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ABSTRACT
A simple, exact formula is derived for the expected number of heterozygous sites per individual at

equilibrium in a subdivided population. The model of infinitely many neutral sites is posited; the linkage
map is arbitrary. The monoecious, diploid population is subdivided into a finite number of panmictic
colonies that exchange gametes. The backward migration matrix is arbitrary, but time independent and
ergodic (i.e., irreducible and aperiodic). With suitable weighting, the expected number of heterozygous
sites is 4Neu, where Ne denotes the migration effective population number and u designates the total
mutation rate per gene (or DNA sequence). For diploid migration, this formula is a good approximation
if Ne @ 1.

ONE of the most important measures of genetic tion effective population number (Nagylaki 1980, 1982,
1983, 1994). We show also that (1) is a good approxima-variability at the molecular level is the expected

number of heterozygous nucleotide sites per individual, tion for diploid migration if Ne @ 1.
d 0. For a panmictic population at equilibrium and with-
out selection, Kimura (1969) showed that in his model

GAMETIC DISPERSIONof infinitely many sites,

Generations are discrete and nonoverlapping; thed 0 5 4Neu, (1)
monoecious, diploid population is subdivided into a

where Ne represents the effective number of mono- finite number of panmictic colonies that exchange ga-
ecious, diploid individuals and u signifies the total muta- metes in a fixed pattern. We apply the model of infinitely
tion rate per gene (or DNA sequence). Ewens (1974) many neutral sites with an arbitrary linkage map to a
and Watterson (1975) have presented alternative deri- gene or DNA sequence. Thus, we posit that the mutation
vations of this basic result. rate per site is so low that mutation occurs at each site

Since natural populations are frequently subdivided, at most once and then only at monomorphic sites. This
considerable effort has been devoted to extending (1) approximation requires that the proportion of polymor-
to subdivided populations. Li (1976) proved that (1) phic sites be much less than one. Let u denote the total
holds for the island model without recombination if mutation rate per gene.
Ne 5 NT, the total population number. Slatkin (1987) At the beginning of the life cycle, every one of the Nigeneralized Li’s result by demonstrating that (1) holds adults in deme i produces the same very large number of
if (i) there is no recombination; (ii) the backward migra- gametes, which then disperse independently. Complete
tion matrix M is symmetric and ergodic; (iii) d 0 is calcu- random union of gametes follows. Therefore, a propor-
lated by weighting each deme by the reciprocal of the tion 1/Ni of the zygotes whose gametes originate in deme
number of individuals in it; and (iv) Ne 5 nÑ, where

i are produced by self-fertilization. Mutation is next,
n signifies the number of demes and Ñ denotes the

and finally population regulation returns the number
harmonic mean of the subpopulation numbers. Stro-

of individuals in deme i to Ni . Thus, random genetic
beck (1987) established (1) with Ne 5 NT for weak evolu-

drift operates through population regulation.
tionary forces and conservative migration. See Griffiths

Before deriving our results, we introduce some essen-
(1981), Takahata (1988), Tajima (1989), Notohara

tial concepts and parameters.
(1990, 1993, 1997), Hey (1991), Nath and Griffiths

Let mij designate the probability that a gamete in
(1993), and Herbots (1994) for related studies.

deme i after dispersion was produced in deme j. In the
In this note, we prove for gametic dispersion that, for

absence of selection, it is reasonable to assume thatsuitably weighted calculation of d 0, the formula (1)
the backward migration matrix M 5 (mij) is constantholds for every linkage map if M is arbitrary, but ergodic
(Nagylaki 1992, p. 135). We posit also that M is ergodic,and time independent, and if Ne designates the migra-
i.e., irreducible and aperiodic (Gantmacher 1959,
pp. 50, 80, 88). Irreducibility guarantees that the de-
scendants of individuals in each deme are able even-Address for correspondence: Department of Ecology and Evolution,

University of Chicago, 1101 E. 57th St., Chicago, IL 60637. tually to reach every other deme. Aperiodicity precludes
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pathological cyclic behavior. Given irreducibility, the in the migration effective population number Ne, de-
fined by (Nagylaki 1980, 1982, 1983, 1994)biologically trivial condition that individuals have posi-

tive probability of remaining in some deme, i.e., that
Ne 5 bNT, b 5 1o

i
n 2

i /ki2
21

. (5)mii . 0 for some i, suffices for aperiodicity (Feller 1968,
p. 426). Of course, M must be stochastic:

We have b # 1 and hence Ne # NT, with equality if ando
j
mij 5 1. (2)

only if migration is conservative (Nagylaki 1980). This
effective population number replaces the actual total

Let NT and ki represent the total population number population number in the strong-migration limit
and the proportion of adults in deme i, respectively: (Nagylaki 1980, 1983) and in certain aspects of geo-

graphical invariance (Nagylaki 1982, 1994). ObserveNT 5 o
i
Ni , k i 5 Ni/NT, (3a)

that Ne is independent of the genetic model.
There is a simple, intuitive interpretation of Ne (cf.0 , ki , 1, o

i
ki 5 1. (3b)

Nordborg 1997). In many cases, 1/Ne can be defined
as the probability that two randomly chosen gametes inBy the ergodicity of the nonnegative stochastic matrix
distinct individuals are descended from the same parentM, the eigenvalue 1 of M is simple and exceeds all other
(Crow and Denniston 1988; Caballero and Hilleigenvalues in absolute value; we may choose the left
1992; Nagylaki 1992, pp. 243–247, 1995). For gameteseigenvector n corresponding to this unit eigenvalue to
in demes i and j, this probability ishave only positive components (Gantmacher 1959,

Chapter 13). Thus, the conditions o
k

m ikmjk/Nk .

0 , ni , 1, o
i

ni 5 1 , nTM 5 nT, (4)
Averaging this with respect to the stationary distribution
n and using (4), (3a), and (5) yieldwhere the superscript T signifies matrix transposition,

determine n uniquely. Note that n is the unique station- o
i,j

ninjo
k

mikmjk /Nk 5 o
k

n 2
k/(NTkk) 5 1/Ne .

ary distribution of the Markov chain with transition ma-
trix M. We are now prepared to deduce our results.

The components of the last equation in (4) are Let Tij denote the mean coalescence time (in genera-
tions) of two distinct, homologous nucleotides chosenni 5 o

j
njmji 5 nim ii 1 o

j : j?i
njmji .

at random from adults just before gametogenesis, one
from deme i and one from deme j. At equilibrium,With the aid of (2), we can rewrite this as
considering ancestry and coalescence in the preceding
generation yields directly

ni 5 o
j : j?i

1mji@ o
k : k?i

mik2nj ,
Tij 5 o

k,l : k?l
mikmjl(1 1 Tkl)

which reveals that the stationary distribution n depends
only on the relative migration rates. More precisely, if 1 o

k
m ikmjk3 1

2Nk

1 11 2
1

2Nk
2(1 1 Tkk)4 ,

we replace mij by cmij for every i and j such that i ≠ j,
where the constant c is independent of i and j and the and (2) simplifies this at once to
restriction

Tij 5 1 1 o
k,l

mikmjlTkl 2 o
k

(2Nk)21mikmjkTkk. (6)
c o

j : j?i
mij # 1

Clearly, (6) applies also to a model with 2Ni haploid
holds, then n is unaltered. individuals in deme i.

Conservative migration patterns are those that do not Define the global and local means (cf. Nagylaki

change the subpopulation numbers; in this case, and 1982)
only in this case, we have n 5 k (Nagylaki 1980).
Conservative migration has many simple intuitive prop- T 5 o

i,j
ninjTij , T0 5 bo

i
(n 2

i /ki)Tii . (7)
erties that do not always hold for arbitrary migration
(Nagylaki 1980, 1982, 1983, 1985, 1986, 1992, pp. 135– Averaging (6) according to (7) and appealing to (4)
136, 151; Nordborg 1997). In our model, the subpopu- and (3a) yield
lation numbers Ni refer to adults. However, since the
number of gametes in each deme before dispersion is T 5 1 1 T 2

T0

2NTb
,

proportional to Ni , it is also true that the gametic num-
bers are unchanged by conservative migration, and only whence (5) gives
by conservative migration.

In our results, the vectors k and n enter combined T0 5 2Ne . (8)
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Therefore, summing mutations over sites shows that the simplify to weighting by the demic proportions:
expected number of nucleotide differences is

T0 5 o
i

k iTii 5 2NT . (16)
d0 5 2uT0 5 4Neu . (9)

Examples of conservative migration are random out-
Thus, with the weighting (7), the exact effect of popula- breeding and site homing (Nagylaki 1992, pp. 136,
tion subdivision in (8) and (9) is to replace the actual 149, and refs. therein), the island model (Nagylaki

total population number NT by the migration effective 1983, 1986, and refs. therein), and the circular stepping-
population number Ne. stone model (Nagylaki 1983, 1986, and refs. therein).

In the strong-migration limit, Ni → ∞ for every i with k The choice mij 5 kj corresponds to panmixia in the
and M fixed. Then Tij z 2Ne for every i and j (Notohara entire population.
1993), where the notation means that Tij/(2Ne) → 1. Note that (16) is independent of the migration pat-
This demonstrates independently the asymptotic valid- tern, provided the latter is conservative. This raises the
ity of the exact formula (8) whenever migration domi- following apparent paradox. If there is no migration,
nates random drift. then Tii 5 2Ni , whence

We discuss special cases of (8) after presenting a dif-
T0 5 2 o

i
kiNi ; 2N, (17)ferent proof of (9).

An alternative proof of (9): Since (8) and (9) are
but (17) is obviously not the limit of (16) as the migra-geographical-invariance relations, the following instruc-
tion rates converge to zero. This phenomenon can betive approach is natural. Suppose the model of infinitely
understood on several levels.many alleles (Malécot 1946, 1948, 1951; Wright 1948;

From the formal point of view, note that if there isKimura and Crow 1964) applies to each site: every
no migration, then M is the identity matrix. Therefore,nucleotide at site s mutates to new nucleotides at rate
contrary to our assumption of ergodicity, M is reducibleus. (We soon let us → 0, so the fact that there are really
and n is undefined. Thus, (16) does not apply.only four nucleotides will not matter.)

A more illuminating explanation is that, as the migra-Let f (s)
ij denote the probability that two distinct nucleo-

tion rates tend to zero, so does the probability of descenttides at site s chosen at random from adults just before
from a different deme, but the mean interdeme coales-gametogenesis, one from deme i and one from deme
cence times (Tij for i ≠ j) diverge and make a finite,j, are the same. Define the weighted means (Nagylaki

positive contribution to the mean intrademe coales-1982)
cence times Tii . This behavior is exemplified by the

f (s) 5 o
i,j

ninj f (s)
ij , f (s)

0 5 bo
i
(n 2

i /ki)f (s)
ii , (10) island model with migration rate m : Li’s (1976) solution

shows that Tij 5 O(m21) for i ≠ j and that the interdeme
h(s)

0 5 1 2 f (s)
0 ; (11) contribution is O(1) as m → 0. For two islands, Nath

and Griffiths (1993) demonstrate that the distributionclearly, h (s)
0 is the weighted average nucleotide heterozy-

of the intrademe coalescence time converges to thegosity. At equilibrium, these satisfy the geographical-
single-deme distribution, but the mean intrademe co-invariance relation (Nagylaki 1982)
alescence time does not converge to the single-deme
mean.h(s)

0 5 32Neus(2 2 us)
(1 2 us)2 4f (s) . (12)

Doubly stochastic backward migration matrix: Here
we assume, in addition to (2), that

To obtain the expected number of heterozygous sites
o

i
mij 5 1 (18)in the model of infinitely many sites, we must let us →

0 and sum over s in (12). Evidently, f (s) → 1 as us → 0,
so (12) reduces to for every j. Then

h (s)
0 z 4Neus, (13)

nT 5
1
n

(1, 1, . . . , 1) (19)
whence we get

is the unique solution of (4) for n demes. Therefore,
d0 5 o

s
h (s)

0 5 4Neu , (14)
(5) yields

Ne 5 nÑ , (20a)where

whereu 5 o
s
us . (15)

Ñ 5 11n o
i

1
Ni

2
21

(20b)Conservative migration: If migration is conservative,
then Ne 5 NT, so (9) reduces to a result established by
Strobeck (1987) for weak evolutionary forces. In this designates the harmonic mean of the subpopulation

numbers. Thus, Ne can be much smaller than NT.case, n 5 k, and hence the averages in (8) and (9)
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A natural subclass of doubly stochastic M is homoge- We retain (7) and define
neous M: in this case, m ij 5 mi2j , which depends only

S0 5 b o
i
(n2

i /ki)Si . (25)
on displacement, rather than on both the initial and
final positions. Examples are the island and circular

Averaging (24b) and using (4), (3a), (5), and (25), westepping-stone models, but, as observed above, these
obtain the invariance formulamigration patterns are also conservative (Nagylaki

1992, p. 136). 2T0 2 S0 5 2Ne. (26)
Symmetric M is another subclass of doubly stochastic

Conservative migration: Since the number of zygotesM. In this case, the formula d0 5 4nÑu was derived by
in each deme before migration is proportional to the

Slatkin (1987) under the assumption of no recombina-
number of adults, therefore it is conservative migration,tion. (His mutation rate, however, should be per gene,
and only conservative migration, that leaves the zygoticnot per site.)
numbers invariant. If migration is conservative, then

Two demes: Parametrizing M as
S0 and T0 are averaged with respect to k, as in (16).
Therefore, averaging (24a) yields

M 5 11 2 m1

m2

m1

1 2 m2
2 , (21)

S 0 5 1 1 T0. (27)

from (4) and (5) we find Recalling that Ne 5 NT and solving (26) and (27) simulta-
neously, we find

n 5
1

m1 1 m2
1m2

m1
2, (22)

S 0 5 2(NT 1 1), T0 5 2NT 1 1. (28)

Let d 0 and e0 denote the expected number of nucleo-
Ne 5

N1N2(m1 1 m2)2

N1m2
1 1 N2m2

2

. (23) tide differences between two homologous genes in the
same individual and in different individuals in the same

We can confirm (23) by calculating T0 from Noto- deme, respectively. Summing mutations over sites, we
hara’s (1990, p. 69) formulas for Tij. have

Migration is conservative if n 5 k, which is equivalent
d 0 5 2uS0 5 4u(NT 1 1), (29a)to N1m1 5 N2m2. This condition means that the same

number of individuals migrate from deme 1 to deme 2 e 0 5 2uT0 5 2u(2NT 1 1). (29b)
as vice versa.

If NT @ 1, then (28) and (29) are very close to (8) and
(9), respectively.

One can also deduce (29) by the alternative approachDIPLOID MIGRATION
presented in the preceding section: approximate Equa-

In this section, we provide support for the robustness tions (19b) and (20) of Nagylaki (1985) for weak muta-
of (8) and (9) by proving that (8) is a good approxima- tion and sum over sites.
tion for diploid migration if Ne @ 1. We derive exact Weak migration: Let m represent the largest total mi-
results for conservative migration and weak- and strong- gration rate:
migration approximations for the general case.

m 5 1 2 min
i

m ii . (30)We modify the model in the preceding section so that
selfing is excluded and zygotes (rather than gametes)

We derive an approximation for m ! 1 and arbitrarydisperse, still before population regulation.
subpopulation numbers Ni . From (2) and (30) we seeLet Si designate the mean coalescence time of two
thatdistinct, homologous nucleotides chosen at random just

before gametogenesis from an adult in deme i. Let Tij mij 5 dij 1 O(m) (31)
signify the mean coalescence time of two homologous

as m → 0, where dij denotes the Kronecker delta (dii 5nucleotides chosen from distinct adults just before ga-
1, and dij 5 0 if i ≠ j). Substituting (31) into (24a) givesmetogenesis, one from deme i and one from deme j.

A moment’s reflection shows that at equilibrium, Si 5 1 1 Tii 1 O(m), (32)

Si 5 o
k

mik(1 1 Tkk) 5 1 1 o
k

mikTkk, (24a) and averaging (32) according to (25) and (7), we obtain

S 0 5 1 1 T0 1 O(m). (33)Tij 5 o
k,l : k?l

mikmjl(1 1 Tkl) 1 o
k

mikmjk

The joint solution of (26) and (33) is our weak-migra-
tion approximation:3





1
Nk

[1⁄2 1 1⁄2(1 1 Sk)] 1 11 2
1
Nk

2 (1 1 Tkk)




S 0 5 2(Ne 1 1) 1 O(m), (34a)
5 1 1 o

k,l
mikmjlTkl 2 o

k
(2Nk)21mikmjk(2Tkk 2 Sk).(24b)

T0 5 2Ne 1 1 1 O(m); (34b)
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deme j, we have pj 5 1/(2Nj) and pi 5 0 if i ≠ j; so P 5
d 0 5 2u[2(Ne 1 1) 1 O(m)], (35a)

nj/(2Nj). Since amutant appears indeme j with probabil-
ity kj, the unconditional fixation probability ise0 5 2u[2Ne 1 1 1 O(m)] (35b)

as m → 0. o
j

kjnj/(2NTkj) 5 1/2NT, (40)
Observe that (34) and (35) agree with (28) and (29),

respectively, for weak conservative migration. which yields Kimura’s (1968) panmictic result,
Strong migration: If Ni @ 1 but m !/ 1, then we can

K 5 2NTu/(2NT) 5 u . (41)assume that Ni → ∞ for every i with the backward migra-
tion matrix M fixed. In this limit, the result (8) indicates We close this note with some remarks on effective
that we must have the asymptotic formulas population number. Consult Caballero (1994) and

Nagylaki (1995) for additional discussion and refer-S i z NeS*
i , Tij z NeT *

ij (36)
ences.

as Ne → ∞, where S*
i and T *

ij are independent of Ne. The First, it must be kept in mind that the introduction
leading terms in (24b) yield of an effective population number generally does not

reduce exactly a complicated model to a simpler orT *
ij 5 o

k,l
mikmjlT *

kl. (37)
ideal one. At most, such reduction occurs approximately
or only for certain functionals of the evolutionary pro-By the ergodicity of M, the nonnegative, stochastic
cess. For example, the variance effective populationKronecker-product matrix M ^ M in (37) has a simple
number N (v)

e for a panmictic dioecious population is amaximal eigenvalue 1, and the corresponding right ei-
parameter (rather than a random variable) only in thegenvector has equal components. Therefore, T *

ij 5 T *,
diffusion approximation, and it is only in this approxi-independent of i and j, and hence (24a) implies that
mation that it reduces a dioecious model to a mono-S *

i 5 T *. From (26) we get
ecious one (Ewens 1979, pp. 104–112, 1982; Nagylaki

S 0 z T0 z 2Ne , d 0 z e 0 z 4Neu (38) 1995). The inbreeding effective population number
N (i)

e relates the asymptotic (i.e., long-time) rate of decayas Ni → ∞ with M fixed.
of the probabilities of genetic identity (including theThis result agrees with (8) and (9), as expected from
heterozygosity) in complicated models to their rate ofthe strong-migration limit for diploid migration in the
decay in an ideal population.model of infinitely many alleles (Nagylaki 1983).

Second, although effective population numbers have
usually been defined in terms of some property of the

DISCUSSION evolutionary process, they are theoretically instructive
and useful only if they can be evaluated as parameters,We have demonstrated that, for gametic dispersion
rather than random variables that depend on that pro-and suitable averaging, the mean intrademe coales-
cess. This has been accomplished under a wide rangecence time is T0 5 2Ne, and the expected number of
of assumptions for both N (v)

e and N (i)
e .heterozygous nucleotide sites is d 0 5 4Neu , where Ne Third, a particular effective population number isand u denote the migration effective population num-

useful only if it can be evaluated without analysis of theber (5) and the mutation rate per gene, respectively. If
evolutionary process or if it predicts more than oneNe @ 1, these formulas are good approximations for
property of that process. Again, N (v)

e and N (i)
e satisfy thisdiploid migration. Thus, for the simple functionals

criterion.T0 and d 0 , population subdivision can be taken into ac-
The migration effective population number Ne de-count by replacing the actual total population number

fined by (5) has all the desirable properties discussedNT by Ne. This reduction generally fails for higher mo-
above. Its evaluation from (5) is simple, explicit, andments ofT0 and d 0 and for measures of genetic variability
independent of the genetic model: Ne satisfies Ne # NTother than d 0, such as the expected number of segregat-
and depends only on the vector k of demic proportionsing sites.
and on the unique stationary distribution n of the Mar-In contrast, the rate of gene substitution, K, is com-
kov chain generated by the constant, ergodic backwardpletely independent of population structure; unlike
migration matrix M. Of course, no effective populationT0 and d 0 , it does not depend even on the stationary
number can reduce a model of a subdivided populationdistribution n and the deme proportions k. To see this,
to that of a panmictic one. However, the above andnote first that the fixation probability of a nucleotide
earlier analyses (Nagylaki 1980, 1982, 1983, 1994)with initial frequency pi in deme i is its weighted average
show that Ne replaces NT in the strong-migration limitinitial frequency,
and in certain aspects of geographical invariance.

P 5 o
i

nip i (39) Finally, it should be noted that our definition of Ne

differs from that of the various recently introduced ef-
fective population numbers for subdivided populations(Nagylaki 1980). For a new mutant that appears in
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Whitlock, M. C., and N. H. Barton, 1997 The effective size of a

C.R. Acad. Sci. Paris 22: 841–843. subdivided population. Genetics 146: 427–441.
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