr(s1uc1,T)Cc 1. When completed, the iteration BRKALN database (but see above regarding the 1/1/1/D2

gives the required Pr(S uT ) because and 1/1/1J2 models); full details are available from the au-
thors.Pr(S uT) 5 o

cN

Pr(SN,cNuT ). (5)
4/2/382: This model is very similar to the 4/2/381 model,
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but sites are treated as independent of one another. This Alcohol dehydrogenase: Two data sets were formed from
independence is achieved by replacing each row of the matrix the alignment available from the EBI ftp server, file
(rij) with that matrix’s equilibrium distribution (Ci).

ds14642.dat (see also Yokoyama and Harry 1993). TheAs with the 4/2/381 model (above), the 4/2/81 and
first (ADHAN) was formed from 16 mammalian, avian,4/2/38 2 models are implemented with the first site in a pro-

tein forced to be an exposed coil. For the 4/1/191 model, and amphibian sequences, with the homologous se-
accessibility status is not considered, and we simply treat the quence from the cod Gadus callarias added by the au-
first site as a coil. thors. The second (ADHPL) comprises 13 plant se-

quences.
Glutamate dehydrogenase (GDH): Eleven sequences, with

ANALYSIS OF EXAMPLE DATA SETS both eubacterial and eukaryotic representatives, were
selected from the alignment file ds20281.dat (see alsoData sets: We analyzed 11 data sets that encompass
Teller et al. 1995).a broad range of genes, organisms, and evolutionary

G protein a subunit (GPA): Yokoyama and Starmerdivergence. When possible, we utilized previously pub-
(1992) aligned a large number of G protein a subunitlished amino acid sequence alignments to reduce the
sequences (file ds15369.dat). We selected 18 Gia andchances that results could be biased by our own align-
Goa sequences from mammals, Drosophila melanogaster,ment procedures or prejudices. In addition, we selected
and Caenorhabditis elegans.sequences that were sufficiently similar to be likely to

Phosphoenolpyruvate carboxykinase (PEPCK): We haveshare the same secondary structure.
used the alignment of 18 Lepidopteran sequences stud-Gapped positions in the alignments were treated as
ies and submitted (file ds24063.dat) by Friedlander etmissing information, as they are in the maximum likeli-
al. (1996).hood programs of the PHYLIP package (Felsenstein

1995). In regions where the alignment was deemed rela- Model comparisons: Table 3 contains maximum log-
tively unreliable, we treated the residues responsible for likelihoods obtained when analyzing each of the above
the alignment difficulty as missing information. This 11 data sets with models ranging from the most simple
was done to reduce the impact of alignment errors on (1/1/12, 1/1/1D2, 1/1/1J2) to the most complex
the evaluation of our models. (4/2/381). To better understand which specific fea-

tures of our models are most responsible for improvedADP-glucose pyrophosphorylase (abbreviated to ADPGP):Four
fits, we performed a series of parametric bootstrap analy-plant sequences were used, as analyzed by Goldman

ses on each data set. Each analysis was a comparison ofand Yang (1994) in a study of improved models of DNA
a relatively simple model (the null hypothesis H0) withnucleotide evolution.
a model that considers more aspects of protein structureHIV-1 gp120 envelope glycoprotein (GP120): One se-
(the alternative hypothesis HA).quence was selected from each of the eight major subtypes

We use a likelihood-ratio test with test statistic Dl, the(A–H) of HIV-1.
maximum log-likelihood for the alternative hypothesisHIV-1 p17 matrix protein: Sequences were selected from
minus the maximum log-likelihood for the null hypoth-a number of strains of human immunodeficiency virus
esis. For the data sets analyzed here, this statistic cantype 1 (HIV-1). Two data sets were studied, the first
be computed from the appropriate entries in Table 3.(P17ALL) comprising one sequence from each of the
To approximate the distribution of Dl under the nullseven subtypes (A–D, F–H) of HIV-1 for which signifi-
hypothesis, 100 simulated data sets are produced. Thecantly different p17 sequences have been recognized
null model of sequence evolution is used, along withand the second (P17B) comprising eight sequences
the maximum likelihood topology and branch lengthsfrom HIV-1 subtype B.
estimated under the null hypothesis for the originalSucrose synthase (SUSY): Four dicotyledonous plant se-
data set, to generate each simulated data set. The simu-quences were used, as analyzed in a preliminary study
lated data sets have the same number of taxa and areof the effects on protein structure on sequence evolu-
the same length as the original data set. If a residue attion by Thorne et al. (1996).
a particular site in the data set has unknown type in theXylanase (XYLA): Seven prokaryotic sequences were
original data set because of alignment uncertainty orused, as analyzed in a preliminary study of phylogeny-
gaps, the residue at this position is also considered un-and likelihood-based methods of protein secondary
known in the simulated data set. For each simulatedstructure prediction by Goldman et al. (1996).
data set, Dl can be calculated via likelihood maximiza-
tion under the null and alternative hypotheses. If theThe following five data sets were derived from multi-

ple sequence alignments deposited at the EMBL-Euro- observed value of Dl for the original data set is suffi-
ciently extreme relative to the distribution of simulatedpean Bioinformatics Institute (EBI) and available elec-

tronically from ftp://ftp.ebi.ac.uk/pub/databases/embl/ values, then the null hypothesis can be rejected. One
measure of extremity is given by the proportion of simu-align. In each case, minor alterations were made by

hand. lated test statistic values that equal or exceed the actual
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TABLE 3

Maximum log-likelihoods for the analysis of 11 data sets under seven model variants

Evolutionary model

Data set 1/1/1D2 1/1/1J2 1/1/12 4/2/81 4/1/191 4/2/382 4/2/381

ADPGP 22396.97 22375.91 22368.13 22366.42 22370.37 22362.15 22364.01
GP120 23867.66 23817.31 23832.66 23793.07 23818.37 23800.16 23793.47
P17ALL 21009.89 2990.04 2991.75 2985.50 2989.68 2985.40 2984.90
P17B 2632.59 2627.12 2629.46 2624.37 2626.32 2627.02 2624.36
SUSY 24401.75 24348.94 24343.29 24334.01 24340.48 24339.56 24334.15
XYLA 23162.47 23144.63 23127.90 23093.86 23117.37 23096.39 23092.16
ADHAN 24366.52 24340.12 24317.73 24263.53 24299.18 24265.68 24261.37
ADHPL 23002.63 22993.03 22977.90 22949.91 22971.18 22945.51 22948.48
GDH 26930.06 26354.10 26307.92 26177.30 26279.40 26181.02 26176.34
GPA 23184.37 23154.48 23159.05 23113.00 23141.32 23122.38 23112.17
PEPCK 22699.73 22702.36 22686.75 22615.31 22675.13 22609.25 22615.28

value. This proportion is an estimate of the probability son between a null hypothesis of the 4/2/81 model
and the 4/2/381 model focuses on modelling realisticunder H0 of realizing a value of Dl at least as extreme as

that observed for the original data. Sufficiently low values length distributions for secondary structure. We found
it also of interest to use the 4/1/191, 4/2/382,imply rejection of H0. Another measure of extremity is a

z-score, calculated by subtracting the mean simulated test 4/2/81, and 4/2/381 models as alternative hypotheses
when the 1/1/12 model was the null hypothesis. Thesestatistic value from the actual value and then dividing by

the sample standard deviation of the simulated values. comparisons explore how much various combinations
of the aforementioned four features improve upon aIn our parametric bootstrap comparisons, we do not

account for uncertainty in parameters governing the model that neglects structure. The results of these para-
metric bootstrap comparisons are shown in Table 4.relative rates of amino acid replacement or organization

of secondary structure and solvent accessibility. Esti- Computation times: Because of the 38 HMM states
and the eight replacement categories, our 4/2/381mates for these parameters are fixed at the values ob-

tained from the BRKALN database. Only the topology model is more computationally demanding than the
1/1/12 model. Our experience is that the computationand branch lengths are estimated from the simulated

data sets. Ideally, the parametric bootstrap procedure time required for analyzing data sets is more sensitive
to the number of replacement categories than to thewould account for the uncertainty in all parameters

when comparing models, but this would be computation- number of HMM states. For this reason, one might
expect the 4/2/381 model to require approximatelyally expensive.

Parametric bootstrap comparisons between some eight times more computation than the 1/1/12 model.
In our experience, the actual ratio of CPU times re-models are more informative than those between oth-

ers. By combining evolution with protein structure, four quired by these two models varies somewhat between
analyses. As an example, in a case where topology waspotentially important features that we have incorporated

in the 4/2/381 model are (1) association of secondary fixed and branch lengths were estimated, analysis of the
GPA data set on a Digital Alphastation 500/400 requiredstructure and amino acid replacement dynamics, (2)

association of solvent accessibility and replacement dy- 199 seconds of CPU time with the 1/1/12 model and
943 seconds with the 4/2/381 model.namics, (3) regional organization of secondary structure

and solvent accessibility along a sequence, and (4) a
relatively realistic length distribution of secondary struc-

DISCUSSION
ture elements. Earlier work (Thorne et al. 1996) indi-
cated that the effect of secondary structure on amino An earlier study (Thorne et al. 1996) that considered

just three structure categories (a-helix, b-sheet, andacid replacement is important. Therefore, we have con-
centrated on parametric bootstrap analyses that assess the loop) demonstrated that consideration of secondary

structure can significantly improve the fit of models toremaining three features. The comparison between a null
hypothesis of the 4/1/191 model and the 4/2/381 model data. The belief that secondary structure is important

is reinforced by the results shown in Table 4. All butinvestigates the effect of solvent accessibility on amino
acid replacement. The comparison between a null hy- one of the comparisons in which the null hypothesis

makes no distinction between secondary structures andpothesis of the 4/2/382 model and the 4/2/381 model
addresses regional organization of secondary structure the alternative employs different Markov models of

amino acid replacement for different secondary struc-and solvent accessibility along a sequence. The compari-
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TABLE 4

Results of parametric bootstrap analyses

Hypotheses
Row compared ADPGP GP120 P17ALL P17B SUSY XY LA ADHAN ADHPL GDH GPA PEPCK

(1) H0: 1/1/12 4.12 39.19 6.85 5.10 9.14 35.74 56.36 29.42 131.58 46.88 71.46
HA: 4/2/381 3.1 12.2 4.8 4.2 4.7 9.9 11.7 9.4 22.4 13.0 16.9

(2) H0: 1/1/12 22.24 14.29 2.07 3.14 2.82 10.53 18.54 6.72 28.52 17.73 11.62
HA: 4/1/191 0.4 6.8 2.9 3.1 2.6 4.9 6.0 4.3 8.6 7.6 5.1

(3) H0: 1/1/12 5.98 32.51 6.35 2.39 3.73 31.52 52.05 32.39 126.90 36.68 77.50
HA: 4/2/382 4.1 13.7 4.8 3.4 2.9 10.0 13.0 13.0 24.0 12.5 19.8

(4) H0: 1/1/12 1.71 39.59 6.25 5.09 9.28 34.04 54.20 28.00 130.62 46.05 71.44
HA: 4/2/81 2.3 12.2 4.5 4.3 4.9 9.7 11.5 9.3 21.8 13.2 17.0

(5) H0: 4/1/191 6.36 24.90 4.78 1.96 6.33 25.21 37.81 22.70 103.06 29.15 59.85
HA: 4/2/381 4.9 12.2 3.6 2.6 3.8 8.1 11.9 9.7 22.3 11.5 19.2

(6) H0: 4/2/382 21.86 6.69 0.50 2.71 5.41 4.22 4.31 22.97 4.68 10.20 26.04
HA: 4/2/381 0.9 3.9 1.4 2.7 3.6 3.9 3.0 0.8 3.4 4.8 20.2

(7) H0: 4/2/81 2.41 20.40 0.60 0.01 20.14 1.70 2.16 1.42 0.97 0.83 0.02
HA: 4/2/381 2.7 0.0 1.3 0.3 0.4 2.0 2.3 2.0 1.7 1.2 0.3

As described in the text, seven different hypothesis tests (rows 1–7) were performed for each of 11 data sets. Two entries are
listed for each combination of hypothesis test and data set. These entries are the following: (upper) the observed value of Dl,
the log-likelihood for HA minus the log-likelihood for H0, and (lower) a z-score (italic type) that measures the estimated number
of standard deviations by which the observed value of Dl exceeds the mean of the simulated values. When fewer than 5 of 100
simulated Dl values equal or exceed the observed value, the observed Dl value is shown in bold type.

tures strongly reject the null hypothesis (Table 4, rows structure categories along sequences. For some data
sets, the null hypothesis of no correlation could not be1–4). Further evidence for an association between sec-

ondary structure and amino acid replacement is summa- rejected. This could reflect failure of the 4/2/381

model to incorporate information from residues thatrized in Table 2. We note the surprising results that the
estimated rates for buried helix and sheet residues are are not close in the linear sequence. Methods for de-

tecting long-range interactions in an evolutionary con-greater than those for buried turns and coils and that
the estimated rate for exposed helix residues is greater text are currently being developed (D. D. Pollock,

unpublished results), and we hope that the informationthan those for other exposed residues. Because the
probability a site has a particular accessibility status is they yield can be incorporated into models used for

phylogenetic inference. An alternative explanation fornot independent of its secondary structure, these pat-
terns are less clear for the weighted average over buried failing to reject the null hypothesis of no correlation is

that some data sets may have too few sequences or tooand exposed sites. Nevertheless, it is still contrary to
intuition that a-helix and b-sheet positions experience little evolutionary divergence to provide relative cer-

tainty about underlying structural environments. It ismore amino acid replacements on average than coil
positions. difficult to detect regional organization of structure

along a sequence if there is a high degree of uncertaintyDifferences in amino acid replacement dynamics asso-
ciated with solvent accessibility status have been ex- regarding the underlying structural environment at

each site.plored by Koshi and Goldstein (1995), but their sig-
nificance to protein evolution has not been statistically We have preliminary indications that secondary struc-

ture predictions generated from our 4/2/381 modeltested. In our study, the tests represented in Table 4,
rows 1, 3, 4, and 5, have a bearing on this question. are superior to those from the 4/2/382 model. For

example, predictions of the 4/2/382 model exhibit anRows 1, 3, and 4 represent tests in which the effect of
accessibility is studied in combination with other com- abundance ofunrealistically short a-helices and b-sheets

(results not shown). It may be the case that incorporat-ponents of the models. The comparison between the
4/1/191 and 4/2/381 models (Table 4, row 5) directly ing correlation of structure categories will be important

for accurate secondary structure prediction, even forinvestigates the effect of incorporating accessibility into
our evolutionary model. For every data set and for all of data sets where it has little impact on the goodness of

fit of models. This possibility will be a focus of futurethese tests, the model incorporating solvent accessibility
information is strongly preferred. research.

For six of the 11 data sets, we find that the comparisonThe comparison of the 4/2/382 and 4/2/381 models
(Table 4, row 6) tests for evidence of correlation of between the 4/2/81 and 4/2/381 models does not re-
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ject the former. For these data sets, there is no signifi- evolutionary processes of globular and membrane pro-
teins are apt to differ, and Jones et al. (1994) havecant evidence in favor of the more complex HMM that

attempts to use information regarding the distribution demonstrated that patterns of amino acid replacement
in integral membrane proteins bear little resemblanceof lengths of secondary structure elements. Mixed re-

sults across different data sets (Table 4, row 7) again to those in globular proteins.
In this article we have described the analysis of aminomake it unclear whether this is a failing of our model

or is due to insufficient data. Detection of both struc- acid sequences under the assumption that the protein’s
true structure is unknown. In the case that the tertiarytural correlation along sequences and information per-

taining to the length distributions of secondary struc- structure has been determined for a protein, the phylo-
genetic estimation method can be modified to allow theture elements might be assisted by adding more

sequences to a data set. This should in effect increase known secondary structure and accessibility informa-
tion to be used. This would remove some of the sourcesthe information pertaining to each alignment position

and make the HMM states “less hidden.” of uncertainty and should improve the estimation of
phylogenies. In this way, experimentally determinedImproved models of sequence evolution can lead to

improved estimates of both evolutionary relationships structures could directly assist phylogenetics instead of
being ingored, or being used indirectly through their(topology) and distances (branch lengths) in phyloge-

nies (e.g., Yang et al. 1994). Naylor and Brown (1997) influence on average properties of databases of known
structures as in this article.have recently illustrated adverse effects on phylogenetic

tree estimation from mammalian mitochondrial protein Our amino acid replacement models for the eight
structural environment categories are based only onsequences when physicochemical properties of amino

acids are ignored. We hope that our new (4/2/381) analysis of database sequences. They are not varied to
suit specific proteins. A promising approach for tai-model may give more reliable phylogenetic estimates

than simpler models. It directly incorporates four com- loring amino acid replacement processes to specific pro-
teins has been developed by Cao et al. (1994) for anponents representing structural features that have not

generally been considered in models of sequence evolu- evolutionary model that ignores protein structure. This
technique combines parameters estimated from data-tion, instead of using physicochemical properties of

amino acids as surrogates. Two of these components, base sequences with amino acid frequencies calculated
from the specific sequences being analyzed and poten-encompassing effects of secondary structure and accessi-

bility, give particularly large improvements in the fit of tially could be extended to models that consider protein
structure.models across the broad range of data sets that were

studied. All models are potentially misled by violations of their
assumptions. Our model assumes that all residues ofOne result of Naylor and Brown (1997) seems to

contradict our finding that buried sites evolve more an alignment are related via the same phylogeny, for
example, that recombination is absent, but the HIV-1slowly than exposed sites. Naylor and Brown classified

sites as hydrophilic or hydrophobic on the basis of the data sets we have analyzed have potentially been subject
to intra- and interspecific recombination (Robertsonamino acids found in the alignment column at that site.

In the data sets we analyzed, hydrophilic sites tend to et al. 1995). Additionally, although structure is more
conserved than sequence (e.g., Chothia and Lesk 1986;be exposed to solvent and hydrophobic sites tend to be

buried. With a parsimony analysis, Naylor and Brown Russell et al. 1997), it clearly does evolve. For example,
there is some evidence that the secondary structure of(1997) concluded that hydrophilic sites fit an accepted

tree topology better than hydrophobic sites. We attri- one of the proteins we have examined (GP120) can vary
in different strains of HIV-1 (Hansen et al. 1996). Ourbute this difference in fit (as measured by parsimony

techniques) to heterogeneity of rates among sites: slowly model currently assumes that there has been no change
in protein secondary structure or accessibility since se-evolving sites generate less homoplasy than quickly

evolving sites. Therefore, their results could be ex- quence divergence. Advanced models that explicitly ad-
dress the evolution of structure would be of great inter-plained if, in contrast to our results, hydrophobic (bur-

ied) sites were evolving more quickly on average than est for phylogenetic estimation, structure prediction,
and the study of evolutionary processes. Although thishydrophilic (exposed) sites.

Fortunately, the two studies can be reconciled by real- would add complexity to our model, modern computa-
tional statistical methods may make such developmentsizing that our work is based on experimentally deter-

mined structures that are exclusively globular proteins practical.
One of the most important advances in the recon-whereas Naylor and Brown (1997) studied only inte-

gral membrane proteins. Relatively unconstrained sites struction of evolutionary trees has been the consid-
eration of heterogeneity of evolutionary rates amongon the surface of a globular protein are apt to be ex-

posed to solvent and hydrophilic, but the relatively un- sequence sites (e.g., Yang 1994, 1996). Although this
variability has been statistically modelled, typically with aconstrained sites on the surface of a membrane protein

are likely to be lipid accessible and hydrophobic. The gamma-distribution, its biological basis has not been
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Lüthy, R., A. D. McLachlan and D. Eisenberg, 1991 Secondarynon-redundant composite protein sequence databases. Prot. Eng.
structure-based profiles: use of structure-conserving scoring ta-3: 153–159.
bles in searching protein sequence databases for structural simi-

Brown, M., R. Hughey, A. Krogh, I. S. Mian. K. Sjolander et al.,
larities. Proteins 10: 229–239.1993 Using Dirichlet mixture priors to derive hidden Markov

Naylor, G. J. P., and W. M. Brown, 1997 Structural biology andmodels for protein families, pp. 47–55 in Proceedings of the First
phylogeny estimation. Nature 388: 527–528.International Conference on Intelligent Systems for Molecular Biology,

Overington, J., M. S. Johnson, A. S̆ali and T. L. Blundell, 1990edited by L. Hunter, D. Searls and J. Shavlik. AIII Press, Menlo
Tertiary structural constraints on protein evolutionary diversity:Park, CA.
templates, key residues and structure prediction. Proc. R. Soc.

Bruno, W. J., 1996 Modelling residue usage in aligned protein se-
Lond. Ser B 241: 132–145.quences via maximum likelihood. Mol. Biol. Evol. 13: 1368–1374.

Robertson, D. L., B. H. Hahn and P. M. Sharp, 1995 Recombina-
Cao, Y., J. Adachi, A. Janke, S. Pääbo and M. Hasegawa, 1994 Phy-
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